
Noname manuscript No.
(will be inserted by the editor)

Minimizing total weighted completion time on a single
machine subject to non-renewable resource constraints

Péter Györgyi · Tamás Kis

Received: date / Accepted: date

Abstract In this paper we describe new complexity

results, and approximation algorithms for single ma-

chine scheduling problems with non-renewable resource

constraints and the total weighted completion time ob-

jective. This problem is hardly studied in the literature,

and most of the published results establish the compu-

tational complexity of various special cases with differ-

ent objective functions. In this paper we discuss some

polynomially solvable special cases and also show that

under very strong assumptions, like the processing time,

the resource consumption and the weight is the same

for each job, minimizing the total weighted completion

time is still NP-hard. In addition, we also propose a 2-

approximation algorithm for this variant, and a PTAS

for the case when the processing time equals the weight

for each job, while the resource consumptions are arbi-

trary.

Keywords single machine scheduling, non-renewable

resources, approximation algorithms.

1 Introduction

Non-renewable resources, like raw material, energy, or

money, are used in all sectors of production, and de-

pending on the stocking policy, they have varying im-

pact on the preparation of daily and weekly production

schedules. Consider for instance the preparation of the

weekly schedule of a production line, where some of the

raw materials built into the products arrive over the

P. Györgyi
Institute for Computer Science and Control, Hungarian
Academy of Sciences, H1111 Budapest, Kende str. 13–17,
Hungary
T. Kis
Institute for Computer Science and Control, Hungarian
Academy of Sciences, H1111 Budapest, Kende str. 13–17,
Hungary
Tel.: +36 1 2796156; Fax: +36 1 4667503
E-mail: peter.gyorgyi@sztaki.mta.hu,
tamas.kis@sztaki.mta.hu

week, and the supplies constrain what and when can

be produced. Of course, if all the purchased items were

on stock right at the beginning of the week, then the

supply arriving during the week would not influence the

scheduling decisions, but the drawback is that larger

stocks should be kept which incurs additional costs.

In this paper we consider single machine scheduling

problems with one additional non-renewable resource.

The non-renewable resource has an initial stock, and

some additional supplies in the future with known sup-

ply dates and quantities. A job can only be started if the

inventory level of the resource is at least as much as the

quantity required by the job. When the job is started,

the inventory level is decreased by the required quan-

tity. Therefore, when determining the schedule, one has

to take into account not only the initial stock level, but

also the future supplies. This is an extra constraint be-

side e.g., job release dates, or sequence dependent setup

times.

More formally, in all problems studied in this paper,

there is a single machine, a non-renewable resource, and

a finite set of jobs J . Each job j ∈ J has a processing

time pj > 0, a weight wj ≥ 0, and a resource require-

ment aj ≥ 0. The resource has an initial supply b̃1 avail-

able at time u1 = 0, and additional supplies b̃` at supply

dates u` for ` = 2, . . . , q. For convenience, we also define

uq+1 = +∞. We assume that the supplies are indexed

in increasing u` order, i.e., u` < u`+1 for ` = 1, . . . , q−1.

Let S be a schedule specifying a start time for each job.

It is feasible if (i) the jobs do not overlap in time, and

(ii) for each ` = 1, . . . , q,
∑

j:Sj<u`+1

aj ≤
∑̀
`′=1

b̃`, i.e., the

supply arriving up to u` covers the demands of those

jobs starting before u`+1. The objective function is the

weighted sum of job completion times, i.e., a feasible

2 Péter Györgyi, Tamás Kis

schedule of minimum
∑
j∈J

wjCj value is sought, where

Cj = Sj + pj . We mention that a feasible schedule ex-

ists only if
∑
j∈J

aj ≤
q∑̀
=1

b̃`, and more resources are not

needed. In fact, without loss of generality we may as-

sume that

i)
∑
j∈J

aj =
q∑̀
=1

b̃`, and

ii) b̃q > 0, i.e., at least one job must start not before

uq.

In the standard α|β|γ notation of Graham et al. [6], we

will indicate in the β field by nr = 1 that the number

of non-renewable resources is 1. In addition, we will

constrain the number of supply dates to a constant by

q = const. We will use a number of other constraints

which are standard in the scheduling literature.

There are only sporadic results on this problem.

Carlier [4] has established that 1|nr = 1|
∑
wjCj is NP-

hard in the strong sense, which was also established in

Gafarov et al. [5]. However, the problem remains NP-

hard in the weak sense if q = 2 (two supplies), see

Kis [15]. In [15], an FPTAS is devised for the special

case 1|nr = 1, q = 2|
∑
wjCj . Moreover, Gafarov et

al. [5] study a variant of this problem, where each job

has processing time 1, and there are n supplies such

that u` = `M , and b̃` = M for ` = 1, . . . , n, where

M =
∑
j∈J aj/n is an integer number, and n = |J |.

Without the non-renewable resource constraint, the

problem 1||
∑
wjCj can be solved optimally in poly-

nomial time by scheduling the jobs in non-increasing

wj/pj order, a classical result of Smith [18].

In this paper we establish new complexity and
approximability results for special cases of 1|nr =

1|
∑
wjCj . The special cases are obtained by impos-

ing constraints on the parameters of the jobs. For in-

stance, the constraint pj = wj means that for each job,

its processing time equals its weight, aj = ā indicates

that all the jobs have a common resource requirement,

whereas pj = 1 or pj = p̄ restricts the processing time

of each job to 1 or to some other common constant

value. The new results are summarized in Table 1. As

we can see, 5 special cases can be solved in polyno-

mial time by list scheduling, we identify 3 new NP-

hard variants, and propose approximation algorithms

in two cases. We emphasize that the 2-approximation

algorithm is merely list scheduling using the LPT or-

der, but the analysis of the algorithm is tricky. On the

other hand, the polynomial time approximation scheme

for 1|nr = 1, wj = pj , q = const.|
∑
pjCj is rather in-

volved, and the underlying analysis needs new ideas

which may be used in the analysis of other problems as

well.

The structure of the paper: in Section 2 we overview

the related literature. In Section 3 we generalize list

scheduling to our problem, and discuss special cases

that can be solved optimally with this method. In Sec-

tion 4 we establish the NP-hardness of 1|nr = 1, pj =

1, aj = wj |
∑
wjCj . In Section 5 we present complexity

results and a 2-approximation algorithm for the special

case with pj = aj = wj . Finally, in Section 6 we devise

a PTAS for 1|nr = 1, pj = wj , q = const.|
∑
wjCj .

2 Literature review

Machine scheduling problems with non-renewable re-

sources have been introduced by Carlier [4], and Slowin-

ski [17]. In [4], the computational complexity of several

variants with a single machine is established. Slowin-

ski [17] considers a parallel machine problem with pre-

emptive jobs, and with a single non-renewable resource

which has an initial stock and some additional sup-

plies. It is assumed that the rate of consuming the non-

renewable resource is constant during the execution of

the jobs. These assumptions led to a polynomial time al-

gorithm for minimizing the makespan. Toker et al. [19]

prove that the single machine scheduling problem with

a single non-renewable resource and the makespan ob-

jective reduces to the 2-machine flow shop problem pro-

vided that the single non-renewable resource has a unit

supply in every time period. In [20], [7] and [5] the com-

plexity of several variants with the minimum makespan

objective is studied, and some constant ratio approxi-

mation algorithms are developed in [7]. In [8] [9], [11],

[10], [12] the approximability of several variant of the

makepsan minimization problem on single and parallel

machines is established, and in [13] a branch-and-cut

algorithm for minimizing the maximum lateness is de-

vised and evaluated.

A related model with resource producing and re-

source consuming jobs is studied in [2], [3], [14] with the

objective of minimizing the maximum inventory level

needed to complete all the jobs (there are no exter-

nal supplies over the scheduling horizon). In Kellerer

et al. [14] contant ratio approximation algorithms are

developed, and in Briskorn et al. [2] the complexity

of several variants is established. In Briskorn et al. [3]

an exact method is devsied. Morsy and Pesch [16] de-

sign a 2-approximation algorithm to minimize the to-

tal weighted completion time in a special case of the

scheduling problem with producer and consumer jobs.

Minimizing total weighted completion time on a single machine subject to non-renewable resource constraints 3

Table 1 New complexity and approximability results.

#Res. #Supp. Restriction Objective Result
nr q function

1 ∗ pj = aj = ā
∑

wjCj polytime (decr. wj ord.)
1 ∗ pj = wj = 1

∑
Cj polytime (incr. aj ord.)

1 ∗ aj = wj = 1
∑

Cj polytime (incr. pj ord.)
1 ∗ wj = w̄, pj = aj

∑
w̄Cj polytime (incr. pj ord.)

1 ∗ aj = ā, pj = wj
∑

pjCj polytime (decr. pj ord.)
1 2 wj = pj = aj

∑
pjCj weakly NP-hard

1 ∗ wj = pj = aj
∑

pjCj strongly NP-hard
1 2 pj = 1, wj = aj

∑
wjCj weakly NP-hard

1 ∗ wj = pj = aj
∑

pjCj 2-approx algo (LPT rule)
1 const. wj = pj

∑
pjCj PTAS

”∗” stands for ”arbitrary”

”decr. wj ord.” means decreasing (non-increasing) wj order.

”incr. pj ord.” is equivalent to SPT rule.

”decr. pj ord.” is equivalent to LPT rule.

”2-approx algo” means ”polytime time approximation algorithm with relative error 2”.

”PTAS” stands for ”polynomial time approximation scheme”.

3 List scheduling

In this section we discuss polynomially solvable special

cases of 1|nr = 1|
∑
wjCj . All the algorithms presented

below are based on the following scheme:

1. Sort the jobs according to some total ordering rela-

tion. Let L = (j1, . . . , jn) be the sequence obtained.

Let t := 0, ` := 1, and r := b1.

2. For i = 1 to n do

3. While aji > r repeat let ` := `+1, t := max{t, u`},
and r := r + b̃`. End-while.

4. Schedule ji at time t. That is, set Sji := t, and

then t := t+ pji , r := r − aji .
5. End-for

6. Output S.

In the above algorithm, t represents the time when

the next job may be scheduled, and r the resource level

before scheduling it. In Step 3, t and r is reset if the re-

source available after scheduling the previous jobs is not

enough to schedule ji. Notice that in such a case, the

supply of more than one period may be needed to in-

crease the available quantity of the resource sufficiently.

The above simple algorithm is a generalization of

the well-known algorithm which schedules the jobs in

some given order without interruptions, see e.g., [1].

Now we present the already announced special

cases, which differ in the restrictions on the various job

parameters:

1|nr = 1, pj = aj = ā|
∑
wjCj : Schedule the jobs in

non-increasing wj order.

1|nr = 1, pj = wj = 1|
∑
wjCj : Schedule the jobs in

non-decreasing aj order.

1|nr = 1, aj = wj = 1|
∑
wjCj : Schedule the jobs in

SPT1 order.

1|nr = 1, wj = w̄, pj = aj |
∑
wjCj : Schedule the jobs

in SPT order.

1|nr = 1, aj = ā, pj = wj |
∑
wjCj : Schedule the jobs

in LPT2 order.

The proof of optimality is left to the reader, except in

the last case:

Theorem 1 The LPT schedule yields an optimal solu-

tion for 1|nr = 1, aj = ā, pj = wj |
∑
wjCj.

Proof Let S∗ be an optimal schedule, and S∗j +pj = C∗j
for each job j in which the number of job pairs violating

the LPT order is the smallest. Suppose that there are

at least two jobs that are not in LPT order. Consider

the first two such consecutive jobs, say j1 and j2, where

j1 is scheduled before j2, and pj1 + K = pj2 for some

K > 0. Let S′ be the schedule where we swap the order

of j1 and j2. We distinguish two cases.

If C∗j1 = S∗j2 , then S′j1 = S∗j1 + pj2 , S′j2 = S∗j1 ,

and S′j = S∗j for all j /∈ {j1, j2}. It is easy to ver-

ify that wj1(S∗j1 + pj1) + wj2(S∗j2 + pj2) = wj2(S′j2 +

pj2) + wj1(S′j1 + pj1), and the objective function does

not change. Since S′ is feasible, as each job has the same

resource requirement, we reached a contradiction with

the choice of S∗.

Now suppose C∗j1 < S∗j2 . Hence, there is an ` such

that S∗j2 = u`. Note that we have S′j2 = S∗j1 , S′j1 =

max{C ′j2 , u`}. Further on we have S′j = S∗j for each

job j with S∗j < S∗j1 , and S′j ≤ S∗j for each job j with

S∗j ≥ S∗j2 . Notice that only the start time of job j1
increases after swapping job j1 and job j2. To reach

a contradiction with the choice of S∗, it is enough to

1 non-decreasing in pj
2 non-increasing in pj

4 Péter Györgyi, Tamás Kis

prove that wj1C
∗
j1

+wj2C
∗
j2
≥ wj1C ′j1 +wj2C

′
j2

. Suppose

that we have u` = S∗j1 + pj1 +L where L > 0. We have

wj1C
∗
j1 + wj2C

∗
j2 = pj1(S∗j1 + pj1)+

pj2 · ((S∗j1 + pj1 + L) + pj2)

= pj1S
∗
j1 + p2j1 + (pj1 +K)S∗j1+

(pj1 +K)(pj1 + L) + (pj1 +K)2,

and

wj1C
′
j1 + wj2C

′
j2 = pj1(S′j1 + pj1)+

(pj1 +K)(S∗j1 + pj1 +K)

= pj1 max{C ′j2 , u`}+
p2j1 + (pj1 +K)S∗j1 + (pj1 +K)2.

Thus, wj1C
∗
j1

+ wj2C
∗
j2
− (wj1C

′
j1

+ wj2C
′
j2

) =

pj1S
∗
j1

+ (pj1 +K) · (pj1 + L)− pj1 max{C ′j2 , u`}. Since

max{C ′j2 , u`} = max{S∗j1 +pj1 +K,S∗j1 +pj1 +L}, thus

wj1C
∗
j1

+ wj2C
∗
j2
≥ wj1C ′j1 + wj2C

′
j2

follows. ut

4 Problem 1|nr = 1, pj = 1, aj = wj|
∑

wjCj

Theorem 2 The problem 1|nr = 1, pj = 1, aj =

wj |
∑
wjCj is NP-hard.

Proof We reduce the NP-hard PARTITION problem

to our scheduling problem. An instance of the former

problem is given by a natural number n, and the sizes

of n items, s1, . . . , sn, which are non-negative integer

numbers. One has to decide whether the items can be

partitioned into two subsets, Q1 and Q2, such that∑
i∈Q1

si =
∑
i∈Q2

si. Since all item sizes are integer

numbers, the answer is ‘NO’, unless
∑n
i=1 si = 2A for

some integer A. Therefore, we assume that
∑n
i=1 si is

an even integer, and let A :=
∑n
i=1 si/2. Let I be an

instance of PARTITION, the corresponding instance I ′

of 1|nr = 1, pj = 1, aj = wj |
∑
wjCj consists of n jobs,

and for each item j, the corresponding job has a pro-

cessing time pj = 1, and wj := sj and aj := sj . In

addition, there is a single resource with an initial stock

of b̃1 := A, available at time u1 := 0, and with one more

supply b̃2 := A at time u2 := n2A2.

We claim that I has a ‘YES’ answer if and only if

I ′ has a feasible schedule of objective function value at

most n2A3 + 2nA. First suppose that I has a partition-

ing of the items Q1, Q2 of equal size. Schedule the jobs

corresponding to the items in Q1 from time 0 on consec-

utively in decreasing wj order, and those in Q2 from u2
consecutively in decreasing wj order. This schedule is

clearly feasible. Suppose Q1 = {j1, . . . , jk}, and wji ≥

wji+1
for i = 1, . . . , k−1, and Q2 = {jk+1, . . . , jn}, and

wji ≥ wji+1
for i = k + 1, . . . , n− 1. Then we compute

∑
j

wjCj =

k∑
i=1

iwji+

n∑
i=k+1

(n2A2+i−k)wji < n2A3+2nA.

Conversely, suppose the scheduling problem admits a

feasible schedule S of objective function value at most

n2A3 + 2nA. Let Cj := Sj + 1 for each job j. Let Q1 =

{j | Sj < u2} and Q2 = {j | Sj ≥ u2}. Since S is

feasible, the total resource consumption of those jobs

in Q1 is at most A. Indirectly, suppose it is less than

A. Then the total weight of those jobs in Q2 is at least

A+ 1. But then we have∑
j

wjCj ≥
∑
j∈Q2

n2A2wj ≥ n2A3+n2A2 > n2A3+2nA,

which is a contradiction.

Finally, notice that the transformation is of poly-

nomial time complexity, which shows that there is a

polynomial reduction from PARTITION to a decision

version of the scheduling problem 1|nr = 1, pj = 1, aj =

wj |
∑
wjCj . ut

5 Problem 1|nr = 1, pj = aj = wj|
∑

wjCj

We start this section by providing a non-trivial ex-

pression for the objective function value of an optimal

schedule under the condition pj = wj for every job j.

Let S be any feasible schedule for the problem and

let Cj = Sj+pj be the completion time of job j in S. Let

H` denote the length of the idle period, if any, in sched-

ule S in the interval [u`, u`+1] and let G` =
∑`
ν=1Hν

be the total idle time until u`+1. Let P` denote the

total working time (when the machine is not idle) in

[u`, u`+1], noting that u` =
∑`−1
ν=1 Pν + G`−1. See Fig-

ure 1 (a) for an illustration. Using the new notation, we

can express the objective function value of S as follows:

Lemma 1 If pj = wj for each job j, then the objec-

tive function value of any feasible schedule S can be

expressed as

∑
j

pjCj =
∑
j≤k

pjpk +

q∑
`=2

G`−1P`

=
∑
j≤k

pjpk +

q∑
`=2

H`−1(P` + P`+1 + . . .+ Pq).

(1)

Minimizing total weighted completion time on a single machine subject to non-renewable resource constraints 5

S

timeu1 u2 u3 u4 u5

H1 = 0

H2 H3 H4

G1 = H1 G2 =
2∑

ν=1

Hν G3 =
3∑

ν=1

Hν G4 =
4∑

ν=1

Hν

P1 P2

P3 = 0

P4 P5

(a)

S

timeu` u`′ u`′+1Ck t

k

B
Total gap until u`
is G`−1

(b)

Fig. 1 (a) The new notations (G`, H` and P`); (b) proof of Lemma 1.

Proof Consider any working period B = [u`, t] in the

schedule S, that is, the machine is idle right before u`
and right after t, and is working contiguously through-

out B. Suppose t ∈ (u`′ , u`′+1], where `′ ≥ `. Let k be

an arbitrary job that is processed in B, see Figure 1

(b). We have Ck =
∑
Cj≤Ck pj + G`−1, thus the total

weighted completion time of the jobs processed in B is

∑
k:Ck∈B

pk

 ∑
Cj≤Ck

pj +G`−1

 =

∑
k:Ck∈B

pk
∑

Cj≤Ck

pj +G`−1

`′∑
ν=`

Pν =

∑
k:Ck∈B

pk
∑

Cj≤Ck

pj +

`′∑
ν=`

Gν−1Pν ,

where the first equation follows from
∑
k:Ck∈B pk =∑`′

ν=` Pµ, and the second from Gν = G`−1 for each

` ≤ µ < `′, since the machine is not idle in the interval

B. Since the schedule can be partitioned into working

and idle periods, we derive

∑
j

wjCj =
∑
j≤k

pjpk +

q∑
`=2

G`−1P`.

Finally, the second equation of the statement of the

lemma can be derived by using the definition of G` and

by rearranging terms. ut

Theorem 3 The problem 1|nr = 1, q = 2, pj = aj =

wj |
∑
wjCj is weakly NP-hard, and 1|nr = 1, pj = aj =

wj |
∑
wjCj is strongly NP-hard.

Proof For proving the weak NP-hardness of 1|nr =

1, q = 2, pj = aj = wj |
∑
wjCj we reduce the PARTI-

TION problem to this scheduling problem. Recall that

an instance of PARTITION is given by a positive inte-

ger n, and n non-negative integer numbers s1, . . . , sn,

that represent the respective size of n distinct items.

One has to decide whether the items can be partitioned

into two subsets, Q1 and Q2, such that
∑
i∈Q1

si =∑
i∈Q2

si. Since the item sizes are integer numbers, the

answer is ‘NO’, unless
∑n
i=1 si = 2A for some integer

A. Therefore, we assume that
∑n
i=1 si = 2A in any in-

stance of PARTITION, and the question can be equiv-

alently stated as if there exists a subset Q of items

with
∑
i∈Q si = A. Now, the corresponding instance of

1|nr = 1, q = 2, pj = aj = wj |
∑
wjCj consists of n

jobs, one job foe each item, and pi = ai = wi = si
for each item i = 1, . . . , n. There are two supplies, one

at u1 = 0 and the supplied quantity from the single

resource is A, and another at u2 = A with supplied

quantity A. We claim that the the PARTITION prob-

lem instance has a solution if and only if the correspond-

ing scheduling problem instance has a feasible solution

of value at most
∑
j≤k pjpk. Using Lemma 1, the the

latter holds if and only if the schedule has no idle time.

So, it suffices to prove that the PARTITION problem

instance has a solution if and only if the corresponding

scheduling problem instance admits a feasible schedule

without any idle time. First suppose that the PARTI-

TION problem instance has a ‘yes’ answer, i.e., there

is a subset Q of items with
∑
i∈Q si = A. Schedule the

corresponding jobs contiguously in any order in the in-

terval [0, A]. Since pj = aj , and the supply at u1 = 0

is A, this is feasible. Now, schedule the remaining jobs

without idle times from u2 = A. The result is a feasible

6 Péter Györgyi, Tamás Kis

schedule without idle times. Conversely, suppose there

is a feasible schedule without idle times. Then the ma-

chine is working throughout the interval [0, A]. Since

the supply at u1 = 0 is A, the total processing time

of the jobs starting before u2 = A is A. Let the set Q

consist of the items corresponding to these jobs. This

yields a feasible solution for the PARTITION problem

instance.

For proving the strong NP-hardness of 1|nr =

1, pj = aj = wj |
∑
wjCj we reduce the 3-PARTITION

problem to this scheduling problem. Recall that an in-

stance of 3-PARTITION consists of an positive integer

t, and 3t items, each having a size si, i ∈ {1, . . . , 3t},
where the item sizes are bounded by polynomial in the

input length. It is assumed that
∑3t
i=1 si is divisible by

t, and B/4 < si < B/2 for each i, where B =
∑3t
i=1 si/t.

The question is whether the set of items can be parti-

tioned into t groups Q1, . . . , Qt such that
∑
i∈Q` si = B

for ` = 1, . . . , t. The corresponding instance of the

scheduling problem 1|nr = 1, pj = aj = wj |
∑
wjCj

has 3t jobs corresponding to the 3t items with pi = ai =

wi = si, and q = t supplies at supply dates u` = (`−1)B

with supplied quantities b` = B for ` = 1, . . . , q. The

rest of the proof goes along the same lines as in the first

part, i.e., we argue that 3-PARTITION has a feasible

solution if and only the the corresponding scheduling

problem instance has a solution of objective function

value
∑
j≤k pjpk if and only if there is a feasible sched-

ule without any idle times. ut

Theorem 4 Scheduling the jobs in LPT order is a

2-approximation algorithm for 1|nr = 1, pj = aj =

wj |
∑
wjCj.

Proof The main idea of the following proof is that first

we transform the problem data such that the resource

supplies are deferred until they are used in a selected

optimal schedule, and then we bound the approxima-

tion ratio of the LPT schedule. Finally, we observe that

the LPT order yields at least as good a schedule with

the original problem data as the same job order for the

modified problema data.

Let I be any instance of the scheduling problem,

and fix an optimal schedule S∗ for I. Let J ∗` be the

set of jobs that start in [u`, u`+1) in S∗. Let I ′ be a

new problem instance derived from I by modifying the

supplied quantities (the other problem data does not

change): b′1 :=
∑
j∈J ∗1

aj and for each ` ≥ 2, b′` :=∑`
ν=1

∑
j∈J ∗ν

aj −
∑`−1
ν=1 b

′
ν .

Claim 1 I ′ has the following properties:

(i) b′` ≥ 0 for each ` = 1, . . . , q,

(ii)
∑q
`=1 b

′
` =

∑n
j=1 aj,

(iii) S∗ is optimal for I ′,

(iv) any ordering of the jobs yields at least as good a

schedule for I as for I ′.

Proof The first two claims are straightforward conse-

quences of the definitions, while (iii) and (iv) both fol-

low from the fact that in I ′ the resource supplies are

deferred with respect to I. ut

From now on we consider I ′.

Let SLPT denote the schedule obtained from the

LPT order for problem instance I ′, and let CLPTj

denote the completion time of job j in this sched-

ule. Let GLPT` denote the total idle time in SLPT

in [0, u`+1] and PLPT` the total working time (when

the machine processes a job) in [u`, u`+1]. We have

u` =
∑`−1
ν=1 Pν +GLPT`−1 .

Let us define P̃LPT` as follows. If the machine is

working just before u`, or idle just after u` in SLPT ,

then P̃LPT` = 0; otherwise P̃LPT` equals the length of

the working period starting at u` until the first idle

period in SLPT , see Figure 2. Notice that if the machine

is working right before and also right after u`, then

P̃LPT` = 0 by definition.

According to Lemma 1, we can express the total

weighted processing time of the LPT schedule as fol-

lows:∑
j∈J

pjC
LPT
j =

∑
j≤k

pjpk +

q∑
`=2

GLPT`−1 P
LPT
`

=
∑
j≤k

pjpk +

q∑
`=2

GLPT`−1 P̃
LPT
` .

(2)

Note that the second equation follows from the fact that

if P̃LPT` = 0, then GLPT`−1 = GLPT`′−1 for the largest `′ < `

with P̃LPT`′ > 0.

In the next claim we relate (2) to (1). The notations

P ∗` , G∗` and H∗` refer to P`, G` and H` in case of S∗.

Note that u` =
∑`−1
ν=1 P

∗
ν +G∗`−1.

Claim 2 If P̃LPT` > 0, i.e., the machine is idle just

before u`, and a job j(`) is started at u` in SLPT , then

(i)
∑`−1
ν=1 P̃

LPT
ν + pj(`) >

∑`−1
ν=1 P

∗
ν and∑q

ν=` P̃
LPT
ν <

∑q
ν=` P

∗
ν + pj(`),

(ii) GLPT`−1 < G∗`−1 + pj(`).

Proof If
∑`−1
ν=1 P̃

LPT
ν + pj(`) ≤

∑`−1
ν=1 bν were true,

then j(`) could be scheduled earlier in SLPT . Thus

we have
∑`−1
ν=1 P̃

LPT
ν + pj(`) >

∑`−1
ν=1 bν . Since we have∑`−1

ν=1 P
∗
ν ≤

∑`−1
ν=1 bν , (i) follows. The second inequal-

ity of (i) follows from
∑q
ν=1 P̃

LPT
ν =

∑q
ν=1 P

∗
ν . Fi-

nally, (ii) follows from
∑`−1
ν=1 P̃

LPT
ν + GLPT`−1 = u` =∑`−1

ν=1 P
∗
ν +G∗`−1. ut

Minimizing total weighted completion time on a single machine subject to non-renewable resource constraints 7

SLPT
t

u1 u2 u3 u4 u5 u6

GLPT1 = 0

GLPT2

GLPT3

P1 P2

P3 = P̃LPT3 = 0

P4 P5 P6

P̃LPT1

P̃LPT2 = 0

P̃LPT4

P̃LPT5 = P̃LPT6 = 0

Fig. 2 Notations for the LPT schedule.

Using (2) and Claim 2 (ii), we derive

∑
j∈J

pjC
LPT
j ≤

∑
j≤k

pjpk +

q∑
`=2

(G∗`−1 + pj(`)) · P̃LPT`

≤ 2 ·
∑
j≤k

pjpk +

q∑
`=2

G∗`−1P̃
LPT
`

= 2 ·
∑
j≤k

pjpk +

q∑
`=2

(
`−1∑
ν=1

H∗ν

)
P̃LPT`

= 2 ·
∑
j≤k

pjpk +

q∑
`=2

H∗`−1

 q∑
µ=`

P̃LPTµ

 ,

where the first inequality follows from Claim 2 (ii), the

second from the observation that pj(`) is multiplied by

the total processing time of job j(`) and all those jobs

following j(`) in the LPT order, and the rest is obtained

by rearranging terms.

Since
∑
j pjC

∗
j =

∑
j≤k pjpk +∑q

`=2H
∗
`−1

(∑q
µ=` P

∗
µ

)
(from Lemma 1), it is enough

to prove

Claim 3

q∑
µ=`

P̃LPTµ ≤ 2 ·
q∑
µ=`

P ∗µ ∀` ≥ 2 : H∗`−1 6= 0.

Note that H∗`−1 6= 0 means the machine is not working

before u` in S∗,
∑q
µ=` P̃

LPT
µ equals the total amount

of work after u` in SLPT , while
∑q
µ=` P

∗
µ is the same

in the optimal schedule S∗.

Proof (of Claim 3) First we prove the claim for each `

such that P̃LPT` 6= 0. Consider such an `. If
∑q
µ=` P

∗
µ

were less than pj(`), then each job with a processing

time at least pj(`) would be scheduled before u` in S∗,

thus
∑`−1
ν=1 b

′
ν would be at least the total processing

time of these jobs. However, this would mean that j(`)

could be scheduled earlier (recall that the machine is

idle just before u` in SLPT), thus we have
∑q
µ=` P

∗
µ ≥

pj(`). Since P̃LPT` 6= 0, we can use Claim 2 (i) and we

have

q∑
µ=`

P̃LPTµ ≤
q∑
µ=`

P ∗µ + pj(`) ≤ 2 ·
q∑
µ=`

P ∗µ

Now suppose that P̃LPT` = 0. If
∑q
µ=` P̃

LPT
µ = 0,

then the claim is trivial. Otherwise, let `′ > ` be the

smallest index such that P̃LPT`′ 6= 0. Since we know that

the claim is true for `′, we have
q∑
µ=`

P̃LPTµ =

q∑
µ=`′

P̃LPTµ ≤ 2 ·
q∑

µ=`′

P ∗µ ≤ 2 ·
q∑
µ=`

P ∗µ

and we are ready. ut
Finally, as we have already noted, the LPT ordering of

the jobs yields at least as good a schedule for I as the

same job order for I ′, and the theorem is proved. ut
Tight example. For any integer n ≥ 3 consider the

scheduling problem with n jobs, the first n− 1 jobs are

of unit processing time, while the last job has processing

time n. That is, pj = aj = wj = 1 for j = 1, . . . , n− 1,

and pn = an = wn = n for job n. There are two sup-

plies, one at u1 = 0 with supplied quantity n − 1, and

another at u2 = n2 with supplied quantity n. In the op-

timal schedule, the first n − 1 jobs are scheduled from

time 0, and the last job is scheduled at time n2 (at u2).

That is, C∗j = j for j = 1, . . . , n− 1, and C∗n = n2 + n.

The optimal objective function value is
n∑
j=1

pjC
∗
j = n(n− 1)/2 + (n3 + n2).

In contrast, in the LPT schedule job n comes first, but it

can be scheduled only at time u2 = n2, since its demand

is n. Hence, CLPTn = n2 + n, and CLPTj = n2 + n + j

for j = 1, . . . , n− 1. Consequently,

n∑
j=1

pjC
LPT
j = (n3 + n2) +

n−1∑
j=1

(n2 + n+ j)

= (n3 + n2) + (n2 + n)(n− 1) + n(n− 1)/2.

Therefore, the relative error of LPT on these instances

is

(n3 + n2) + (n2 + n)(n− 1) + n(n− 1)/2

n(n− 1)/2 + (n3 + n2)
=

2n3 +O(n2)

n3 +O(n2)
,

which tends to 2 as n goes to infinity.

8 Péter Györgyi, Tamás Kis

6 PTAS for

1|nr = 1, pj = wj, q = const|
∑

wjCj

Now we consider the special case when the number of

supply dates is a constant (not part of the input), and

at least 3 (for q = 2, there is an FPTAS for the general

problem 1|nr = 1, q = 2|
∑
wjCj [15]), and pj = wj for

each job j. Theorem 3 implies that this version is still

NP-hard. However, below we describe a PTAS for it.

Let Psum :=
∑
j pj be the total processing time of

the jobs. Let ∆ := 1 + (ε/q2). We will guess the total

processing time of those jobs scheduled after u` for ` =

2, . . . , q, where a guess is a q − 1 dimensional vector of

non-increasing numbers P g2 , . . . , P
g
q , i.e., P g` ≥ P

g
`+1 ≥ 1

for ` = 2, . . . , q − 1, and each P g` is of the form ∆t for

some integer t ≥ 0 with ∆t ≤ Psum. Also fix P g1 :=

Psum. For any guess, define the set of medium size jobs

M` := {j | pj ≥ (∆−1)P g` }. Note thatMq ⊇Mq−1 ⊇
· · · ⊇ M1, since P gq ≤ P gq−1 ≤ · · · ≤ P g1 . Let S` be

the complement of M`, i.e., S` := {j | pj < (∆ −
1)P g` }. Clearly, Sq ⊆ Sq−1 ⊆ · · · ⊆ S1. After these

preliminaries, the PTAS for 1|nr = 1, pj = wj , q =

const|
∑
wjCj consists of the following steps:

1. Consider each possible guess (P g2 , . . . , P
g
q) of the to-

tal processing time of those jobs starting after the

supply dates u2, . . . , uq, respectively. For each pos-

sible guess define the sets of jobs M` and S` (see

above), and perform the steps 2-5. After processing

all the guesses, go to Step 6.

2. For each ` = 1, . . . , q, choose at most 1/(∆ − 1)

medium size jobs from M` (since the sets M` are

not disjoint, care must be taken to choose each job

at most once). For each possible choice (T1, . . . , Tq)

of the medium size jobs (where T` ⊆ M`), perform

steps 3-5. After evaluating all choices, continue with

the next guess in Step 1.

3. Determine a schedule of the medium jobs. That is,

for ` = 1, . . . , q, schedule the jobs in T` in any order

contiguously after u`, and after all the previously

scheduled jobs.

4. Let J u0 be the set of unscheduled jobs. For ` =

q, q − 1, . . . , 1, repeat the following. In a general

step with ` ≥ 2, pick jobs from J uq−` ∩ S` in non-

increasing aj/pj order until the selected subset K`

satisfies p(K`)+p(T`) ≥ P g` −(1/∆)P g`+1, or no more

jobs are left, i.e., K` = J uq−` ∩ S`. In either case, in-

sert the jobs of K` in any order after u` and after all

the jobs in T1 ∪ · · · ∪ T`−1, and before all the jobs in

T`∪
⋃q
`′=`+1(K`′ ∪T`′) (pushing some of them to the

right if necessary). Let J uq−`+1 := J uq−`\K` and con-

tinue with `− 1 until ` = 1 or no more unscheduled

jobs are left. For ` = 1 just schedule all the remaining

jobs from time u1 = 0 on (pushing the already sched-

uled jobs to the right, if necessary). If the complete

schedule obtained satisfies the resource constraints,

then continue with Step 5, otherwise with the next

choice of medium size jobs in Step 2.

5. Compute the objective function value of the com-

plete schedule obtained in step (4), and store this

schedule as the best schedule if it is the first feasi-

ble schedule or if it is better than the best feasible

schedule found so far. Continue with next choice of

medium size jobs in Step 2.

6. Output the best schedule found in the previous

steps.

Theorem 5 The above algorithm is a PTAS for

1|nr = 1, pj = wj , q = const|
∑
wjCj.

Proof Let I be any instance of the scheduling problem,

and S∗ an optimal solution for I. Let P̂ ∗` be the total

processing time of those jobs starting after u` in S∗.

Clearly, P̂ ∗` ≥ P̂ ∗`+1 for ` = 1, . . . , q − 1. Consider the

guess P g2 , . . . , P
g
q in Step 1 of our algorithm such that

P̂ ∗` ≤ P g` < ∆P̂ ∗` for each ` = 2, . . . , q. Such a guess

must exist by the definition of guesses.

For each ` = 1, . . . , q, let us partition the set of jobs

that start in the interval [u`, u` + 1) in the schedule S∗

into subsets T ∗` ⊆ M` and K∗` ⊆ S`. Clearly, the sets

T ∗` are disjoint, and the cardinality of each T ∗` is at most

1/(∆− 1), since P g` ≥ P ∗` and thus each job in T ∗` is of

size at least (∆−1)P g` ≥ (∆−1)P̂ ∗` , while the total size

of all the jobs starting after u` in S∗ is P̂ ∗` by definition.

Therefore, the algorithm will enumerate and process the

choice (T ∗1 , . . . , T
∗
q) in Step 2. In the rest of the proof we

fix this choice of medium jobs. After scheduling them

in Step 3, the resulting schedule is like S∗, except that

some jobs may be unscheduled yet. Thus we perform

Step 4, and let SA be the resulting schedule. In Step 4

the algorithm will find sets of jobs K1, . . . ,Kq, and it

may well be the case that K∗` 6= K` for some `, but we

know that
⋃q
`=1K` =

⋃q
`=1K

∗
` , since in S∗ and SA,

for each `, the same subset T ∗` of M` is chosen. We

will prove that SA is a feasible schedule and that its

objective function value is at most 1 + O(ε) times the

optimum.

Claim 4 The total processing time of those jobs that

start after u` in S∗, and in SA, respectively, satisfy the

inequalities

P̂ ∗` ≤
q∑

`′=`

∑
j∈T∗

`′∪K`′

pj ≤ (1 + 6(ε/q))P̂ ∗` , ` = 2, . . . , q.

(3)

Minimizing total weighted completion time on a single machine subject to non-renewable resource constraints 9

Proof First notice that for each ` = 2, . . . , q, we have

∪q`′=`K∗`′ ⊆ S` \
(⋃q

`′=`+1 T
∗
`′

)
, since K∗`′ ⊆ S`′ ⊆ S`

and T ∗`′ ∩K∗`′ = ∅ for `′ ≥ `, and similarly, ∪q`′=`K`′ ⊆
S` \

(⋃q
`′=`+1 T

∗
`′

)
. We prove (3) by induction. Along

with (3), we will also prove

p(T ∗`) + p(K`) ≤ ∆P g` − (1/∆)P g`+1, ` = 2, . . . , q, (4)

where we define P gq+1 := 0. The base case is for ` =

q + 1, when all the inequalties trivially hold (we define

P̂ ∗q+1 := 0). Now suppose that (3) and (4) hold for `+1

for some ` ≥ 2, and we verfy them for `.

First suppose that p(K`)+p(T ∗`) ≥ P g` −(1/∆)P g`+1.

Since P̂ ∗` −P̂ ∗`+1 equals the total processing time of those

jobs that start in the interval [u`, u`+1) in S∗, and P̂ ∗` ≤
P g` < ∆P̂ ∗` , we have

p(T ∗`) + p(K∗`) = P̂ ∗` − P̂ ∗`+1 ≤ P
g
` − (1/∆)P g`+1

≤ p(T ∗`) + p(K`).
(5)

So, the induction hypothesis implies the first inequality

in (3). To verify the second one, recall that in Step 4

we stop selecting jobs as soon as p(T ∗`) +p(K`) exceeds

P g` − (1/∆)P g`+1, and the processing time of all jobs in

S` is bounded by (∆ − 1)P g` , which implies (4) for `,

since

p(T ∗`) + p(K`) < P g` − (1/∆)P g`+1 + (∆− 1)P g`

= ∆P g` − (1/∆)P g`+1.

Using the induction hypothesis, we obtain

q∑
`′=`

(p(T ∗`′) + p(K`′)) ≤
q∑

`′=`

(∆P g`′ − (1/∆)P g`′+1)

< ∆2P g` +

q∑
`′=`+1

(∆2 − 1)P g`′ .

(6)

A simple calculation shows that ∆2 < 1 + 3(ε/q2) <

1 + (ε/q) (since q ≥ 3 by assumption), therefore, the

right-hand-side of (6) is less than (1 + (ε/q))P g` +

3(ε/q2)
∑q
`′=`+1 P

g
`′ ≤ (1+4(ε/q))P g` . Since P g` < ∆P̂ ∗` ,

and (1+4(ε/q))∆ < 1+6(ε/q) (since q ≥ 3 by assump-

tion), the second inequality in (3) follows.

Now suppose K` = J uq−` ∩ S` and p(K`) + p(T ∗`) <

P g` − (1/∆)P g`+1 in Step 4 of the algorithm at itera-

tion `. Then we deduce that in SA, all the small jobs

in S` \
(⋃q

`′=`+1 T
∗
`′

)
are scheduled after u` in the itera-

tions `, . . . , q, while in S∗, some jobs of S`\
(⋃q

`′=`+1 T
∗
`′

)
may be started before u`. Therefore, the first inequal-

ity in (3) holds in this case as well. To verify the sec-

ond inequality in (3), note that since p(K`) + p(T ∗`) <

P g` −(1/∆)P g`+1 by assumption, (4) follows immediately.

Then, using the induction hypothesis, we obtain (6),

and then the same argument applies as above. ut

In order to prove (resource) feasibility, we need some

further technical results. To simplify notation, suppose

S1 \
⋃q
`=2 T

∗
` = {1, . . . , n1} and aj/pj ≥ aj+1/pj+1 for

1 ≤ j < n1, i.e., job j is the jth job in the ordered

sequence. Let Xt := {1, . . . , t} be the index set of the

first t ≤ n1 jobs with the largest aj/pj ratio.

Claim 5 There exists a unique t ∈ {0, . . . , n1} such

that

q⋃
`′=`

K`′ = Xt ∩

(
S` \

q⋃
`′=`

T ∗`′

)
(7)

Proof If
⋃q
`′=`K`′ is the empty set, then t = 0 will do.

Otherwise, let t be the maximum element in
⋃q
`′=`K`′ .

Indirectly, suppose there exists some t′ < t such that

t′ 6∈
⋃q
`′=`K`′ , but t′ ∈ S` \

⋃q
`′=` T

∗
`′ . Then, at some

iteration in Step 4 of the algorithm, t would be chosen

in place of t′ < t, which is a contradiction. ut

Corollary 1 For the job index t defined in Claim 5,(
q⋃

`′=`

K∗`′

)
∩

(
q⋃

`′=`

K`′

)
= Xt ∩

(
q⋃

`′=`

K∗`′

)
.

Claim 6 For each t = 1, . . . , n1, and 2 ≤ ` ≤ q, we

have ∑
j∈Xt∩(∪q`′=`K`′)

pj ≥
∑

j∈Xt∩(∪q`′=`K
∗
`′)

pj (8)

Proof We proceed by induction, the base case being for

` = q. Then Kq,K
∗
q ⊆ Sq. If Kq is a proper subset of Sq,

then we have p(K∗q) ≤ p(Kq) by (5). Otherwise Kq =

Sq ⊇ K∗q , and we have p(K∗q) ≤ p(Kq) in this case, too.

For the sake of a contradiction, suppose there exists

1 ≤ t ≤ n1 such that (8) does not hold. Let t be the

smallest such job index. Then job t ∈ K∗q \Kq, otherwise

t could be decreased. Then Kq does not contain any job

v with v > t, otherwise, before picking v, the algorithm

would have picked t. But then∑
j∈Kq∩Xt

pj =
∑
j∈Kq

pj ≥
∑
j∈K∗q

pj ≥
∑

j∈K∗q∩Xt

pj ,

which is a contradiction.

Now assume by induction that (8) holds for ` =

k + 1, with k ≥ 2, and for all 1 ≤ t ≤ n1, and we check

it for ` = k. We distinguish two cases.

– K` ⊂ S`\
⋃q
`′=`+1(T ∗`′∪K`′). Then we have p(K∗`) ≤

p(K`) by (5). For the sake of a contradiction, sup-

pose there exists 1 ≤ t ≤ n1 such that (8) does not

hold. Let t be the smallest such job index. Then

it must be the case that t ∈ (K∗` ∪ · · · ∪ K∗q) \

10 Péter Györgyi, Tamás Kis

(K` ∪ · · · ∪ Kq), otherwise t could be decreased.

So suppose t ∈ K∗`′ for some ` ≤ `′ ≤ q. Then

{t, . . . , n1} ∩ K` = ∅, because if not, then, since

t ∈ K∗`′ ⊆ S`′ ⊆ S`, the algorithm would have cho-

sen t before picking some v ∈ {t + 1, . . . , n1} ∩K`.

Consequently, K` ⊆ Xt−1. Now we use the induc-

tion hypothesis:∑
j∈Xt∩(K`∪···∪Kq)

pj =
∑
j∈K`

pj +
∑

j∈Xt∩(K`+1∪···∪Kq)

pj

≥
∑
j∈K`

pj +
∑

j∈Xt∩(K∗`+1∪···∪K∗q)

pj

≥
∑

j∈K∗` ∩Xt

pj +
∑

j∈Xt∩(K∗`+1∪···∪K∗q)

pj ,

where the first equation follows from K` ⊆ Xt−1 ⊂
Xt, the first inequality from the induction hypoth-

esis, and the last inequality from the fact that

p(K`) ≥ p(K∗`). However, the derived inequality is

just (8) for ` and t, a contradiction.

– K` = S` \
⋃q
`′=`+1(T ∗`′ ∪ K`′). Since

⋃q
`′=`K

∗
`′ ⊆

S` \
⋃q
`′=`+1 T

∗
`′ , we can observe that each t ∈ S` \⋃q

`′=`+1 T
∗
`′ belongs to one of the sets K`′ with ` ≤

`′ ≤ q, but may not belong to any of the sets K∗`′
with ` ≤ `′ ≤ q. Hence, the claim follows in this

case, too.

ut

Corollary 2 For each ` = 2, . . . , q, we have∑
j∈

⋃q
`′=`K`′

pj ≥
∑

j∈
⋃q
`′=`K

∗
`′

pj .

Now we verify resource feasibility by showing that

for each ` = 2, . . . , q,∑
j∈

⋃q
`′=`K`′

aj ≥
∑

j∈
⋃q
`′=`K

∗
`′

aj . (9)

This suffices to prove the feasibility of SA, because

then for each ` = 2, . . . , q, the total resource con-

sumption of those jobs that start after u` in SA

is at least as much as that in S∗. Therefore, the

total resource consumption of those jobs that start

not later than u` in SA cannot be more than that

in S∗. Hence, SA is a feasible schedule. Let t be

the job index defined in Claim 5. Now we compute

∑
j∈

⋃q
`′=`K

∗
`′

aj =
(a)

∑
j∈Xt∩(

⋃q
`′=`K

∗
`′)

aj +
∑

j∈Xt∩(
⋃q
`′=`K

∗
`′)

(
aj
pj

)
· aj

≤
(b)

∑
j∈Xt∩(

⋃q
`′=`K

∗
`′)

aj + max
j∈Xt∩(

⋃q
`′=`K

∗
`′)

aj
pj

 ∑
j∈Xt∩(

⋃q
`′=`K

∗
`′)

pj


≤
(c)

∑
j∈(

⋃q
`′=`K

∗
`′)∩(

⋃q
`′=`K`′)

aj + min
j∈(

⋃q
`′=`K`′)\(

⋃q
`′=`K

∗
`′)

aj
pj

 ∑
j∈(

⋃q
`′=`K`′)\(

⋃q
`′=`K

∗
`′)

pj


≤
(d)

∑
j∈

⋃q
`′=`K`′

aj ,

where (a), (b) and (d) are obvious, and (c) follows from

three observations:

(i) the first terms of the two expressions are the same

by Corollary 1,

(ii) the inequality between the second terms follows

from

max
j∈Xt∩(

⋃q
`′=`K

∗
`′)

aj
pj
≤ min
j∈(

⋃q
`′=`K`′)\(

⋃q
`′=`K

∗
`′)

aj
pj
,

since the jobs are indexed in non-increasing aj/pj
order, and

⋃q
`′=`K`′ ⊆ Xt, and from

(iii) ∑
j∈Xt∩(

⋃q
`′=`K

∗
`′)

pj ≤
∑

j∈(
⋃q
`′=`K`′)\(

⋃q
`′=`K

∗
`′)

pj ,

by Corollaries 1 and 2.

Now we bound the objective function value of SA.

Again, we need a technical result. Let HA
` denote the

idle time in [u`, u`+1) in the schedule SA, and GA` the

total idle time before u`+1.

Claim 7 HA
` ≤ H∗` + (6ε/q)P̂ ∗`+1.

Minimizing total weighted completion time on a single machine subject to non-renewable resource constraints 11

Proof Observe that in SA at most (6ε/q)P̂ ∗`+1 more

work is scheduled after u`+1 than in S∗ by inequal-

ity (3). Therefore, the total gap in SA before u`+1 is at

most (6ε/q)P̂ ∗`+1 more than in S∗, i.e.,

GA` ≤ G∗` + (6ε/q)P̂ ∗`+1.

On the other hand, G∗`−1 ≤ GA`−1, since in SA,∑q
`′=`(p(T

∗
`′) + p(K`′)) ≥ P̂ ∗` by (3). Now, using the

fact that GA` = GA`−1 +HA
` , we obtain

HA
` = GA` −GA`−1 ≤ G∗` + (6ε/q)P̂ ∗` −G∗`−1

= H∗` + (6ε/q)P̂ ∗`+1.

ut

Now we compute:∑
j∈J

pjC
A
j =

∑
j≤k

pjpk +

q∑
`=2

HA
`−1 ·

q∑
`′=`

p(T ∗`′ ∪K`′)

≤
∑
j≤k

pjpk +

q∑
`=2

(H∗`−1 + (6ε/q)P̂ ∗`)(1 + (6ε/q))P̂ ∗`

≤
∑
j≤k

pjpk + (1 + (6ε/q))

q∑
`=2

H∗`−1P̂
∗
` +O(ε)(Psum)2

≤
∑
j≤k

pjpk + (1 + (6ε/q))

q∑
`=2

H∗`−1P̂
∗
` +O(ε)

∑
j≤k

pjpk

≤ (1 +O(ε))
∑
j∈J

pjC
∗
j .

It remains to verify the running time

of the algorithm. The number of guesses in

Step 1 is O((log∆ Psum)q) which is bounded by

O(((q2/ε) lnPsum)q), which is polynomial in the size

of the input. The number of choices in Step 2 is
bounded by O(nq

3/ε). The rest can be done in O(n2)

time for every guess (P g2 , . . . , P
g
q) and choice of jobs

(T1, . . . , Tq). Hence, the total time complexity is

polynomial bounded in the size of the input. ut

7 Final remarks

In this paper we have established new complexity, and

approximability results for single machine scheduling

problems with non-renewable resource constraints and

the total weighted completion time objective. As it has

turned out, List Scheduling is a useful tool in solving a

number of special cases, and it can also be the basis of

designing approximation algorithms.

There are a number of open problems. For instance,

is there a polynomial time approximation algorithm of

constant approximation ratio for the problem 1|nr =

1|
∑
wjCj? And for the special case 1|nr = 1, pj =

1, wj = aj |
∑
wjCj?

Acknowledgments

This work has been supported by the National Re-

search, Development and Innovation Office – NKFIH,

grant no. K112881, and by the GINOP-2.3.2-15-2016-

00002 grant of the Ministry of National Economy of

Hungary.

References

1. Jacek Blazewicz, Klaus H Ecker, Erwin Pesch, Günter
Schmidt, and Jan Weglarz. Scheduling computer and man-

ufacturing processes. Springer Science & Business media,
2013.

2. D. Briskorn, B.-C. Choi, K. Lee, J. Leung, and M. Pinedo.
Complexity of single machine scheduling subject to non-
negative inventory constraints. European Journal of Op-
erational Research, 207:605–619, 2010.

3. D. Briskorn, F. Jaehn, and E. Pesch. Exact algorithms
for inventory constrained scheduling on a single machine.
Journal of Scheduling, 16:105–115, 2013.

4. Jacques Carlier. Problèmes d’ordonnancements à con-
traintes de ressources: algorithmes et complexité. Thèse

d’état. Université Paris 6, 1984.
5. E. R. Gafarov, A. A. Lazarev, and F. Werner. Single

machine scheduling problems with financial resource con-
straints: Some complexity results and properties. Mathe-

matical Social Sciences, 62:7–13, 2011.
6. Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra,

and AHG Rinnooy Kan. Optimization and approxima-
tion in deterministic sequencing and scheduling: a survey.
Annals of discrete mathematics, 5:287–326, 1979.

7. A. Grigoriev, M. Holthuijsen, and J. van de Klundert.
Basic scheduling problems with raw material constraints.
Naval Research of Logistics, 52:527–553, 2005.

8. Péter Györgyi. A ptas for a resource scheduling problem
with arbitrary number of parallel machines. Operations

Research Letters, 45:604–609, 2017.
9. Péter Györgyi and Tamás Kis. Approximation schemes

for single machine scheduling with non-renewable re-
source constraints. Journal of Scheduling, 17:135–144,
2014.

10. Péter Györgyi and Tamás Kis. Approximability of
scheduling problems with resource consuming jobs. An-
nals of Operations Research, 235(1):319–336, 2015.

11. Péter Györgyi and Tamás Kis. Reductions between
scheduling problems with non-renewable resources and
knapsack problems. Theoretical Computer Science,
565:63–76, 2015.

12. Péter Györgyi and Tamás Kis. Approximation schemes
for parallel machine scheduling with non-renewable re-
sources. European Journal of Operational Research,
258(1):113 – 123, 2017.

13. Péter Györgyi and Tamás Kis. Minimizing the max-
imum lateness on a single machine with raw material
constraints by branch-and-cut. Computers & Industrial

Engineering, 115:220–225, 2018.
14. Hans Kellerer, Vladimir Kotov, Franz Rendl, and Ger-

hard J Woeginger. The stock size problem. Operations
Research, 46(3):S1–S12, 1998.

15. Tamás Kis. Approximability of total weighted completion
time with resource consuming jobs. Operations Research
Letters, 43(6):595–598, 2015.

12 Péter Györgyi, Tamás Kis

16. Ehab Morsy and Erwin Pesch. Approximation algorithms
for inventory constrained scheduling on a single machine.
Journal of Scheduling, 18(6):645–653, 2015.

17. Roman Slowinski. Preemptive scheduling of independent
jobs on parallel machines subject to financial constraints.
European Journal of Operational Research, 15:366–373,
1984.

18. Wayne E Smith. Various optimizers for single-stage pro-
duction. Naval Research Logistics (NRL), 3(1-2):59–66,
1956.

19. A. Toker, S. Kondakci, and N. Erkip. Scheduling un-
der a non-renewable resource constraint. Journal of the
Operational Research Society, 42:811–814, 1991.

20. Jinxing Xie. Polynomial algorithms for single machine
scheduling problems with financial constraints. Opera-
tions Research Letters, 21(1):39–42, 1997.

