
Noname manuscript No.
(will be inserted by the editor)

Polyhedral results for position based scheduling of chains
on a single machine

Markó Horváth · Tamás Kis

Received: date / Accepted: date

Abstract We consider a scheduling problem where a set of unit-time jobs have
to be sequenced on a single machine without any idle times between the jobs.
Preemption of processing is not allowed. The processing cost of a job is determined
by the position in the sequence, i.e., for each job and each position, there is an
associated weight, and one has to determine a sequence of jobs which minimizes
the total weight incurred by the positions of the jobs. In addition, the ordering
of the jobs must satisfy the given chain precedence constraints. In this paper we
investigate the polyhedron associated with a special case of the problem where each
chain has length two. We show that optimizing over this polyhedron is strongly
NP-hard, however, we present a class of facet-defining inequalities along with a
polynomial-time separation procedure. We generalize these results to the case of
chains with lengths at most two. Finally, we present our computational results
that show that separating these inequalities can significantly improve a linear
programming based branch-and-bound procedure to solve the problem.

Keywords scheduling · polyhedra · cutting planes

This work has been supported by the OTKA grant K112881, and by the grant GINOP-2.3.2-
15-2016-00002 of the Ministry of National Economy of Hungary.

Markó Horváth
Institute for Computer Science and Control, Hungarian Academy of Sciences, H1111 Budapest,
Kende str. 13–17, Hungary
ORCID: 0000-0002-1062-6272

Tamás Kis
Institute for Computer Science and Control, Hungarian Academy of Sciences, H1111 Budapest,
Kende str. 13–17, Hungary
Tel.: +36-1-279-6156
Fax: +36-1-466-7503
E-mail: tamas.kis@sztaki.mta.hu
ORCID: 0000-0002-2759-1264



2 Markó Horváth, Tamás Kis

1 Introduction

We consider a scheduling problem where a set of unit-time jobs have to be se-
quenced on a single machine without any idle times between the jobs. Preemption
of processing is not allowed. The ordering of the jobs must satisfy a given prece-
dence relation derived from a directed acyclic graph. The processing cost of a job
is determined by the position in the sequence, i.e., for each job and each position,
there is an associated weight (which can be any rational number), and one has
to determine a sequence of jobs which minimizes the total weight incurred by the
positions of the jobs. In the following we consider the case of chain precedence
constraints with chain-lengths at most two, that is, each job has at most one im-
mediate predecessor and at most one immediate successor, and each chain consists
of at most two jobs.

Formally, let J = {J1, . . . , Jn} be the set of unit-time jobs, that is, each job Jj
has processing time pj = 1. For a given schedule S and job Jj let σSj ∈ {1, . . . , n}
indicating the position of the job in the sequence (that is, σSj = k if exactly k−1 jobs
are scheduled before Jj). For each job Jj and position k given a weight wj,k ∈ Q,
thus the weight of job Jj for a given schedule S is wj,σS

j
. The goal of the problem

is to determine a schedule S that minimizes the total weight
∑n
j=1 wj,σS

j
. Using

the classification of deterministic sequencing and scheduling problems introduced
by Graham et al. (1979) we denote the problem as 1 |pj = 1|

∑
wj,σj

. In the
case of precedence relations we have a directed acyclic graph where the nodes
correspond to the jobs, and if there is an arc between nodes i and j, then job Ji must
be processed before job Jj . This problem is denoted as 1 |prec, pj = 1|

∑
wj,σj

,
and if the directed acyclic graph decomposes into chains, then the problem is
1 |chains, pj = 1|

∑
wj,σj

. Note that problem 1 |pj = 1|
∑
wj,σj

is equivalent to
the well-known assignment problem (Kuhn, 1955), thus the problem 1 |prec, pj =
1|
∑
wj,σj

can be considered as a generalized assignment problem where the set
of positions is ordered, and the assignment must satisfy the given precedence
constraints.

In this paper we investigate the polyhedra associated with special cases of the
problem 1 |chains, pj = 1|

∑
wj,σj

. First, we consider the case where each chain
has length two (i.e., the precedence graph is a directed perfect matching), that is,
each node has either in-degree exactly one or out-degree exactly one. We denote
this problem as 1 |2-chains, pj = 1|

∑
wj,σj

, where expression 2-chains indicates
that each chain has length two, that is, consists of exactly two jobs. Then, we
generalize the results of this problem to the case where the precedence constraints
consist of chains with length at most two. The associated constraint is denoted by
chains, chain-length ∈ {1, 2}.

The purpose of the paper at hand is to investigate the polyhedral structure of
problems of the form 1 |chains, pj = 1| γ. In Section 3 we give an integer program-
ming formulation for the problem 1 |prec, pj = 1| ◦ (i.e, we consider feasibility, but
neglect the optimality criterion), then in Section 4.1 we simplify it to the prob-
lem 1 |2-chains, pj = 1| ◦. In Section 4.2 we show that optimizing over the set
of feasible solutions is NP-hard in the strong sense by showing that the problem
1 |2-chains, pj = 1|

∑
wj,σj

is strongly NP-hard. Note that the latter result implies
that the problem 1 |prec, pj = 1|

∑
wj,σj

is NP-hard in the strong sense even in
the case of chain precedence constraints with chain-lengths at most two. In Sec-



Polyhedral results for position based scheduling of chains on a single machine 3

tion 4.3 we determine the dimension of the polyhedron of the feasible solutions
of 1 |2-chains, pj = 1| ◦. In Section 4.4 we present a class of valid inequalities for
the given formulation, we prove that these inequalities are facet-defining, and we
show that they can be separated in polynomial time. In Section 5 we generalize
these inequalities for the problem 1 |chains, chain-length ∈ {1, 2}, pj = 1| γ. Fi-
nally, in Section 6 we present our computational experiments, where we show that
separating our inequalities can significantly improve a linear programming based
branch-and-bound procedure to solve the problems 1 |2-chains, pj = 1|

∑
wj,σj

and 1 |chains, chain-length ∈ {1, 2}, pj = 1|
∑
wj,σj

.

2 Literature Review

Lenstra and Rinnooy Kan (1980) and Leung and Young (1990) present complexity
results for scheduling unit-time jobs on a single machine with chain precedence
constraints, i.e., problems of the form 1 |chains, pj = 1| γ. Clearly, the problems
with γ = Cmax and γ =

∑
wjCj are polynomially solvable. Lenstra and Rinnooy

Kan (1980) and Leung and Young (1990) show that problems with γ =
∑
Uj

and γ =
∑
Tj are NP-hard, respectively. Our results in this paper imply that the

problem with γ =
∑
wj,σj

is NP-hard in the strong sense even if each chain in the
precedence relation has length 2.

Wan and Qi (2010) introduce new scheduling models where time slot costs have
to be taken into consideration. In their models the planning horizon is divided
into K ≥

∑n
j=1 pj time slots with unit length, where the kth time slot has cost

πk, and the time slot cost of a job Jj with starting time t is
∑
k∈sj πk, where

sj = {t + 1, . . . , t + pj}. The objective of their models is a combination of the
total time slot cost with a traditional scheduling criterion, that is, they consider
problems of the form 1 |slotcost| γ +

∑
j

∑
k∈sj πk. Wan and Qi (2010) show that

in case of non-decreasing time slot costs (that is, π1 ≤ . . . ≤ πK) the problem can
be reduced to one without slot costs. Under the assumption of arbitrarily varied
time slot costs they prove that the problems with γ =

∑
Cj , γ = Lmax, γ = Tmax,

γ =
∑
Uj and γ =

∑
Tj are strongly NP-hard. They also show that in case of

non-increasing time slot costs some of these problems can be solved in polynomial
or pseudo-polynomial time. Zhao et al. (2016) prove that in case of non-increasing
time slot costs, the problem 1 |slotcost|

∑
(Cj+

∑
k∈sj πk) is NP-hard in the strong

sense. Kulkarni and Munagala (2012) introduce a model similar to that of (Wan
and Qi, 2010), however, they deal with online algorithms to minimize the total
time slot costs plus the total weighted completion time. Note that the problem
investigated in this paper can be considered as a generalization of a special case
of the model of Wan and Qi (2010). That is, in case of unit-time jobs (with
K =

∑n
j=1 pj = n) the problem 1 |slotcost, pj = 1|

∑
j

∑
k∈sj πk is similar to that

of 1 |pj = 1|
∑
wj,σj

, however, in the latter problem the time slot costs depend on
the jobs.

3 Problem formulation

Recall that J = {J1, . . . , Jn} is the set of unit-time jobs, and let P = {1, . . . , n}
be the set of positions. Let D = (V,A) be the directed acyclic precedence graph



4 Markó Horváth, Tamás Kis

with node set V = {1, . . . , n}. The presence of a directed i–j path in D implies
that job Ji have to be assigned to an earlier position than job Jj (that is, job Ji
is a predecessor of job Jj , and job Jj is a successor of job Ji). Let Ji ≺≺ Jj (or
equivalently i ≺≺ j) denote if Ji is a predecessor of job Jj . In addition, let Ji ≺ Jj
if job Ji is an immediate predecessor of job Jj , that is, Ji ≺≺ Jj , but there is no
job Jk such that Ji ≺≺ Jk ≺≺ Jj .

Let xi,j be the binary variable indicating whether job Ji is assigned to posi-
tion j. The problem 1 |prec, pj = 1| ◦ can be formulated as

n∑
j=1

xi,j = 1, i ∈ {1, . . . , n}, (1)

n∑
i=1

xi,j = 1, j ∈ {1, . . . , n}, (2)

k+1∑
j=1

xi2,j ≤
k∑
j=1

xi1,j , i1 ≺ i2, k ∈ {1, . . . , n− 1}, (3)

xi,j ∈ {0, 1}, i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, (4)

where constraints (1) and (2) model the job-position assignment constraints, and
constraint (3) ensures that the precedence constraints are satisfied. Let J+

i =
{Ji′ ∈ J : Ji ≺≺ Ji′} (J−i = {Ji′ ∈ J : Ji′ ≺≺ Ji}) be the set of successors
(predecessors) of job Ji. Clearly, for each feasible solution x ∈ {0, 1}n·n of the
problem (1)–(4) we have

xi,j = 0, i ∈ {1, . . . , n}, j ∈ {1, . . . , |J−i |}, (5)

xi,j = 0, i ∈ {1, . . . , n}, j ∈ {n− |J+
i |+ 1, . . . , n}. (6)

In case of problem 1 |prec, pj = 1|
∑
wj,σj

for given weights w : J ×P → Q the
optimality criterion can be formulated as

minimize
n∑
i=1

n∑
j=1

wi,jxi,j .

4 Problem 1 |2-chains, pj = 1| γ

In this section we investigate the problem 1 |2-chains, pj = 1| γ. Recall that in this
problem the set of jobs has even cardinality, and each job has either exactly one
predecessor or exactly one successor. In Section 4.1 we reformulate the problem
described in the previous section, and define the set Q2C of its feasible solutions.
In Section 4.2 we show that optimizing over Q2C , i.e., the problem 1 |2-chains, pj =
1|
∑
wj,σj

, is strongly NP-hard. In Section 4.3 we determine the dimension of the

polytope Q2C . In Section 4.4 we present a class of valid inequalities for Q2C that
are facet-defining, and we also provide a polynomial time algorithm for separating
these inequalities. For basic concepts of polyhedral combinatorics we refer the
reader to (Nemhauser and Wolsey, 1988).



Polyhedral results for position based scheduling of chains on a single machine 5

4.1 Problem formulation

In order to simplify our notation, in this section let J = {J1, . . . , J2n} be the set
of unit-time jobs, and C = {C1, . . . , Cn} be the set of chain-precedence constraints,
where Ci = (J2i−1, J2i), that is, J2i−1 ≺ J2i for each i ∈ {1, . . . , n}. We say that
job J2i−1 (J2i) is the first (second) job of chain Ci. In addition, let P = {1, . . . , 2n}
be the set of positions.

Let si,j (ei,j) indicate whether the first (second) job of chain Ci ∈ C is assigned
to position j ∈ P. Using these variables we reformulate (1)–(6) as:

2n∑
j=1

si,j = 1, i ∈ {1, . . . , n}, (7)

2n∑
j=1

ei,j = 1, i ∈ {1, . . . , n}, (8)

si,2n = 0, i ∈ {1, . . . , n}, (9)

ei,1 = 0, i ∈ {1, . . . , n}, (10)
n∑
i=1

si,1 = 1, (11)

n∑
i=1

(si,j + ei,j) = 1, j ∈ {2, . . . , 2n− 1}, (12)

n∑
i=1

ei,2n = 1, (13)

k+1∑
j=1

ei,j ≤
k∑
j=1

si,j , i ∈ {1, . . . , n}, k ∈ {1, . . . , 2n− 2}. (14)

Constraints (7)–(8) and (11)–(13) are the job-position assignment constraints
(see (1) and (2)). Constraints (9)–(10) ensure that each first-job precedes the
corresponding second-job (see (3)). Finally, constraints (9)–(10) forbid to assign a
first-job to the last, or a second-job to the first position (see (5)–(6)).

Let P 2C
n ⊆ {0, 1}n·(2n)×{0, 1}n·(2n) be the set of incidence vectors correspond-

ing to feasible job-position assignments, and let Q2C
n = conv(P 2C

n ). By construc-
tion, we have the following proposition.

Proposition 1 P 2C
n = {(s, e) ∈ {0, 1}n·2n × {0, 1}n·2n : (s, e) satisfies (7)− (14)}.

For a given point P = (s, e) ∈ P 2C
n , let s(P, i) = j (e(P, i) = j) if si,j = 1

(ei,j = 1). For a given i ∈ {1, . . . , n} let σi(P ) be a 2-dimensional vector such that
σi(P ) = (s(P, i), e(P, i)), and σ(P ) be a 2n-dimensional vector such that σ(P ) =
(σ1(P ), . . . , σn(P )). For example, for the point P indicated in Figure 1 we have
P = (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1), σ1(P ) = (1, 3), σ2(P ) = (2, 4), and
σ(P ) = (1, 3, 2, 4).



6 Markó Horváth, Tamás Kis

1 2 3 4

C1
C2

C
P

Fig. 1 Representation of point P = (s, e) ∈ P 2C
2 with s1,1 = e1,3 = s2,2 = e2,4 = 1

v1 v2 v3

t1 t2 t3 t1 t2 t3
f1,2 f1,2 g1,2 g1,2

f2,3 f2,3 g2,3 g2,3

possible start positions of the first job of chain t3

Fig. 2 Construction for the 2-length path

4.2 Optimizing over Q2C
n

In Theorem 1 we will show that optimizing over the polyhedron Q2C
n is NP-hard

in the strong sense. We will transform the Independent Set (IS) problem to prob-
lem (15). An instance of IS is given by an undirected graph G = (V,E) with node
set V = {v1, . . . , vn}, and a maximum size subset of nodes I ⊆ V is sought such
that for each edge {u, v} ∈ E, |{u, v}∩ I| ≤ 1. The basic idea of the transformation
can be seen in Figure 2, where we depict the construction for the 2-length path.
Briefly stated, we will create a chain ti for each node vi and two chains fi,j and
gi,j for each edge {vi, vj} of the IS instance, and some additional dummy chains.
To each of these chains we will designate two potential start and two potential
end positions. On the one hand, by determining appropriate weights we will force
that in each solution with non-negative total weight, each of these chains either
starts/ends at its first start/end position, or at its second start/end position. In
Figure 2 we depict the two potential states of these chains. On the other hand,
by designating these positions properly, we will force that each solution with non-
negative total weight represents an independent set in the IS instance and vice
versa. Namely, a node is in the independent set if and only if the corresponding
chain starts/ends its second start/end position. For example, in Figure 3 we depict
the solution that represents the independent set {v2} (without the dummy chains).
Note that since chain t2 starts/ends at its second start/end position, i.e., v2 is in
the independent set, thus chains g1,2, f1,2 and therefore t1 should start/end at
its first start/end position, i.e., v1 cannot be in the independent set. Similarly, t3
cannot start/end at its second start/end position, that is, v3 cannot be in the in-
dependent set. In Figure 4 we depict the solution that represents the independent
set {v1, v3} (without the dummy chains).

Theorem 1 Let ws, we : {1, . . . , n} × {1, . . . , 2n} → R be arbitrary weight functions.

The problem

maximize


n∑
i=1

2n∑
j=1

ws(i, j)si,j +
n∑
i=1

2n∑
j=1

we(i, j)ei,j : (s, e) ∈ P 2C
n

 (15)



Polyhedral results for position based scheduling of chains on a single machine 7

v1 v2 v3

t2 t1 t3
f1,2 g1,2

f2,3 g2,3

t1 t3
f1,2 g1,2

f2,3 g2,3

t2

Fig. 3 Solution representing independent set {v2}

v1 v2 v3

t2
f1,2 g1,2

f2,3 g2,3

t2t1 t3
f1,2 g1,2

f2,3 g2,3

t1 t3

Fig. 4 Solution representing independent set {v1, v3}

is NP-hard in the strong sense.

Proof We transform the Independent Set (IS) problem to problem (15). Let
G = (V,E) be an instance for the independent set problem with node set V =

{v1, . . . , vn}, and let
−→
E = {(vi, vj) : {vi, vj} ∈ E, i < j} be the set of directed

edges, i.e., we replace undirected edge {vi, vj} by directed edge (vi, vj) for i < j.

For a node vi let succ(i) = {vj : (vi, vj) ∈
−→
E } (pred(i) = {vj : (vj , vi) ∈

−→
E })

denote its immediate successors (predecessors).

For each vi ∈ V we create a node-chain ti, and for each edge (vi, vj) ∈
−→
E we

create edge-chains fi,j and gi,j . Let TV = {ti : vi ∈ V } and T−→
E

= {fi,j , gi,j :

(vi, vj) ∈
−→
E }. To each node-chain ti ∈ TV we designate four distinct positions:

α(t1)

1

β(t1)

2

α(tn)

2n− 1

β(tn)

2n

ᾱ(t1)

2n+ 1

β̄(t1)

2n+ 2

ᾱ(t2) β̄(t2) ᾱ(tn) β̄(tn)
· · · · · · · · ·

Fig. 5 Designated positions for node-chains

α(ti) < β(ti) < ᾱ(ti) < β̄(ti) such that

i) 2i− 1 = α(ti) = β(ti)− 1, for all i ∈ {1, . . . , n},
ii) 2n+ 1 = ᾱ(t1) = β̄(t1)− 1,
iii) β̄(ti) < ᾱ(ti+1) = β̄(ti+1)− 1, for all i ∈ {1, . . . , n− 1},

see Figure 5. To each edge-chain fi,j ∈ T−→E we designate four distinct positions:

α(fi,j) < β(fi,j) < ᾱ(fi,j) < β̄(fi,j). Consider a node vi ∈ V and its immediate
successors succ(i) = {vj1 , . . . , vj|succ(i)|}. Let

iv) α(fi,j1) = β̄(ti),
v) α(fi,j`) = β(fi,j`)− 1 = ᾱ(fi,j`)− 2, for all ` ∈ {1, . . . , |succ(i)|},



8 Markó Horváth, Tamás Kis

vi

vj1
vj2

vj3

ᾱ(ti)
β̄(ti)

α(fij1 )
β(fij1 )

ᾱ(fij1 )

α(fij2 )
β(fij2 )

ᾱ(fij2 )

α(fij3 )
β(fij3 ) ᾱ(fij3 ) β̄(fij1 ) β̄(fij2 ) β̄(fij3 ) ᾱ(ti+1)

· · ·

Fig. 6 Designated positions for edge-chains (part 1)

vjvi1

vi2

vi3
ᾱ(tj)

β̄(tj)
β(gi1j)

ᾱ(gi1j)
β̄(gi1j)

β(gi2j)
ᾱ(gi2j)

β̄(gi2j)
β(gi3j) ᾱ(gi3j)

β̄(gi3j)β̄(fi1j)

α(gi1j)

β̄(fi2j)

α(gi2j)

β̄(fi3j)

α(gi3j)

· · · · · · · · ·

Fig. 7 Designated positions for edge-chains (part 2)

vi) ᾱ(fi,j`) = α(fi,j`+1
), for all ` ∈ {1, . . . , |succ(i)| − 1},

vii) ᾱ(fi,j|succ(i)|) = β̄(fi,j1)− 1 = β̄(fi,j2)− 2 = . . . = β̄(fi,j|succ(i)|)− |succ(i)|,
viii) β̄(fi,j|succ(i)|) < ᾱ(ti+1),

see Figure 6. Finally, to each edge-chain gi,j ∈ T−→E we designate four distinct

positions: α(gi,j) < β(gi,j) < ᾱ(gi,j) < β̄(gi,j). Consider a node vj ∈ V and its
immediate predecessors pred(j) = {vi1 , . . . , vi|pred(j)|}. Let

ix) β̄(gi1,j) = ᾱ(tj),
x) β(gi`,j) = ᾱ(gi`,j)− 1 = β̄(gi`,j)− 2, for all ` ∈ {1, . . . , |pred(j)|},
xi) β(gi`,j) = β̄(gi`+1,j), for all ` ∈ {1, . . . , |pred(j)| − 1},
xii) α(gi`,j) = β̄(fi`,j), for all ` ∈ {1, . . . , |pred(j)|},
xiii) β̄(tj−1) < β(gi1,|pred(j)|),

see Figure 7.

For each vi ∈ V we have created 1 chain and designated 4 positions, and for
each (vi, vj) ∈

−→
E we have created 2 chains and designated 8 positions, however,

positions α(fi,j), β̄(gi,j) and β̄(fi,j) coincide with other positions (see iv), vi), ix),
xi), and xii)), hence we have |V |+ 2|E| chains, and 4|V |+ 5|E| distinct positions.
Thus, we also create |V |+ |E| dummy chains and |E| dummy positions, therefore
we have 2|V |+ 3|E| chains and 2× (2|V |+ 3|E|) positions, that is, we have a valid
instance for problem (15).

Let M > n. For each ti ∈ TV let

ws(ti, j) =


−M if j = α(ti),

0 if j = ᾱ(ti),
−2M otherwise,

and we(ti, j) =


M if j = β(ti),
1 if j = β̄(ti),

−2M otherwise.

For each ti,j ∈ T−→E (ti,j is either fi,j or gi,j) let

ws(ti,j , j) =


−M if j = α(ti,j),

0 if j = ᾱ(ti,j),
−2M otherwise,

and we(ti,j , j) =


M if j = β(ti,j),
0 if j = β̄(ti,j),

−2M otherwise.

Finally, let ws(t, j) = we(t, j) = 0, for each dummy chains t and for all j =
1, . . . , (4|V |+ 6|E|).



Polyhedral results for position based scheduling of chains on a single machine 9

ᾱ(ti) β̄(ti)

α(fij1 )
β(fij1 )

ᾱ(fij1 )

α(fij2 )
β(fij2 ) ᾱ(fij2 )

β̄(gk1i)
β(gk2i) ᾱ(gk2i)

β̄(gk2i)

β(gk1i)
ᾱ(gk1i)

fij1 fij2gk1igk2i

Fig. 8 Assignments for node vi ∈ V \ I

ᾱ(ti) β̄(ti)

α(fij1 )
β(fij1 )

ᾱ(fij1 )

α(fij2 )
β(fij2 ) β̄(fij1 )

β̄(gk1i)
α(gk1i) ᾱ(gk2i)

β̄(gk2i)

β(gk1i)
ᾱ(gk1i)

ti fij1gk1i

· · ·· · ·

Fig. 9 Assignments for node vi ∈ I

Remark 1 By construction, in any feasible solution for the constructed problem,
for each t ∈ TV we have

∑
j

ws(t, j) +
∑
j

we(t, j) =


0 if st,α(t) = et,β(t) = 1,
1 if st,ᾱ(t) = et,β̄(t) = 1,

≤ −M + 1 otherwise,

and for each t ∈ T−→
E

we have

∑
j

ws(t, j) +
∑
j

we(t, j) =

{
0 if st,α(t) = et,β(t) = 1 or st,ᾱ(t) = et,β̄(t) = 1,

≤ −M otherwise.

Thus a solution for the created problem has non-negative total weight if and only if
each chain t ∈ TV ∪T−→E starts/ends either its first start/end or its second start/end
position.

Proposition 2 Let I ⊆ V an independent set. There is a solution for the constructed

problem with total weight |I|.

Proof If vi /∈ I, then let sti,α(ti) = eti,β(ti) = 1, for each (vi, vj) ∈
−→
E let sfij ,α(fij) =

efij ,β(fij) = 1, and for each (vk, vi) ∈
−→
E let sgki,ᾱ(gki) = egki,β̄(gki)

= 1 (see Fig-

ure 8). Otherwise, if vi ∈ I, then let sti,ᾱ(ti) = eti,β̄(ti)
= 1, for each (vi, vj) ∈

−→
E let

sfij ,ᾱ(fij) = efij ,β̄(fij) = 1, and for each (vk, vi) ∈
−→
E let sgki,α(gki) = egki,β(gki) = 1

(see Figure 9). The variables for dummy chains can be arbitrary fixed.
On the one hand, we claim that this assignment yields a feasible solution. We

need to show, that each position that designated to multiple jobs is assigned to a
single job. It is easy to check that it is true for positions α(fi,j) and β̄(gi,j). We

also know, that β̄(fi,j) = α(gi,j) for all edge (vi, vj) ∈
−→
E (see xii)), however, we

assigned position β̄(fi,j) to job fi,j and position α(gi,j) to job gi,j if and only if
vi ∈ I and vj ∈ I, respectively, however it is impossible, since I is independent. On
the other hand, it is clear that the weight of the solution is equal to |I|. ut



10 Markó Horváth, Tamás Kis

Proposition 3 Consider a solution to the constructed problem with non-negative total

weight W . There is an independent set I ⊆ V with |I| = W .

Proof Since W is non-negative, according to Remark 1, for each t ∈ TV ∪ T−→E we
have either st,α(t) = et,β(t) = 1 or st,ᾱ(t) = et,β̄(t) = 1. We claim that the node set
I = {vi ∈ V : sti,ᾱ(ti) = eti,β̄(ti)

= 1} is independent.

Suppose for a contradiction that there is an edge (vi, vj) ∈
−→
E such that vi, vj ∈

I. Let succ(i) = {vj1 , . . . , vj|succ(i)|} be the set of the immediate successors of node

vi. Since eti,β̄(ti)
= 1 and by construction β̄(ti) = α(fij1), thus sfij1 ,α(fij1 ) = 0 and

therefore sfij1 ,ᾱ(fij1 ) = efij1 ,β̄(fij1 ) = 1. Again, by construction ᾱ(fij1) = α(fij2),

thus sfij2 ,α(fij2 ) = 0 and therefore sfij2 ,ᾱ(fij2 ) = efij2 ,β̄(fij2 ) = 1. Similarly, we can

show that sfij` ,ᾱ(fij` ) = efij` ,β̄(fi,j` ) = 1 holds for all ` = 1, . . . , |succ(i)|, moreover,

since j = j` for some ` ∈ {1, . . . , |succ(i)|} we have efij ,β̄(fij) = 1.

Let pred(j) = {vi1 , . . . , vi|pred(j)|} be the set of the immediate predecessors of
node vj . Similarly, we can show that sgi`j ,α(gi`j) = egi`j ,β(gi`j) = 1 holds for

all ` = 1, . . . , |pred(j)|, and since i = i` for some ` ∈ {1, . . . , |pred(j)|} we have
sgij ,α(gij) = 1.

To sum up, we have efij ,β̄(fij) = sgij ,α(gij) = 1 which yields a contradiction,

since by construction β̄(fij) = α(gij). ut

Finally, it is easy to see that our transformation is a pseudo-polynomial transfor-
mation, thus the problem is NP-hard in the strong sense. ut

Note that multiplying each weight value by -1 yields that the minimization
version is also strongly NP-hard.

Corollary 1 The problem 1 |2-chains, pj = 1|
∑
wj,σj

is strongly NP-hard.

Corollary 2 The problem 1 |chains, pj = 1|
∑
wj,σj

is strongly NP-hard even in the

case of chains with length at most 2.

Corollary 3 The problem 1 |prec, pj = 1|
∑
wj,σj

is strongly NP-hard.

4.3 Dimension of Q2C
n

In this section we investigate the dimension of the polyhedron Q2C
n .

Theorem 2

dim(Q2C
n ) =


0 if n = 1,
5 if n = 2,

4n2 − 6n+ 1 if n ≥ 3.

Sketch of the proof of Theorem 2 (n ≥ 3) We will show (see Theorem 3 and Proposi-
tion 6) that a minimal equation system for Q2C

n has rank 6n−1, thus the dimension
of Q2C

n is 4n2 − (6n− 1).

Theorem 3 Let n ≥ 3. The equation system {(7)−(13)} contains a minimal equation

system for Q2C
n .



Polyhedral results for position based scheduling of chains on a single machine 11

Proof We show that any equation which holds for all points of Q2C
n is a linear

combination of the equations (7)–(13). Assume that

n∑
i=1

2n∑
j=1

αi,jsi,j +
n∑
i=1

2n∑
j=1

βi,jei,j = γ (16)

holds for all (s, e) ∈ Q2C
n . In order to show that equation (16) is a linear combi-

nation of equations (7)–(13) we explicitly create a linear combination (17), and in
Propositions 4 and 5 we prove that (16) and (17) are the same. In these proposition
we use Lemma 1, however, for its proofs we refer to the appendix.

Lemma 1 For equation (16) the following statements hold:

i) αp,j′′ − αp,j′ = βq,j′′ − βq,j′ ∀ p, q ∈ {1, . . . , n}, 1 < j′ < j′′ < 2n,

ii) αp,j′′ − αp,j′ = αq,j′′ − αq,j′ ∀ p, q ∈ {1, . . . , n}, 1 ≤ j′ < j′′ < 2n,

iii) βp,j′′ − βp,j′ = βq,j′′ − βq,j′ ∀ p, q ∈ {1, . . . , n}, 1 < j′ < j′′ ≤ 2n.

Note that in case of i) p may be equal to q.

Consider the linear combination of equations (7)–(13) with coefficients λ7
i , λ

8
i ,

λ9
i , λ

10
i , λ11, λ12

j , λ13 (i ∈ {1, . . . , n}, j ∈ {2, . . . , 2n− 1}), respectively, where

• λ7
i = αi,1 − α1,1 for all i ∈ {1, . . . , n},

• λ8
i = βi,2n − β1,2n + β1,2 − α1,2 for all i ∈ {1, . . . , n},

• λ9
i = αi,2n − αi,1 + α1,1 for all i ∈ {1, . . . , n},

• λ10
i = βi,1 − βi,2n + β1,2n − β1,2 + α1,2 for all i ∈ {1, . . . , n},

• λ11 = α1,1,
• λ12

j = α1,j for all j ∈ {2, . . . , 2n− 1},
• λ13 = β1,2n − β1,2 + α1,2.

Let
n∑
i=1

2n∑
j=1

α̂i,jsi,j +
n∑
i=1

2n∑
j=1

β̂i,jei,j = γ̂ (17)

be the resulted equation. Note that the left-hand side can be written as

n∑
i=1

(
(λ7
i + λ11)si,1 + (λ7

i + λ9
i )si,2n + (λ8

i + λ10
i )ei,1 + (λ8

i + λ13)ei,2n

)
+

+
n∑
i=1

2n−1∑
j=2

(
(λ7
i + λ12

j )si,j + (λ8
i + λ12

j )ei,j

)
.

Proposition 4 For linear combination (17) the following statement holds:

I) α̂i,j = αi,j for all i ∈ {1, . . . , n} and j ∈ {1, . . . , 2n}.

Proof Let i ∈ {1, . . . , n} be fixed. For j = 1 we have

α̂i,1 = λ7
i + λ11 = (αi,1 − α1,1) + α1,1 = αi,1,

and for j = 2n we have

α̂i,2n = λ7
i + λ9

i = (αi,1 − α1,1) + (αi,2n − αi,1 + α1,1) = αi,2n.



12 Markó Horváth, Tamás Kis

For a given j ∈ {2, . . . , 2n− 1} we have

α̂i,j = λ7
i + λ12

j = (αi,1 − α1,1) + α1,j
ii)
= αi,j ,

where for the last equation we use statement ii) of Lemma 1 with p = 1, q = i,
j′ = 1 and j′′ = j. ut

Proposition 5 For linear combination (17) the following statement holds:

II) β̂i,j = βi,j for all i ∈ {1, . . . , n} and j ∈ {1, . . . , 2n}.

Proof Let i ∈ {1, . . . , n} be fixed. For j = 1 we have

β̂i,1 = λ8
i +λ10

i = (βi,2n−β1,2n+β1,2−α1,2)+(βi,1−βi,2n+β1,2n−β1,2+α1,2) = βi,1,

and for j = 2n we have

β̂1,2n = λ8
i + λ13 = (βi,2n − β1,2n + β1,2 − α1,2) + (β1,2n − β1,2 + α1,2) = βi,2n.

For a given j ∈ {2, . . . , 2n− 1} we have

β̂i,j = λ8
i + λ12

j = (βi,2n − β1,2n + β1,2 − α1,2) + α1,j
iii)
= βi,2 − α1,2 + α1,j

i)
= βi,j .

since βi,2n − β1,2n + β1,2 = βi,2 according to statement iii) of Lemma 1, and
βi,2 − α1,2 + α1,j = βi,j due to statement i) of Lemma 1. ut

Corollary 4 Linear combination (17) yields equation (16).

Proof According to Proposition 4 and 5, the left-hand sides of (17) and (16) are the
same. Since both of them are satisfied by the points from the non-empty set P 2C

n ,
the right-hand sides also coincide. ut

ut

Proposition 6 Let n ≥ 3. The rank of the equation system {(7)− (13)} is 6n− 1.

Proof Consider a linear combination of equations (7)–(13) with coefficients λ7
i , λ

8
i ,

λ9
i , λ

10
i , λ11, λ12

j , λ13 (i ∈ {1, . . . , n}, j ∈ {2, . . . , 2n− 1}), respectively. This linear
combination can be written as

n∑
i=1

(
(λ7
i + λ11)si,1 + (λ7

i + λ9
i )si,2n + (λ8

i + λ10
i )ei,1 + (λ8

i + λ13)ei,2n

)
+

+
n∑
i=1

2n−1∑
j=2

(
(λ7
i + λ12

j )si,j + (λ8
i + λ12

j )ei,j

)
= λ11 + λ13 +

n∑
i=1

(
λ7
i + λ8

i

)
+

2n∑
j=1

λ12
j .

It is the zero-equation (i.e., both of the right-hand side and the coefficients of
the equation are zero) if and only if λ9

i = −λ7
i = λ11, λ7

i = −λ12
j = λ8

i and

λ10
i = −λ8

i = λ13 hold for all i ∈ {1, . . . , n}, j ∈ {2, . . . , 2n − 1} and the right-
hand side is zero. On the one hand, it is clear that we can easily choose non-zero
coefficients that yield the zero-equation, thus the equations are linearly dependent.
On the other hand, if we omit a single equation from (7)–(13), that is, we fix a
single coefficient from λ7

i , . . . , λ
13 to zero, then all the remaining coefficients will be

zero, that is, that remaining equations are linearly independent. Thus the equation
system {(7)− (13)} containing 6n equations has rank 6n− 1. ut



Polyhedral results for position based scheduling of chains on a single machine 13

1
2

P1

P2

P3

1 2 3 4

P4

P5

P6

1 2 3 4

Fig. 10 The six points of P 2C
2

Proof (Theorem 2) In case of n = 1, P 2C
1 consists of a single point P with σ(P ) =

(1, 2), thus dim(Q2C
n ) = 0.

In case of n = 2, P 2C
2 = {P1, . . . , P6}, where σ(P1) = (1, 2, 3, 4), σ(P2) =

(1, 3, 2, 4), σ(P3) = (1, 4, 2, 3), σ(P4) = (2, 3, 1, 4), σ(P5) = (2, 4, 1, 3), σ(P6) =
(3, 4, 1, 2), see Figure 10. The linear combination of these points with coefficients λ1, . . . , λ6,
respectively, is

(λ1 + λ2 + λ3)s1,1 + (λ4 + λ5)s1,2 + λ6s1,3 + (λ4 + λ5 + λ6)s2,1 + (λ2 + λ3)s2,2+

+λ1s2,3 + λ1e1,2 + (λ2 + λ4)e1,3 + (λ3 + λ5 + λ6)e1,4 + λ6e2,2+

+(λ3 + λ5)e2,3 + (λ1 + λ2 + λ4)e2,4.

Clearly, we get the zero-vector if and only if λ1 = 0, λ6 = 0 and λ2 = −λ3 = λ5 =
−λ4. On the one hand, we can easily choose non-zero λ2, . . . , λ5 coefficients to get
the zero-vector, thus points P1, . . . , P6 are dependent. On the other hand, if we
omit for example P2, i.e., we fix λ2 = 0, we could get the zero-vector if and only
if λ1 = . . . = λ6 = 0, that is, points P1, P3, P4, P5, P6 are independent. Therefore
dim(P 2C

2 ) = 5.
Finally, assume that n ≥ 3. Clearly, all points from Q2C

n satisfy the equations
(7)–(13). According to Theorem 3, (7)–(13) contains a minimal equation system
for Q2C

n , thus according to Proposition 6, the rank of such a minimal equation
system is 6n− 1. We have 4n2 variables, thus dim(Q2C

n ) = 4n2 − (6n− 1). ut

4.4 Parity inequalities

Theorem 4 Let n ≥ 2. The following inequalities are valid for Q2C
n :

∑
i∈S

2k∑
j=1

(si,j − ei,j) ≤ |S| − 1 +
∑
i/∈S

2k∑
j=1

(si,j − ei,j)

∀ S ⊆ {1, . . . , n} : |S| is odd, k < n, (18)

∑
i∈S

2k−1∑
j=1

(si,j − ei,j) ≤ |S| − 1 +
∑
i/∈S

2k−1∑
j=1

(si,j − ei,j)

∀ S ⊆ {1, . . . , n} : |S| is even, k ≤ n. (19)



14 Markó Horváth, Tamás Kis

We say that a chain is active in interval [j1, j2] (that is, between positions j1 < j2)
if its first job is assigned to a position j′ ≤ j1 and its second job is assigned
to a position j′′ ≥ j2. Let zi,j :=

∑j
k=1(si,k − ei,k) for all i ∈ {1, . . . , n} and

j ∈ {1, . . . , 2n − 1}. By this, zi,j is equal to 1, if and only if chain Ci is active in
interval [j, j + 1] (otherwise it is zero). We can write (18) and (19) as∑

i∈S
zi,2j ≤ |S| − 1 +

∑
i/∈S

zi,2j

∀ S ⊆ {1, . . . , n} : |S| is odd, j ∈ {1, . . . , n− 1}, (20)

∑
i∈S

zi,2j−1 ≤ |S| − 1 +
∑
i/∈S

zi,2j−1

∀ S ⊆ {1, . . . , n} : |S| is even, j ∈ {1, . . . , n}, (21)

or equivalently

1 ≤
∑
i∈S

(1− zi,2j) +
∑
i/∈S

zi,2j

∀ S ⊆ {1, . . . , n} : |S| is odd, j ∈ {1, . . . , n− 1}, (22)

1 ≤
∑
i∈S

(1− zi,2j−1) +
∑
i/∈S

zi,2j−1

∀ S ⊆ {1, . . . , n} : |S| is even, j ∈ {1, . . . , n}. (23)

Proof (Theorem 4) Let (s, e) be an arbitrary point from P 2C
n and define z as above.

Consider a set S ⊆ {1, . . . , n} with odd cardinality, and fix j ∈ {1, . . . , n − 1}. If∑
i∈S zi,2j ≤ |S| − 1 then (20) clearly holds, thus assume that

∑
i∈S zi,2j = |S|.

Since the set {1, . . . , 2j} of position has even cardinality, the number of chains that
active in [2j, 2j+1] (i.e, chains with first-job assigned to positions from {1, . . . , 2j},
and second-job assigned to position from {2j + 1, . . . , 2n}) is also even, that is,∑n
i=1 zi,2j is an even number. Therefore, since

∑
i∈S zi,2j = |S| is odd, there is at

least one chain i /∈ S with zi,2j = 1, thus (20) holds.
Similarly, one can prove that (21) (thus (19) and (23)) is valid for Q2C

n . ut

4.4.1 Separation

Theorem 5 Inequalities (22) can be separated in polynomial time, that is, for a given

vector z̄ ∈ [0, 1]n·(2n−1) and for a given index j the following problem can be solved in

polynomial time:

maximize

1−

∑
i∈S

(1− z̄i,2j) +
∑
i/∈S

z̄i,2j

 : S ⊆ {1, . . . , n}, |S| is odd

 .

Lemma 2 Let 1 ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ 0, and let f(S) :=
∑
i∈S(1− vi) +

∑
i/∈S vi

for all S ⊆ {1, . . . , n}. Consider the following problems:

minimize {f(S) : S ⊆ {1, . . . , n}, |S| is odd} , (24)

minimize {f(S) : S ⊆ {1, . . . , n}, |S| is even} . (25)



Polyhedral results for position based scheduling of chains on a single machine 15

a) Let S0 := ∅ and Si := {1, . . . , i} for all i = 1, . . . , n. There is an optimal so-

lution SOPT for problem (24) (problem (25)) such that SOPT = Sk for some

k ∈ {0, . . . , n}.
b) Let t := 0 if 1−vi > vi holds for all i = 1, . . . , n, otherwise, let t := max{i : 1−vi ≤

vi}. One of the sets St−1, St and St+1 is an optimal solution for problem (24)

(problem (25)).

Proof To prove statement a), consider an optimal solution SOPT for problem (24)
such that p := max{i : Si ⊆ SOPT } is maximal. Clearly, p + 1 /∈ SOPT . Suppose
for a contradiction that there is an index q > p + 1 such that q ∈ SOPT . Let
S′ := (SOPT ∪ {p + 1}) \ {q}. Now, we have f(SOPT ) ≤ f(S′) = f(SOPT ) + (1 −
vp+1) − vp+1 − (1 − vq) + vq = f(SOPT ) + 2(vq − vp+1) ≤ f(SOPT ), thus S′ is
also an optimal solution for problem (24), however p < max{i : Si ⊆ S′} which
contradicts our assumption for SOPT .

According to statement a) problems (24) and (25) can be restricted to subsets
of the form Si, i = 0, . . . , n. For each i < t, 1 − vi+1 ≤ vi+1, thus f(Si+1) =
f(Si) + (1 − vi+1) − vi+1 ≥ f(Si). For each i > t, 1 − vi > vi, thus f(Si) =
f(Si−1) + (1− vi)− vi < f(Si+1). Therefore, we have

f(S1) ≥ . . . ≥ f(St−1) ≥ f(St) and f(St) < f(St+1) < . . . < f(Sn),

thus if St has odd (even) cardinality, then it is an optimal solution for problem (24)
(problem (25)), otherwise, arg min{f(St−1), f(St+1)} is an optimal solution for
problem (24) (problem (25)). ut

Proof (Theorem 5) For a given vector z̄ and a given index j, let vi := z̄i,2j , 1 ≤ i ≤ n,
and let f(S) :=

∑
i∈S(1 − vi) +

∑
i/∈S vi for all S ⊆ {1, . . . , n}. Without loss of

generality, we can assume that v1 ≥ v2 ≥ . . . ≥ vn. By this, the separation problem
is equivalent with problem (24) which can be solved in polynomial time according
to Lemma 2. ut

Similarly, one can prove the following theorem.

Theorem 6 Inequalities (23) can be separated in polynomial time.

4.4.2 Facets

In the section we show that some of the inequalities (18) are facet-defining. Simi-
larly, one can show that a subset of inequalities (19) are also facet-defining.

Let 3 ≤ t < n be a fixed odd number; 1 ≤ k < n such that t < 2k and t < 2(n−k)
hold; and S ⊆ {1, . . . , n} with cardinality t. To simplify our notation, without loss
of generality, we assume that S = {1, . . . , t}. The corresponding parity inequality
is:

t∑
i=1

2k∑
j=1

(si,j − ei,j) ≤ t− 1 +
n∑

i=t+1

2k∑
j=1

(si,j − ei,j). (26)

Remark 2 A point from P 2C
n satisfies (26) with equation if and only if

– exactly t− 1 chains from {1, . . . , t} and exactly 0 chain from {t+ 1, . . . , n} are
active in interval [2k, 2k + 1], or

– exactly t chains from {1, . . . , t} and exactly 1 chain from {t+1, . . . , n} are active
in interval [2k, 2k + 1].



16 Markó Horváth, Tamás Kis

Sketch of the proof of the theorem Let PEV ENn = {(s, e) ∈ P 2C
n : (s, e) satisfies (26)}

and QEV ENn = conv(PEV ENn ). To prove that inequalities (26) are facet-defining
for Q2C

n we will show that dim(QEV ENn ) = dim(Q2C
n ) − 1. To do this, we apply

a similar procedure as in Section 4.3, that is, we will prove that equation system
Q̄EV ENn := {(7) − (13), (27)} contains a minimal equation system for QEV ENn ,
where we have

t∑
i=1

2k∑
j=1

(si,j − ei,j) +
n∑

i=t+1

2k∑
j=1

(ei,j − si,j) = t− 1. (27)

On the one hand, according to Theorem 3, rank(Q̄EV ENn ) ≤ rank({(7)−(13)})+1,
thus dim(QEV ENn ) ≥ dim(Q2C

n )− 1. On the other hand, QEV ENn ( Q2C
n .

Theorem 7 The equation system Q̄EV ENn = {(7) − (13), (27)} contains a minimal

equation system for QEV ENn .

Proof Assume that

n∑
i=1

2n∑
j=1

αi,jsi,j +
n∑
i=1

2n∑
j=1

βi,jei,j = γ (28)

holds for all (s, e) ∈ QEV ENn . In order to show that equation (28) is a linear
combination of equations (7)–(13) and (27) we explicitly create a linear combina-
tion (29), and in Propositions 7–10 we prove that (28) and (29) are the same. In
these proposition we use Lemmas 3 and 4, however for their proofs we refer to the
appendix.

Lemma 3 For equation (28) the following statements hold:

i) αp,j′′ − αp,j′ = αq,j′′ − αq,j′ ∀ p, q ∈ {1, . . . , t}, 1 ≤ j′ < j′′ ≤ 2k,

ii) αp,j′′ − αp,j′ = αq,j′′ − αq,j′ ∀ p, q ∈ {1, . . . , t}, 1 ≤ j′ ≤ 2k < j′′ ≤ 2n− 1,

iii) βp,j′′ − βp,j′ = βq,j′′ − βq,j′ ∀ p, q ∈ {1, . . . , t}, 2k < j′ < j′′ ≤ 2n,

iv) βp,j′′ − βp,j′ = βq,j′′ − βq,j′ ∀ p, q ∈ {1, . . . , t}, 2 ≤ j′ ≤ 2k < j′′ ≤ 2n,

v) αp,j′′ − αp,j′ = βq,j′′ − βq,j′ ∀ p, q ∈ {1, . . . , t}, 1 < j′ < j′′ ≤ 2k,

vi) αp,j′′ − αp,j′ = βq,j′′ − βq,j′ ∀ p, q ∈ {1, . . . , t}, 2k < j′ < j′′ < 2n.

Note that in case of v) and vi) p may be equal to q.

Lemma 4 For equation (28) the following statements hold:

vii) αp,j′′−αp,j′ = αq̄,j′′−αq̄,j′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t+1, . . . , n}, 1 ≤ j′ < j′′ ≤ 2k,

viii) βp,j′′ − βp,j′ = βq̄,j′′ − βq̄,j′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t+ 1, . . . , n}, 2k < j′ < j′′ ≤
2n,

ix) αp,j′′−αp,j′ = βq̄,j′′−βq̄,j′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t+1, . . . , n}, 1 < j′ < j′′ ≤ 2k,

x) αp,j′′ − αp,j′ = βq̄,j′′ − βq̄,j′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t+ 1, . . . , n}, 1 < j′ ≤ 2k <
j′′ < 2n,

xi) βp,j′′ − βp,j′ = αq̄,j′′ − αq̄,j′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t+ 1, . . . , n}, 1 < j′ ≤ 2k <
j′′ < 2n,

xii) βp,j′′ − βp,j′ = αq̄,j′′ − αq̄,j′ ∀ p ∈ {1, . . . , t}, q̄ ∈ {t+ 1, . . . , n}, 2k < j′ < j′′ <
2n.



Polyhedral results for position based scheduling of chains on a single machine 17

Consider the linear combination of equations (7)–(13) and (27) with coeffi-
cients λ7

i , λ
8
i , λ

9
i , λ

10
i , λ11, λ12

j , λ13 and λ27, (i ∈ {1, . . . , n}, j ∈ {2, . . . , 2n − 1})
respectively, where

• λ27 = λ, where λ := (α1,2 − α1,2k+1 − β1,2 + β1,2k+1)/2,

• λ7
i =

{
αi,1 − α1,1 if i ∈ {1, . . . , t},
αi,1 − α1,1 + 2λ if i ∈ {t+ 1, . . . , n},

• λ8
i = µi, where µi :=

{
β1,2 − α1,2 + 2λ if i = 1,
βi,2n − β1,2n + µ1 if i ∈ {2, . . . , n},

• λ9
i =


α1,2n if i = 1,
αi,2n − αi,1 + α1,1 if i ∈ {2, . . . , t},
αi,2n − αi,1 + α1,1 − 2λ if i ∈ {t+ 1, . . . , n},

• λ10
i =

{
βi,1 + λ− µi if i ∈ {1, . . . , t},
βi,1 − λ− µi if i ∈ {t+ 1, . . . , n},

• λ11 = α1,1 − λ,

• λ12
j =

{
α1,j − λ if j ∈ {2, . . . , 2k},
α1,j if j ∈ {2k + 1, . . . , 2n− 1},

• λ13 = β1,2n − µ1.

Let
n∑
i=1

2n∑
j=1

α̂i,jsi,j +
n∑
i=1

2n∑
j=1

β̂i,jei,j = γ̂ (29)

be the resulting equation. Note that the left-hand side can be written as

t∑
i=1

(
(λ7
i + λ11 + λ27)si,1 + (λ8

i + λ10
i − λ

27)ei,1

)
+

n∑
i=t+1

(
(λ7
i + λ11 − λ27)si,1 + (λ8

i + λ10
i + λ27)ei,1

)
+

+
n∑
i=1

(
(λ7
i + λ9

i )si,2n + (λ8
i + λ13)ei,2n

)
+

t∑
i=1

2k∑
j=2

(
(λ7
i + λ12

j + λ27)si,j + (λ8
i + λ12

j − λ
27)ei,j

)
+

+
n∑

i=t+1

2k∑
j=2

(
(λ7
i + λ12

j − λ
27)si,j + (λ8

i + λ12
j + λ27)ei,j

)
+

n∑
i=1

2n−1∑
j=2k+1

(
(λ7
i + λ12

j )si,j + (λ8
i + λ12

j )ei,j

)
.

Proposition 7 For linear combination (29) the following statement holds:

I) α̂i,j = αi,j for all i ∈ {1, . . . , t} and j ∈ {1, . . . , 2n}.

Proof By construction, the statement clearly holds for i = 1. Let i ∈ {2, . . . , t} be
fixed. For j = 1 we have

α̂i,1 = λ7
i + λ11 + λ27 = (αi,1 − α1,1) + (α1,1 − λ) + λ = αi,1,

and for j = 2n we have

α̂i,2n = λ7
i + λ9

i = (αi,1 − α1,1) + (αi,2n + α1,1 − αi,1) = αi,2n.

For a given j ∈ {2, . . . , 2k} we have

α̂i,j = λ7
i + λ12

j + λ27 = (αi,1 − α1,1) + (α1,j − λ) + λ = α1,j − α1,1 + αi,1
i)
= αi,j ,



18 Markó Horváth, Tamás Kis

where for the last equation we use statement i) of Lemma 3 with p = 1, q = i,
j′ = 1, and j′′ = j. Finally, for a given j ∈ {2k + 1, . . . , 2n− 1} we have

α̂i,j = λ7
i + λ12

j = α1,j − α1,1 + αi,1
ii)
= αi,j ,

where for the last equation we use statement ii) of Lemma 3 with p = 1, q = i,
j′ = 1 and j′′ = j. ut

Proposition 8 For linear combination (29) the following statement holds:

II) β̂i,j = βi,j for all i ∈ {1, . . . , t} and j ∈ {1, . . . , 2n}.

Proof First, assume that i = 1. For j = 1 we have

β̂1,1 = λ8
1 + λ10

1 − λ27 = µ1 + (β1,1 + λ− µ1)− λ = β1,1,

and for j = 2n we have

β̂1,2n = λ8
1 + λ13 = µ1 + (β1,2n − µ1) = β1,2n.

For a given j ∈ {2, . . . , 2k} we have

β̂1,j = λ8
1 +λ12

j −λ
27 = (β1,2−α1,2 +2λ)+(α1,j−λ)−λ = β1,2 +α1,j−α1,2

v)
= β1,j ,

where the last equation clearly holds for j = 2, and for 2 < j we can use
statement v) of Lemma 3 with p = q = 1, j′ = 2 and j′′ = j. For a given
j ∈ {2k + 1, . . . , 2n− 1} we have

β̂1,j = λ8
1 + λ12

j = β1,2 + α1,j − α1,2 + 2λ = α1,j − α1,2k+1 + β1,2k+1
vi)
= βi,j ,

according to statement vi) of Lemma 3 with p = q = 1, j′ = 2k + 1 and j′′ = j.
Now, let i ∈ {2, . . . , t}. For j = 1 we have

β̂i,1 = λ8
i + λ10

i − λ
27 = µi + (βi,1 + λ− µi)− λ = βi,1,

and for j = 2n we have

β̂1,2n = λ8
i + λ13 = (βi,2n − β1,2n + µ1) + (β1,2n − µ1) = βi,2n.

For a given j ∈ {2, . . . , 2k} we have

β̂i,j = λ8
i + λ12

j − λ
27 = (βi,2n − β1,2n + β1,2 − α1,2 + 2λ) + (α1,j − λ)− λ

= βi,2n − β1,2n + β1,2 − α1,2 + α1,j
v)
= βi,2n − β1,2n + β1,j

iv)
= βi,j ,

since β1,2−α1,2+α1,j = β1,j according to statement v) of Lemma 3 with p = q = 1,
j′ = 2 and j′′ = j, and βi,2n − β1,2n + β1,j = βi,j due to statement iv) of Lemma 3
with p = 1, q = i, j′ = j and j′′ = 2n. Finally, for a given j ∈ {2k + 1, . . . , 2n− 1}
we have

β̂i,j = λ8
i +λ12

j = βi,2n−β1,2n+α1,j−α1,2k+1+β1,2k+1
vi)
= βi,2n−β1,2n+β1,j

iv)
= βi,j ,

since α1,j − α1,2k+1 + β1,2k+1 = β1,j according to statement vi) of Lemma 3 with
p = q = 1, j′ = 2k+1 and j′′ = j, and βi,2n−β1,2n+β1,j = βi,j due to statement iv)
of Lemma 3 with p = 1, q = i, j′ = j and j′′ = 2n. ut



Polyhedral results for position based scheduling of chains on a single machine 19

Proposition 9 For linear combination (29) the following statement holds:

III) α̂i,j = αi,j for all i ∈ {t+ 1, . . . , n} and j ∈ {1, . . . , 2n}.

Proof Let i ∈ {t+ 1, . . . , n} be fixed. For j = 1 we have

α̂i,1 = λ7
i + λ11 − λ27 = (αi,1 − α1,1 + 2λ) + (α1,1 − λ)− λ = αi,1,

and for j = 2n we have

α̂i,2n = λ7
i + λ9

i = (αi,1 − α1,1 + 2λ) + (αi,2n − αi,1 + α1,1 − 2λ) = αi,2n.

For a given j ∈ {2, . . . , 2k} we have

α̂i,j = λ7
i +λ12

j −λ
27 = (αi,1−α1,1 +2λ)+(α1,j−λ)−λ = α1,j−α1,1 +αi,1

vii)
= αi,j ,

where for the last equation we use statement vii) of Lemma 4 with p = 1, q̄ = i,
j′ = 1 and j′′ = j. Finally, for a given j ∈ {2k + 1, . . . , 2n− 1} we have

α̂i,j = λ7
i + λ12

j = (αi,1 − α1,1 + α1,2 − β1,2 + β1,2k+1 − α1,2k+1) + α1,j

vi)
= αi,1 − α1,1 + α1,2 − β1,2 + β1,j

vii)
= αi,2 − β1,2 + β1,j

xi)
= αi,j ,

since β1,2k+1−α1,2k+1+α1,j = β1,j according to statement vi) of Lemma 3 with p =
q = 1, j′ = 2k+1 and j′′ = j, and αi,1−α1,1+α1,2 = αi,2 according to statement vii)
of Lemma 4 with p = 1, q̄ = i, j′ = 1 and j′′ = 2, and αi,2 − β1,2 + β1,j = αi,j due
to statement xi) of Lemma 4 with p = 1, q̄ = i, j′ = 2 and j′′ = j. ut

Proposition 10 For linear combination (29) the following statement holds:

IV) β̂i,j = βi,j for all i ∈ {t+ 1, . . . , n} and j ∈ {1, . . . , 2n}.

Proof Let i ∈ {t+ 1, . . . , n} be fixed. For j = 1 we have

β̂i,1 = λ8
i + λ10

i + λ27 = µi + (βi,1 − λ− µi) + λ = βi,1,

and for j = 2n we have

β̂1,2n = λ8
i + λ13 = (βi,2n − β1,2n + µ1) + (β1,2n − µ1) = βi,2n.

For a given j ∈ {2, . . . , 2k} we have

β̂i,j = λ8
i + λ12

j + λ27 = βi,2n + α1,j − β1,2n − α1,2k+1 + β1,2k+1

viii)
= α1,j − α1,2k+1 + βi,2k+1

x)
= βi,j ,

since βi,2n − β1,2n + β1,2k+1 = βi,2k+1 according to statement viii) of Lemma 4
with p = 1, q̄ = i, j′ = 2k+ 1 and j′′ = 2n, and α1,j − α1,2k+1 + βi,2k+1 = βi,j due
to statement x) of Lemma 4 with p = 1, q̄ = i, j′ = j and j′′ = 2k+ 1. Finally, for
a given j ∈ {2k + 1, . . . , 2n− 1} we have

β̂i,j = λ8
i+λ

12
j = βi,2n−β1,2n+α1,j−α1,2k+1+β1,2k+1

vi)
= βi,2n−β1,2n+β1,j

viii)
= βi,j ,

since α1,j − α1,2k+1 + β1,2k+1 = β1,j according to statement vi) of Lemma 4 with
p = 1, q̄ = i, j′ = 2k + 1 and j′′ = j, and βi,2n − β1,2n + β1,j = βi,j due to
statement viii) of Lemma 4 with p = 1, q̄ = i, j′ = j and j′′ = 2n. ut

Corollary 5 Linear combination (29) yields equation (28).

Proof According to Proposition 7–10, the left-hand sides of (28) and (29) are the
same. Since both of them are satisfied for the points from PEV ENn , the right-hand
sides also coincide with each other. ut

ut



20 Markó Horváth, Tamás Kis

5 Problem 1 |chains, chain-length ∈ {1, 2}, pj = 1| γ

In this section we generalize the parity inequalities (18)–(19) to the case when the
precedence constraints consist of chains with length one or two.

5.1 Problem formulation

In order to simplify notation, in this section let J = {J1, . . . , J2n+m} be the set of
unit-time jobs. Let C2 = {C1, . . . , Cn} be the set of chains with length 2 such that
Ci = (J2i−1, J2i) for each i ∈ {1, . . . , n}, that is, J2i−1 ≺ J2i. We say that job J2i−1

(J2i) is the first (second) job of chain Ci. In addition, let C1 = {Cn+1, . . . , Cn+m}
be the set of chains with length 1 such that Cn+i = {J2n+i} for each i ∈ {1, . . . ,m}.
For the sake of convenience we also say that job J2n+i is the first job of chain Cn+i.

Let si,j indicate whether the first job of chain Ci is assigned to position j, for
each i ∈ {1, . . . , n+m}, j ∈ {1, . . . , 2n+m}, and let ei,j indicate whether the second
job of chain Ci is assigned to position j, for each i ∈ {1, . . . , n}, j ∈ {1, . . . , 2n+m}.
We can formulate the problem as:

2n+m∑
j=1

si,j = 1 i ∈ {1, . . . , n+m}, (30)

2n+m∑
j=1

ei,j = 1 i ∈ {1, . . . , n}, (31)

n+m∑
i=1

si,j +
n∑
i=1

ei,j = 1 j ∈ {1, . . . , 2n+m}, (32)

k+1∑
j=1

ei,j ≤
k∑
j=1

si,j i ∈ {1, . . . , n}, k ∈ {1, . . . , 2n+m− 1}, (33)

and one can strengthen the formulation by fixing some of the variables:

si,2n+m = 0 i ∈ {1, . . . , n}, (34)

ei,1 = 0 i ∈ {1, . . . , n}. (35)

5.2 Generalized parity inequalities

Given an instance (J , C = C1 ∪ C2) of the problem Π = (1 |chains, chain-length ∈
{1, 2}, pj = 1| γ), we create an instance (J ′, C′ = C′1 ∪ C′2) of the problem Π ′ =
(1 |2-chains, pj = 1| γ). On the one hand, we createm dummy jobs J ′2n+m+1, . . . , J

′
2n+2m

such that J ′ = J ∪ {J ′2n+m+1, . . . , J
′
2n+2m}. On the other hand, let C′2 = C2 and

C′1 = {C′n+1, . . . , C
′
n+m} where C′n+i = (J2n+i, J

′
2n+m+i), that is, we create prece-

dence constraints J2n+i ≺ J ′2n+m+i for each i ∈ {1, . . . ,m}.
Consider a feasible solution for problem Π. Clearly, if we assign the dummy

jobs J ′2n+m+1, . . . , J
′
2n+2m arbitrary to positions 2n+m+ 1, . . . , 2n+ 2m we get a

feasible solution for problem Π ′. Moreover, if in a feasible solution for problem Π ′

the jobs J ′2n+m+1, . . . , J
′
2n+2m are assigned to positions 2n + m + 1, . . . , 2n + 2m,



Polyhedral results for position based scheduling of chains on a single machine 21

then the assignment of jobs J1, . . . , J2n+m to positions 1, . . . , 2n+m yields a feasible
solution for problem Π. Thus, if we consider the problem (7)–(14) for the instance
(J ′, C′) such that en+i,2n+m+i = 1 for each i ∈ {1, . . . ,m}, then each feasible
solution for that problem yields a feasible solution for the problem (30)–(33), and
vice versa. Since for each k ∈ {1, . . . , n + m − 1} and for each S2 ⊆ {1, . . . , n},
S1 ⊆ {n+ 1, . . . , n+m} such that S1 ∪ S2 has odd cardinality, the inequality

2k∑
j=1

∑
i∈S1∪S2

(si,j − ei,j) ≤ |S1 ∪ S2| − 1 +
2k∑
j=1

∑
i∈S̄1∪S̄2

(si,j − ei,j) , (36)

is valid for (7)–(14) (see inequality (18)) where S̄2 = {1, . . . , n} \ S2 and S̄1 =
{n+ 1, . . . , n+m} \ S1, thus the following inequality is valid for (30)–(33):

2k∑
j=1

∑
i∈S2

(si,j − ei,j) +
∑
i∈S1

si,j

 ≤
≤ |S1 ∪ S2| − 1 +

2k∑
j=1

∑
i∈S̄2

(si,j − ei,j) +
∑
i∈S̄1

si,j

 . (37)

Similarly (see inequality (19)), for each k ∈ {1, . . . , n + m} and for each S2 ⊆
{1, . . . , n}, S1 ⊆ {n + 1, . . . , n + m} such that S1 ∪ S2 has even cardinality, the
following inequality is valid (30)–(33):

2k−1∑
j=1

∑
i∈S2

(si,j − ei,j) +
∑
i∈S1

si,j

 ≤
≤ |S1 ∪ S2| − 1 +

2k−1∑
j=1

∑
i∈S̄2

(si,j − ei,j) +
∑
i∈S̄1

si,j

 . (38)

Using the transformation of problem instances mentioned above, one can use
the procedure described in Section 4.4.1 to separate inequalities (37) and (38).

6 Computational experiments

In this section we present the results of our computational experiments where the
main goal was to examine the effectiveness of our parity inequalities.

All the computational experiments were performed on a workstation with 8GB
RAM and Intel(R) Xeon(R) CPU E5-2630 v4 of 2.20 GHz, and under Linux oper-
ating system using a single thread only. Our solution approach is implemented in
C++ programming language using CPLEX (version 12.6.3.0) as the branch-and-
cut framework.

In these experiments we compared three solution approaches, corresponding to
the settings summarized in Table 1. Method BnC (Default) refers to the default
CPLEX settings (i.e., CPLEX performs presolves and heuristics, and generates
built-in cuts), while in case of methods BnB and BnC (Parity) we turned off all
the presolves, heuristics and forbid to generate built-in cuts, however, in case of



22 Markó Horváth, Tamás Kis

Table 1 Solver settings of the different methods

CPLEX

Method Presolve Heuristics Cuts Parity cuts

BnB no no no no
BnC (Default) yes yes yes no
BnC (Parity) no no no yes

method BnC (Parity) we separate the parity inequalities. That is, method BnB is
a pure branch-and-bound procedure, and method BnC (Parity) is a pure branch-
and-cut algorithm separating only the parity inequalities. In each case we solved
the instances with a time limit of 600 seconds.

We generated two families of problem instances for 1 |2-chains, pj = 1|
∑
wj,σj

,
and one family for 1 |chains, chain-length ∈ {1, 2}, pj = 1|

∑
wj,σj

. Each family
consists of 30 instances, which can be subdivided according to the number of
jobs, which was n ∈ {50, 100, 150}, and we generated 10 instances for each n. In
Tables 2–4 we summarize our results on these families, and the detailed results are
presented in the appendix (see Tables 5–13). In these tables we indicate the number
of jobs (n), the settings of the solver (Method), the final lower and upper bounds
(LB, UB), the final gap (Gap) calculated as 100 × (UB − LB)/LB, the number
of investigated branch-and-bound nodes (Nodes), the number of generated parity
inequalities (Cuts), and the execution time (Time) in seconds.

6.1 Results on problem 1 |2-chains, pj = 1|
∑
wj,σj

For the problem 1 |2-chains, pj = 1|
∑
wj,σj

we generated two families of instances,
Family 1 and Family 2, that differ in the method of generating the cost functions.
Both families consist of 30 instances, which can be further divided into problems
with n ∈ {50, 100, 150} jobs, i.e., 10 instances for each n. In order to generate
challenging instances, for each first-job we assigned higher weight for the early
positions than for the late ones, however, for each second-job we assigned lower
weight for the early positions than for the late ones. Formally, in case of Family 1,
we partitioned the set of positions into 9 sets such that Pk = {d(k − 1) · 2n/9e+
1, . . . , dk · 2n/9e} for each k ∈ {1, . . . , 9}, then for job Ji and position j we chose
wi,j uniformly at random such that

• wi,j ∈ {10(10− k), . . . , 10(11− k)− 1} if Ji is a first-job, and j ∈ Pk,
• wi,j ∈ {10k, . . . , 10(k + 1)− 1} if Ji is a second-job, and j ∈ Pk.

In case of Family 2, we partitioned the set of positions into 17 subsets such that
Pk = {d(k− 1) · 2n/17e+ 1, . . . , dk · 2n/17e} for each k ∈ {1, . . . , 17}, then for job Ji
and position j we chose wi,j uniformly at random such that

• wi,j ∈ {10k, . . . , 10(k + 1)− 1} if Ji is a first-job, k ≤ 9, and j ∈ Pk,
• wi,j ∈ {10(18− k), . . . , 10(19− k)− 1} if Ji is a first-job, 9 < k, and j ∈ Pk,
• wi,j ∈ {10(10− k), . . . , 10(11− k)− 1} if Ji is a second-job, k ≤ 9, and j ∈ Pk,
• wi,j ∈ {10(k − 9), . . . , 10(k − 8)− 1} if Ji is a second-job, 9 < k, and j ∈ Pk.

In Tables 2 and 3 we summarize our results for Family 1, and Family 2, respec-
tively, while the detailed results can be found in Tables 5-7, and in Tables 8-10,



Polyhedral results for position based scheduling of chains on a single machine 23

Table 2 Summarized computational results for Family 1 (averages over 10 instances)

n Method LB UB Gap Nodes Cuts Time

50 BnB 2525.4 2525.4 0.0 3196.1 0.0 17.2
BnC (Default) 2525.4 2525.4 0.0 839.9 0.0 7.7
BnC (Parity) 2525.4 2525.4 0.0 4.3 19.7 1.1

100 BnB 5006.9 5021.9 0.3 14 017.2 0.0 416.9
BnC (Default) 5007.5 5011.0 0.1 10 670.4 0.0 397.2
BnC (Parity) 5008.5 5008.5 0.0 140.0 35.7 25.0

150 BnB 7500.0 7513.7 0.2 3740.6 0.0 346.6
BnC (Default) 7500.0 7500.1 0.0 1257.2 0.0 227.5
BnC (Parity) 7500.0 7500.0 0.0 12.8 35.4 42.8

Table 3 Summarized computational results for Family 2 (averages over 10 instances)

n Method LB UB Gap Nodes Cuts Time

50 BnB 1816.5 1816.5 0.0 925.1 0.0 3.3
BnC (Default) 1816.5 1816.5 0.0 14.7 0.0 0.6
BnC (Parity) 1816.5 1816.5 0.0 3.5 2.7 0.3

100 BnB 3598.6 3663.4 1.8 63 707.8 0.0 600.0
BnC (Default) 3616.5 3644.5 0.8 14 762.8 0.0 600.0
BnC (Parity) 3642.1 3642.1 0.0 4.3 27.1 5.4

150 BnB 5340.9 5399.8 1.1 9099.5 0.0 600.0
BnC (Default) 5352.8 5360.5 0.1 4944.9 0.0 574.0
BnC (Parity) 5360.4 5360.4 0.0 5.0 6.9 15.4

respectively. One can see that method BnC (Parity) significantly outperformed
the other ones in all aspects. On the one hand, only the method BnC (Parity)
was able to solve all instances to optimality (one can see that the average gap
is always 0.0), on the other hand in each case method BnC (Parity) needed the
shortest execution time, and the least number of search-tree nodes. To sum up,
using parity inequalities (method BnC (Parity)) can significantly improve a pure
branch-and-bound procedure (method BnB), moreover, it also outperforms the
default CPLEX branch-and-cut procedure (method BnC (Default)).

6.2 Results on problem 1 |chains, chain-length ∈ {1, 2}, pj = 1|
∑
wj,σj

Given an n-length path (in term of number of its nodes) as the precedence graph.
To obtain instances of Family 3 we randomly removed arcs from that path such
that the remaining sub-paths (i.e, chains) have length at most two. For each n ∈
{50, 100, 150}, we generated 10 instances with n jobs, giving a total of 30 instances.
Again, to generate challenging instances, for each first-job we assigned higher
weight for the early positions than for the late ones, however, for each second-
job we assigned lower weight for the early positions than for the late ones (see
Family 1).

In Table 4 we summarize our results, and for detailed results we refer to the ap-
pendix (see Tables 11–13). Similarly to the previous experiments, the method BnC
(Parity) outperformed the other ones. Namely, in case of method BnC (Parity) all



24 Markó Horváth, Tamás Kis

Table 4 Summarized computational results for Family 3 (averages over 10 instances)

n Method LB UB Gap Nodes Cuts Time

50 BnB 2056.1 2056.1 0.0 28 892.6 0 47.0
BnC (Default) 2056.1 2056.1 0.0 851.1 0 2.0
BnC (Parity) 2056.1 2056.1 0.0 4.2 7.8 0.3

100 BnB 4056.1 4087.7 0.8 60 305.6 0 600.0
BnC (Default) 4070.4 4078.7 0.2 26 954.3 0 590.3
BnC (Parity) 4076.7 4076.7 0.0 56.0 16.0 8.6

150 BnB 6062.8 6109.5 0.8 16 331.7 0 600.0
BnC (Default) 6068.3 6084.3 0.3 9923.6 0 600.0
BnC (Parity) 6081.8 6081.8 0.0 32.9 16.4 23.3

instances were solved to optimality, and the separation of the parity inequalities
significantly reduced the investigated branch-and-bound nodes and the execution
time.

7 Conclusions, final remarks and future work

In this paper we presented polyhedral results for a single machine scheduling prob-
lem where precedence constraints are given. Among several theoretical results we
also presented a class of valid inequalities that turned out to be facet defining for
2-chain precedence constraints. Our computational experiments show that sep-
arating these inequalities can significantly improve a linear programming based
branch-and-bound procedure.

Our generalized inequalities are valid in the case of chain-precedence con-
straints when the chain-lengths are at most two. We remark that in the case
of arbitrary precedence constraints one can arbitrary relax these constraints such
that the remaining precedence relation consist of chains with length at most two,
thus our inequalities can be separated in the general case as well. Moreover, we
developed a separation algorithm that finds the most violated inequality over all
the possible relaxations of the precedence constraints, however, according to com-
putational experiments, separating these inequalities could not improve a branch-
and-bound procedure.

In the future we would like to direct our attention to the case of chain prece-
dence constraints with arbitrary chain-lengths, and to the case of general prece-
dence constraints as well.

8 Appendix

8.1 Proof of Lemma 1

Proof (statement i)) Let p, q ∈ {1, . . . , n} be distinct elements, 1 ≤ j1 < j2 <

j3 < j4 ≤ 2n and consider points P1 = (s1, e1), P2 = (s2, e2) ∈ P 2C
n such that

σp(P1) = (j1, j2), σq(P1) = (j3, j4) and σq(P2) = (j1, j3), σq(P2) = (j2, j4) and
σr(P1) = σr(P2) for all r /∈ {p, q}, i.e.,

s1p,j1 = e1p,j2 = s1q,j3 = e1q,j4 = 1 and s2p,j1 = e2p,j3 = s2q,j2 = e2q,j4 = 1,



Polyhedral results for position based scheduling of chains on a single machine 25

and s1r,j = s2r,j , e
1
r,j = e2r,j for all r /∈ {p, q} and j ∈ {1, . . . , 2n}. Since P1 and P2

satisfy (16), we have

αp,j1 + βp,j2 + αq,j3 + βq,j4 +
n∑
r=1
r 6=p,q

2n∑
j=1

(
αr,js

1
r,j + βr,je

1
r,j

)
= γ,

and

αp,j1 + βp,j3 + αq,j2 + βq,j4 +
n∑
r=1
r 6=p,q

2n∑
j=1

(
αr,js

2
r,j + βr,je

2
r,j

)
= γ,

thus, by subtracting the second equation from the first one, we have βp,j2 +αq,j3 =
αq,j2 + βp,j3 (1 < j2 < j3 < 2n), that is, statement i) holds for p 6= q.

Since n ≥ 3, we can choose pairwise distinct elements p, q, r ∈ {1, . . . , n}, there-
fore we have

αp,j′′ − αp,j′ = βq,j′′ − βq,j′ = αr,j′′ − αr,j′ = βp,j′′ − βp,j′ ,

that is, statement i) also holds for p = q. ut

Proof (statement ii)) Let p, q ∈ {1, . . . , n} be distinct elements, 1 ≤ j1 < j2 < j3 <

j4 ≤ 2n and consider points P1, P2 ∈ P 2C
n such that σp(P1) = (j1, j3), σq(P1) =

(j2, j4) and σp(P2) = (j2, j3), σq(P2) = (j1, j4) and σr(P1) = σr(P2) for all r /∈
{p, q}. Since P1 and P2 satisfy (16), we have αp,j2 − αp,j1 = αq,j2 − αq,j1 (1 ≤ j1 <
j2 < 2n− 1), that is, statement ii) holds for j′′ < 2n− 1.

Now, consider points P3, P4 ∈ P 2C
n such that σp(P3) = (j1, 2n − 2), σq(P3) =

(2n− 1, 2n) and σp(P4) = (2n− 1, 2n), σq(P4) = (j1, 2n− 2) and σr(P3) = σr(P4)
for all r /∈ {p, q}. Since P3 and P4 satisfy (16), we have αp,j1 + βp,2n−2 +αq,2n−1 +
βq,2n = αp,2n−1 + βp,2n + αq,j1 + βq,2n−2. According to statement i) (note that
1 < 2n− 2) we have βp,2n − βp,2n−2 = βq,2n − βq,2n−2, therefore αp,j1 + αq,2n−1 =
αq,j1 + αp,2n−1, that is, statement ii) also holds for j′′ = 2n− 1. ut

Proof (statement iii)) Let p, q ∈ {1, . . . , n} be distinct elements, 1 ≤ j1 < j2 < j3 <

j4 ≤ 2n and consider points P1, P2 ∈ P 2C
n such that σp(P1) = (j1, j3), σq(P1) =

(j2, j4) and σp(P2) = (j1, j4), σq(P2) = (j2, j3) and σr(P1) = σr(P2) for all r /∈
{p, q}. Since P1 and P2 satisfy (16), we have βp,j4 − βp,j3 = βq,j4 − βq,j3 (2 < j3 <

j4 ≤ 2n), that is, statement iii) holds for 2 < j′.
Now, consider points P3, P4 ∈ P 2C

n such that σp(P3) = (1, 2), σq(P3) = (3, j4)
and σp(P4) = (3, j4), σq(P4) = (1, 2) and σr(P3) = σr(P4) for all r /∈ {p, q}. Since
P3 and P4 satisfy (16), we have αp,1 +βp,2 +αq,3 +βq,j4 = αp,3 +βp,j4 +αq,1 +βq,2.
According to statement i) (note that 3 < 2n) we have αp,3 − αp,1 = αq,3 − αq,1,
therefore βp,2 +βq,j4 = βq,2 +βp,j4 , that is, statement iii) also holds for j′ = 2. ut

8.2 Proof of Lemma 3

Proof (statement i)) Let p, q ∈ {1, . . . , t} be distinct elements, 1 ≤ j1 < j2 ≤ 2k <
j3 < j4 ≤ 2n and consider points P1, P2 ∈ PEV ENn such that σp(P1) = (j1, j3),



26 Markó Horváth, Tamás Kis

σq(P1) = (j2, j4) and σp(P2) = (j2, j3), σq(P2) = (j1, j4) and σr(P1) = σr(P2) for
all r /∈ {p, q}, i.e.,

s1p,j1 = e1p,j3 = s1q,j2 = e1q,j4 = 1 and s2p,j2 = e2p,j3 = s2q,j1 = e2q,j4 = 1,

and s1r,j = s2r,j , e
1
r,j = e2r,j for all r /∈ {p, q} and j ∈ {1, . . . , 2n}. Note that such

points exist according to Remark 2. Since P1 and P2 satisfy (28), we have

αp,j1 + βp,j3 + αq,j2 + βq,j4 +
n∑
r=1
r 6=p,q

2n∑
j=1

(
αr,js

1
r,j + βr,je

1
r,j

)
= γ,

and

αp,j2 + βp,j3 + αq,j1 + βq,j4 +
n∑
r=1
r 6=p,q

2n∑
j=1

(
αr,js

2
r,j + βr,je

2
r,j

)
= γ,

thus, by subtracting the first one from the second one, we have αp,j1 + αq,j2 =
αp,j2 + αq,j1 . ut

Proof (statement iii)) Let p, q ∈ {1, . . . , t} be distinct elements, 1 ≤ j1 < j2 ≤ 2k <
j3 < j4 ≤ 2n and consider points P1, P2 ∈ PEV ENn such that σp(P1) = (j1, j3),
σq(P1) = (j2, j4) and σp(P2) = (j1, j4), σq(P2) = (j2, j3) and σr(P1) = σr(P2) for
all r /∈ {p, q}. Since P1 and P2 satisfy (28) we have βp,j4 − βp,j3 = βq,j4 − βq,j3 .

Proof (statement ii)) Let p, q ∈ {1, . . . , t} be distinct elements and 1 ≤ j1 ≤ 2k <
j2 < j3 < j4 ≤ 2n. First, consider points P1, P2 ∈ PEV ENn such that σp(P1) =
(j1, j3), σq(P1) = (j2, j4) and σp(P2) = (j2, j3), σq(P2) = (j1, j4) and σr(P1) =
σr(P2) for all r /∈ {p, q}. Since P1 and P2 satisfy (28) we have αp,j2 − αp,j1 =
αq,j2 − αq,j1 , that is, statement ii) holds if 2k < j′′ < 2n− 1.

Now, consider points P3, P4 ∈ PEV ENn such that σp(P3) = (j1, 2k+1), σq(P3) =
(2n−1, 2n) and σp(P4) = (2n−1, 2n), σq(P4) = (j1, 2k+1) and σr(P3) = σq(P3) for
all r /∈ {p, q}. Since P3 and P4 satisfy (28) we have αp,j1 +βp,2k+1+αq,2n−1+βq,2n =
αq,j1 + βq,2k+1 + αp,2n−1 + βp,2n. According to statement iii), βp,2n − βp,2k+1 =
βq,2n − βq,2k+1, thus αp,j1 + αq,2n−1 = αq,j1 + αp,2n−1, that is, statement ii) also
holds for j′′ = 2n− 1. ut

Proof (statement vi)) Let p, q ∈ {1, . . . , t} be distinct elements, 1 ≤ j1 < j2 < j3 ≤
2k < j4 ≤ 2n. First, consider points P1, P2 ∈ PEV ENn such that σp(P1) = (j1, j3),
σq(P1) = (j2, j4) and σq(P2) = (j1, j4), σq(P2) = (j2, j3) and σr(P1) = σr(P2) for
all r /∈ {p, q}. Since P1 and P2 satisfy (28) we have βp,j4 −βp,j3 = βq,j4 −βq,j3 , that
is, statement iv) holds if 2 < j′ ≤ 2k.

Now, consider points P3, P4 ∈ PEV ENn such that σp(P3) = (1, 2), σq(P3) =
(2k, j4) and σp(P4) = (2k, j4), σq(P4) = (1, 2) and σr(P3) = σr(P4) for all r /∈
{p, q}. Since P3 and P4 satisfy (28) we have αp,1 + βp,2 + αq,2k + βq,j4 = αq,1 +
βq,2 + αp,2k + βp,j4 . According to statement i), αp,2k − αp,1 = αq,2k − αq,1, thus
βp,2 + βq,j4 = βq,2 + βp,j4 , that is, statement iv) also holds for j′ = 2. ut

Proof (statement v)) Let p, q ∈ {1, . . . , t} be distinct elements, 1 ≤ j1 < j2 < j3 ≤
2k < j4 ≤ 2n and consider points P1, P2 ∈ PEV ENn such that σp(P1) = (j1, j3),
σq(P1) = (j2, j4) and σp(P2) = (j1, j2), σq(P2) = (j3, j4) and σr(P1) = σr(P2) for
all r /∈ {p, q}. Since P1 and P2 satisfy (28) we have αp,j3 − αp,j2 = βq,j3 − βq,j2 .



Polyhedral results for position based scheduling of chains on a single machine 27

Since 3 ≤ t, we can choose pairwise distinct element p, q, r ∈ {1, . . . , t}, therefore
we have

αp,j3 − αp,j2 = βq,j3 − βq,j2 = αr,j3 − αr,j2 = βp,j3 − βp,j2 ,

that is, statement v) also holds for p = q. ut

Proof (statement vi)) Let p, q ∈ {1, . . . , t} be distinct elements, 1 ≤ j1 ≤ 2k < j2 <

j3 < j4 ≤ 2n and consider points P1, P2 ∈ PEV ENn such that σp(P1) = (j1, j3),
σq(P1) = (j2, j4) and σp(P2) = (j1, j2), σq(P2) = (j3, j4) and σr(P1) = σr(P2) for
all r /∈ {p, q}. Since P1 and P2 satisfy (28) we have αp,j3 − αp,j2 = βq,j3 − βq,j2 .

Since 3 ≤ t, we can choose pairwise distinct element p, q, r ∈ {1, . . . , t}, therefore
we have

αp,j3 − αp,j2 = βq,j3 − βq,j2 = αr,j3 − αr,j2 = βp,j3 − βp,j2 ,

that is, statement vi) also holds for p = q. ut

8.3 Proof of Lemma 4

Proof (statement vii)) Let p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n} and 1 ≤ j1 < j2 ≤
2k < j3 < j4 ≤ 2n. Consider points P1, P2 ∈ PEV ENn such that σp(P1) = (j1, j3),
σq̄(P1) = (j2, j4) and σp(P2) = (j2, j3), σq̄(P2) = (j1, j4) and σr(P1) = σr(P2) for
all r /∈ {p, q̄}. Since P1 and P2 satisfy (28) we have αp,j2 −αp,j1 = αq̄,j2 −αq̄,j1 . ut

Proof (statement viii)) Let p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n} and 1 ≤ j1 < j2 ≤
2k < j3 < j4 ≤ 2n. Consider points P1, P2 ∈ PEV ENn such that σp(P1) = (j1, j3),
σq̄(P1) = (j2, j4) and σp(P2) = (j1, j4), σq̄(P2) = (j2, j3) and σr(P1) = σr(P2) for
all r /∈ {p, q̄}. Since P1 and P2 satisfy (28) we have βp,j4 − βp,j3 = βq̄,j4 − βq̄,j3 . ut

Proof (statement ix)) Let p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n} and 1 ≤ j1 < j2 <

j3 ≤ 2k < j4 ≤ 2n. Consider points P1, P2 ∈ PEV ENn such that σp(P1) = (j3, j4),
σq̄(P1) = (j1, j2) and σp(P2) = (j2, j4), σq̄(P2) = (j1, j3) and σr(P1) = σr(P2) for
all r /∈ {p, q̄}. Since P1 and P2 satisfy (28) we have αp,j3 −αp,j2 = βq̄,j3 − βq̄,j2 . ut

Proof (statement x)) Let p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n} and 1 ≤ j1 < j2 ≤
2k < j3 < j4 ≤ 2n. Consider points P1, P2 ∈ PEV ENn such that σp(P1) = (j3, j4),
σq̄(P1) = (j1, j2) and σp(P2) = (j2, j4), σq̄(P2) = (j1, j3) and σr(P1) = σr(P2) for
all r /∈ {p, q̄}. Since P1 and P2 satisfy (28) we have αp,j3 −αp,j2 = βq̄,j3 − βq̄,j2 . ut

Proof (statement xi)) Let p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n} and 1 ≤ j1 < j2 ≤
2k < j3 < j4 ≤ 2n. Consider points P1, P2 ∈ PEV ENn such that σp(P1) = (j1, j2),
σq̄(P1) = (j3, j4) and σp(P2) = (j1, j3), σq̄(P2) = (j2, j4) and σr(P1) = σr(P2) for
all r /∈ {p, q̄}. Since P1 and P2 satisfy (28) we have βp,j3 − βp,j2 = αq̄,j3 −αq̄,j2 . ut

Proof (statement xii)) Let p ∈ {1, . . . , t}, q̄ ∈ {t + 1, . . . , n} and 1 ≤ j1 ≤ 2k <

j2 < j3 < j4 ≤ 2n. Consider points P1, P2 ∈ PEV ENn such that σp(P1) = (j1, j2),
σq̄(P1) = (j3, j4) and σp(P2) = (j1, j3), σq̄(P2) = (j2, j4) and σr(P1) = σr(P2) for
all r /∈ {p, q̄}. Since P1 and P2 satisfy (28) we have βp,j3 − βp,j2 = αq̄,j3 −αq̄,j2 . ut



28 Markó Horváth, Tamás Kis

Table 5 Detailed computational results for Family 1 with n = 50

Instance Method LB UB Gap Nodes Cuts Time

1 BnB 2531.0 2531.0 0.0 12 377 0 54.1
BnC (Default) 2531.0 2531.0 0.0 535 0 13.2
BnC (Parity) 2531.0 2531.0 0.0 4 27 1.2

2 BnB 2526.0 2526.0 0.0 520 0 6.8
BnC (Default) 2526.0 2526.0 0.0 451 0 4.5
BnC (Parity) 2526.0 2526.0 0.0 3 24 0.5

3 BnB 2530.0 2530.0 0.0 332 0 6.1
BnC (Default) 2530.0 2530.0 0.0 208 0 2.8
BnC (Parity) 2530.0 2530.0 0.0 4 17 0.8

4 BnB 2523.0 2523.0 0.0 5693 0 27.5
BnC (Default) 2523.0 2523.0 0.0 2066 0 11.5
BnC (Parity) 2523.0 2523.0 0.0 8 22 2.0

5 BnB 2519.0 2519.0 0.0 7 0 1.6
BnC (Default) 2519.0 2519.0 0.0 0 0 0.8
BnC (Parity) 2519.0 2519.0 0.0 3 17 0.7

6 BnB 2525.0 2525.0 0.0 232 0 5.6
BnC (Default) 2525.0 2525.0 0.0 339 0 3.8
BnC (Parity) 2525.0 2525.0 0.0 4 17 0.9

7 BnB 2527.0 2527.0 0.0 133 0 3.1
BnC (Default) 2527.0 2527.0 0.0 14 0 0.9
BnC (Parity) 2527.0 2527.0 0.0 5 12 1.2

8 BnB 2523.0 2523.0 0.0 1469 0 12.2
BnC (Default) 2523.0 2523.0 0.0 624 0 4.7
BnC (Parity) 2523.0 2523.0 0.0 5 21 1.3

9 BnB 2528.0 2528.0 0.0 8774 0 38.1
BnC (Default) 2528.0 2528.0 0.0 3460 0 29.6
BnC (Parity) 2528.0 2528.0 0.0 4 18 1.2

10 BnB 2522.0 2522.0 0.0 2424 0 17.0
BnC (Default) 2522.0 2522.0 0.0 702 0 5.4
BnC (Parity) 2522.0 2522.0 0.0 3 22 0.9

avg BnB 2525.4 2525.4 0.0 3196.1 0.0 17.2
BnC (Default) 2525.4 2525.4 0.0 839.9 0.0 7.7
BnC (Parity) 2525.4 2525.4 0.0 4.3 19.7 1.1

References

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals

of discrete mathematics, 5:287–326, 1979.
H. W. Kuhn. The hungarian method for the assignment problem. Naval Research

Logistics (NRL), 2(1-2):83–97, 1955.
J. Kulkarni and K. Munagala. Algorithms for cost-aware scheduling. In In-

ternational Workshop on Approximation and Online Algorithms, pages 201–214.
Springer, 2012.

J. K. Lenstra and A. Rinnooy Kan. Complexity results for scheduling chains on a
single machine. European Journal of Operational Research, 4(4):270–275, 1980.



Polyhedral results for position based scheduling of chains on a single machine 29

Table 6 Detailed computational results for Family 1 with n = 100

Instance Method LB UB Gap Nodes Cuts Time

1 BnB 5006.7 5016.0 0.2 19 580 0 600.0
BnC (Default) 5009.0 5009.0 0.0 18 317 0 513.5
BnC (Parity) 5009.0 5009.0 0.0 160 40 25.0

2 BnB 5007.0 5007.0 0.0 3850 0 148.7
BnC (Default) 5007.0 5007.0 0.0 2842 0 77.6
BnC (Parity) 5007.0 5007.0 0.0 69 32 22.4

3 BnB 5008.0 5008.0 0.0 9963 0 282.5
BnC (Default) 5008.0 5008.0 0.0 4339 0 177.8
BnC (Parity) 5008.0 5008.0 0.0 171 36 22.9

4 BnB 5008.7 5058.0 1.0 21 653 0 600.0
BnC (Default) 5008.5 5021.0 0.3 10 395 0 600.0
BnC (Parity) 5013.0 5013.0 0.0 102 38 21.4

5 BnB 5006.0 5011.0 0.1 18 585 0 600.0
BnC (Default) 5008.0 5008.0 0.0 16 913 0 524.5
BnC (Parity) 5008.0 5008.0 0.0 263 39 37.0

6 BnB 5010.0 5010.0 0.0 5414 0 217.9
BnC (Default) 5010.0 5010.0 0.0 3986 0 212.0
BnC (Parity) 5010.0 5010.0 0.0 62 26 18.4

7 BnB 5005.6 5010.0 0.1 21 114 0 600.0
BnC (Default) 5007.0 5007.0 0.0 21 630 0 483.0
BnC (Parity) 5007.0 5007.0 0.0 221 49 29.3

8 BnB 5007.0 5007.0 0.0 1633 0 66.5
BnC (Default) 5007.0 5007.0 0.0 11 646 0 517.4
BnC (Parity) 5007.0 5007.0 0.0 122 19 23.5

9 BnB 5005.6 5087.0 1.6 22 484 0 600.0
BnC (Default) 5005.9 5028.0 0.4 11 269 0 600.0
BnC (Parity) 5011.0 5011.0 0.0 138 41 24.7

10 BnB 5005.0 5005.0 0.0 15 896 0 453.6
BnC (Default) 5005.0 5005.0 0.0 5367 0 266.3
BnC (Parity) 5005.0 5005.0 0.0 92 37 25.6

avg BnB 5006.9 5021.9 0.3 14 017.2 0.0 416.9
BnC (Default) 5007.5 5011.0 0.1 10 670.4 0.0 397.2
BnC (Parity) 5008.5 5008.5 0.0 140.0 35.7 25.0

J. Y.-T. Leung and G. H. Young. Minimizing total tardiness on a single machine
with precedence constraints. ORSA Journal on Computing, 2(4):346–352, 1990.

G. L. Nemhauser and L. A. Wolsey. Integer programming and combinatorial opti-

mization. Wiley, Chichester, 1988.
G. Wan and X. Qi. Scheduling with variable time slot costs. Naval Research

Logistics (NRL), 57(2):159–171, 2010.
Y. Zhao, X. Qi, and M. Li. On scheduling with non-increasing time slot cost to

minimize total weighted completion time. Journal of Scheduling, 19(6):759–767,
2016.



30 Markó Horváth, Tamás Kis

Table 7 Detailed computational results for Family 1 with n = 150

Instance Method LB UB Gap Nodes Cuts Time

1 BnB 7500.0 7529.0 0.4 7205 0 600.0
BnC (Default) 7500.0 7500.0 0.0 472 0 228.2
BnC (Parity) 7500.0 7500.0 0.0 6 26 31.9

2 BnB 7500.0 7500.0 0.0 1054 0 193.7
BnC (Default) 7500.0 7500.0 0.0 0 0 31.0
BnC (Parity) 7500.0 7500.0 0.0 9 31 38.6

3 BnB 7500.0 7500.0 0.0 5791 0 421.3
BnC (Default) 7500.0 7500.0 0.0 135 0 88.5
BnC (Parity) 7500.0 7500.0 0.0 13 35 50.2

4 BnB 7500.0 7500.0 0.0 847 0 200.3
BnC (Default) 7500.0 7500.0 0.0 2753 0 243.7
BnC (Parity) 7500.0 7500.0 0.0 10 40 45.1

5 BnB 7500.0 7500.0 0.0 42 0 70.2
BnC (Default) 7500.0 7500.0 0.0 2461 0 495.3
BnC (Parity) 7500.0 7500.0 0.0 16 37 53.0

6 BnB 7500.0 7604.0 1.4 5132 0 600.0
BnC (Default) 7500.0 7501.0 0.0 4221 0 600.0
BnC (Parity) 7500.0 7500.0 0.0 4 78 29.2

7 BnB 7500.0 7500.0 0.0 413 0 114.7
BnC (Default) 7500.0 7500.0 0.0 0 0 18.6
BnC (Parity) 7500.0 7500.0 0.0 2 26 18.5

8 BnB 7500.0 7500.0 0.0 41 0 65.4
BnC (Default) 7500.0 7500.0 0.0 246 0 89.3
BnC (Parity) 7500.0 7500.0 0.0 9 26 38.8

9 BnB 7500.0 7502.0 0.0 7464 0 600.0
BnC (Default) 7500.0 7500.0 0.0 785 0 129.3
BnC (Parity) 7500.0 7500.0 0.0 9 27 41.5

10 BnB 7500.0 7502.0 0.0 9417 0 600.0
BnC (Default) 7500.0 7500.0 0.0 1499 0 351.0
BnC (Parity) 7500.0 7500.0 0.0 50 28 81.3

avg BnB 7500.0 7513.7 0.2 3740.6 0.0 346.6
BnC (Default) 7500.0 7500.1 0.0 1257.2 0.0 227.5
BnC (Parity) 7500.0 7500.0 0.0 12.8 35.4 42.8



Polyhedral results for position based scheduling of chains on a single machine 31

Table 8 Detailed computational results for Family 2 with n = 50

Instance Method LB UB Gap Nodes Cuts Time

1 BnB 1816.0 1816.0 0.0 1978 0 5.4
BnC (Default) 1816.0 1816.0 0.0 0 0 0.4
BnC (Parity) 1816.0 1816.0 0.0 5 2 0.5

2 BnB 1819.0 1819.0 0.0 495 0 2.2
BnC (Default) 1819.0 1819.0 0.0 28 0 0.8
BnC (Parity) 1819.0 1819.0 0.0 3 3 0.3

3 BnB 1817.0 1817.0 0.0 751 0 2.3
BnC (Default) 1817.0 1817.0 0.0 0 0 0.3
BnC (Parity) 1817.0 1817.0 0.0 4 4 0.2

4 BnB 1814.0 1814.0 0.0 530 0 2.8
BnC (Default) 1814.0 1814.0 0.0 0 0 0.8
BnC (Parity) 1814.0 1814.0 0.0 4 3 0.3

5 BnB 1817.0 1817.0 0.0 845 0 3.5
BnC (Default) 1817.0 1817.0 0.0 0 0 0.5
BnC (Parity) 1817.0 1817.0 0.0 3 2 0.3

6 BnB 1822.0 1822.0 0.0 1835 0 5.3
BnC (Default) 1822.0 1822.0 0.0 0 0 0.6
BnC (Parity) 1822.0 1822.0 0.0 4 2 0.4

7 BnB 1817.0 1817.0 0.0 670 0 3.0
BnC (Default) 1817.0 1817.0 0.0 119 0 1.2
BnC (Parity) 1817.0 1817.0 0.0 3 2 0.2

8 BnB 1814.0 1814.0 0.0 799 0 2.8
BnC (Default) 1814.0 1814.0 0.0 0 0 0.5
BnC (Parity) 1814.0 1814.0 0.0 3 3 0.2

9 BnB 1819.0 1819.0 0.0 533 0 2.5
BnC (Default) 1819.0 1819.0 0.0 0 0 0.3
BnC (Parity) 1819.0 1819.0 0.0 3 4 0.2

10 BnB 1810.0 1810.0 0.0 815 0 2.8
BnC (Default) 1810.0 1810.0 0.0 0 0 0.5
BnC (Parity) 1810.0 1810.0 0.0 3 2 0.2

avg BnB 1816.5 1816.5 0.0 925.1 0 3.3
BnC (Default) 1816.5 1816.5 0.0 14.7 0 0.6
BnC (Parity) 1816.5 1816.5 0.0 3.5 2.7 0.3



32 Markó Horváth, Tamás Kis

Table 9 Detailed computational results for Family 2 with n = 100

Instance Method LB UB Gap Nodes Cuts Time

1 BnB 3598.5 3650.0 1.4 58 120 0 600.0
BnC (Default) 3613.5 3644.0 0.8 15 623 0 600.0
BnC (Parity) 3642.0 3642.0 0.0 3 24 3.4

2 BnB 3598.3 3652.0 1.5 75 054 0 600.0
BnC (Default) 3613.2 3642.0 0.8 15 739 0 600.0
BnC (Parity) 3641.0 3641.0 0.0 4 27 4.9

3 BnB 3599.5 3670.0 1.9 57 020 0 600.0
BnC (Default) 3617.8 3645.0 0.8 14 084 0 600.0
BnC (Parity) 3643.0 3643.0 0.0 4 26 5.6

4 BnB 3599.5 3655.0 1.5 73 846 0 600.0
BnC (Default) 3617.3 3644.0 0.7 14 320 0 600.0
BnC (Parity) 3642.0 3642.0 0.0 3 29 4.2

5 BnB 3594.5 3661.0 1.8 77 634 0 600.0
BnC (Default) 3611.0 3643.0 0.9 14 053 0 600.0
BnC (Parity) 3640.0 3640.0 0.0 7 31 7.1

6 BnB 3603.8 3673.0 1.9 52 608 0 600.0
BnC (Default) 3614.0 3649.0 1.0 16 714 0 600.0
BnC (Parity) 3646.0 3646.0 0.0 3 24 4.2

7 BnB 3596.5 3663.0 1.8 54 950 0 600.0
BnC (Default) 3624.8 3642.0 0.5 11 172 0 600.0
BnC (Parity) 3641.0 3641.0 0.0 3 18 4.6

8 BnB 3597.0 3667.0 1.9 53 452 0 600.0
BnC (Default) 3628.5 3647.0 0.5 13 020 0 600.0
BnC (Parity) 3643.0 3643.0 0.0 4 27 4.0

9 BnB 3598.5 3691.0 2.5 75 310 0 600.0
BnC (Default) 3617.3 3646.0 0.8 14 620 0 600.0
BnC (Parity) 3642.0 3642.0 0.0 4 19 5.4

10 BnB 3599.5 3652.0 1.4 59 084 0 600.0
BnC (Default) 3607.5 3643.0 1.0 18 283 0 600.0
BnC (Parity) 3641.0 3641.0 0.0 8 46 10.4

avg BnB 3598.6 3663.4 1.8 63 707.8 0 600.0
BnC (Default) 3616.5 3644.5 0.8 14 762.8 0 600.0
BnC (Parity) 3642.1 3642.1 0.0 4.3 27.1 5.4



Polyhedral results for position based scheduling of chains on a single machine 33

Table 10 Detailed computational results for Family 2 with n = 150

Instance Method LB UB Gap Nodes Cuts Time

1 BnB 5342.3 5392.0 0.9 9215 0 600.0
BnC (Default) 5357.0 5362.0 0.1 4631 0 600.0
BnC (Parity) 5362.0 5362.0 0.0 5 6 14.1

2 BnB 5340.0 5392.0 1.0 10 210 0 600.0
BnC (Default) 5347.0 5360.0 0.2 8701 0 600.0
BnC (Parity) 5360.0 5360.0 0.0 4 3 14.6

3 BnB 5341.0 5386.0 0.8 9459 0 600.0
BnC (Default) 5354.0 5360.0 0.1 5531 0 600.0
BnC (Parity) 5360.0 5360.0 0.0 8 7 20.7

4 BnB 5341.0 5478.0 2.5 10 611 0 600.0
BnC (Default) 5358.0 5361.0 0.1 7004 0 600.0
BnC (Parity) 5361.0 5361.0 0.0 5 2 13.8

5 BnB 5342.0 5404.0 1.2 10 160 0 600.0
BnC (Default) 5361.0 5361.0 0.0 2253 0 340.2
BnC (Parity) 5361.0 5361.0 0.0 3 10 12.0

6 BnB 5340.3 5384.0 0.8 8241 0 600.0
BnC (Default) 5347.8 5360.0 0.2 3865 0 600.0
BnC (Parity) 5360.0 5360.0 0.0 5 9 17.2

7 BnB 5341.0 5398.0 1.1 8838 0 600.0
BnC (Default) 5349.5 5361.0 0.2 5235 0 600.0
BnC (Parity) 5360.0 5360.0 0.0 4 7 11.3

8 BnB 5340.0 5386.0 0.9 9313 0 600.0
BnC (Default) 5350.5 5360.0 0.2 3570 0 600.0
BnC (Parity) 5360.0 5360.0 0.0 7 6 18.8

9 BnB 5340.5 5377.0 0.7 7623 0 600.0
BnC (Default) 5350.0 5360.0 0.2 3672 0 600.0
BnC (Parity) 5360.0 5360.0 0.0 3 5 14.6

10 BnB 5341.0 5401.0 1.1 7325 0 600.0
BnC (Default) 5353.2 5360.0 0.1 4987 0 600.0
BnC (Parity) 5360.0 5360.0 0.0 6 14 16.5

avg BnB 5340.9 5399.8 1.1 9099.5 0 600.0
BnC (Default) 5352.8 5360.5 0.1 4944.9 0 574.0
BnC (Parity) 5360.4 5360.4 0.0 5.0 6.9 15.4



34 Markó Horváth, Tamás Kis

Table 11 Detailed computational results for Family 3 with n = 50

Instance Method LB UB Gap Nodes Cuts Time

1 BnB 2152.0 2152.0 0.0 41 718 0 77.2
BnC (Default) 2152.0 2152.0 0.0 1475 0 3.2
BnC (Parity) 2152.0 2152.0 0.0 4 6 0.4

2 BnB 2003.0 2003.0 0.0 3628 0 4.3
BnC (Default) 2003.0 2003.0 0.0 1178 0 1.6
BnC (Parity) 2003.0 2003.0 0.0 4 3 0.1

3 BnB 2048.0 2048.0 0.0 13 765 0 21.2
BnC (Default) 2048.0 2048.0 0.0 534 0 2.9
BnC (Parity) 2048.0 2048.0 0.0 3 11 0.2

4 BnB 2114.0 2114.0 0.0 15 020 0 29.8
BnC (Default) 2114.0 2114.0 0.0 1217 0 4.0
BnC (Parity) 2114.0 2114.0 0.0 3 9 0.3

5 BnB 2046.0 2046.0 0.0 32 895 0 52.2
BnC (Default) 2046.0 2046.0 0.0 224 0 1.1
BnC (Parity) 2046.0 2046.0 0.0 6 4 0.3

6 BnB 2108.0 2108.0 0.0 36 446 0 66.7
BnC (Default) 2108.0 2108.0 0.0 282 0 1.4
BnC (Parity) 2108.0 2108.0 0.0 8 13 0.5

7 BnB 2074.0 2074.0 0.0 99 392 0 163.1
BnC (Default) 2074.0 2074.0 0.0 120 0 0.7
BnC (Parity) 2074.0 2074.0 0.0 4 9 0.7

8 BnB 2001.0 2001.0 0.0 30 937 0 36.0
BnC (Default) 2001.0 2001.0 0.0 347 0 1.0
BnC (Parity) 2001.0 2001.0 0.0 4 6 0.2

9 BnB 1997.0 1997.0 0.0 8791 0 9.9
BnC (Default) 1997.0 1997.0 0.0 2630 0 2.9
BnC (Parity) 1997.0 1997.0 0.0 3 8 0.1

10 BnB 2018.0 2018.0 0.0 6334 0 9.9
BnC (Default) 2018.0 2018.0 0.0 504 0 1.2
BnC (Parity) 2018.0 2018.0 0.0 3 9 0.2

avg BnB 2056.1 2056.1 0.0 28 892.6 0 47.0
BnC (Default) 2056.1 2056.1 0.0 851.1 0 2.0
BnC (Parity) 2056.1 2056.1 0.0 4.2 7.8 0.3



Polyhedral results for position based scheduling of chains on a single machine 35

Table 12 Detailed computational results for Family 3 with n = 100

Instance Method LB UB Gap Nodes Cuts Time

1 BnB 4158.6 4203.0 1.1 49 005 0 600.0
BnC (Default) 4174.8 4188.0 0.3 13 032 0 600.0
BnC (Parity) 4184.0 4184.0 0.0 17 16 8.0

2 BnB 3998.4 4018.0 0.5 57 409 0 600.0
BnC (Default) 4001.9 4014.0 0.3 28 323 0 600.0
BnC (Parity) 4013.0 4013.0 0.0 34 14 7.8

3 BnB 4166.1 4216.0 1.2 46 005 0 600.0
BnC (Default) 4188.0 4195.0 0.2 12 674 0 600.0
BnC (Parity) 4192.0 4192.0 0.0 87 7 11.3

4 BnB 4202.5 4249.0 1.1 52 099 0 600.0
BnC (Default) 4213.6 4234.0 0.5 13 490 0 600.0
BnC (Parity) 4229.0 4229.0 0.0 55 23 14.9

5 BnB 3997.8 4021.0 0.6 68 900 0 600.0
BnC (Default) 4010.9 4015.0 0.1 29 273 0 600.0
BnC (Parity) 4014.0 4014.0 0.0 43 8 7.6

6 BnB 4047.3 4077.0 0.7 57 242 0 600.0
BnC (Default) 4072.0 4072.0 0.0 18 567 0 551.0
BnC (Parity) 4072.0 4072.0 0.0 58 17 8.7

7 BnB 4085.3 4129.0 1.1 59 258 0 600.0
BnC (Default) 4100.9 4116.0 0.4 12 009 0 600.0
BnC (Parity) 4111.0 4111.0 0.0 173 24 12.5

8 BnB 3995.9 4014.0 0.5 75 567 0 600.0
BnC (Default) 4009.8 4012.0 0.1 45 137 0 600.0
BnC (Parity) 4012.0 4012.0 0.0 80 21 8.3

9 BnB 3955.9 3975.0 0.5 66 204 0 600.0
BnC (Default) 3971.0 3971.0 0.0 50 761 0 551.7
BnC (Parity) 3971.0 3971.0 0.0 6 9 3.4

10 BnB 3953.5 3975.0 0.5 71 367 0 600.0
BnC (Default) 3961.5 3970.0 0.2 46 277 0 600.0
BnC (Parity) 3969.0 3969.0 0.0 7 21 3.9

avg BnB 4056.1 4087.7 0.8 60 305.6 0 600.0
BnC (Default) 4070.4 4078.7 0.2 26 954.3 0 590.3
BnC (Parity) 4076.7 4076.7 0.0 56.0 16 8.6



36 Markó Horváth, Tamás Kis

Table 13 Detailed computational results for Family 3 with n = 150

Instance Method LB UB Gap Nodes Cuts Time

1 BnB 6332.0 6399.0 1.1 10 615 0 600.0
BnC (Default) 6337.0 6356.0 0.3 6019 0 600.0
BnC (Parity) 6351.0 6351.0 0.0 22 22 38.0

2 BnB 6093.0 6146.0 0.9 14 605 0 600.0
BnC (Default) 6101.9 6115.0 0.2 10 180 0 600.0
BnC (Parity) 6112.0 6112.0 0.0 17 9 23.6

3 BnB 6254.0 6309.0 0.9 11 203 0 600.0
BnC (Default) 6256.0 6277.0 0.3 8483 0 600.0
BnC (Parity) 6273.0 6273.0 0.0 7 8 16.4

4 BnB 6171.0 6244.0 1.2 13 616 0 600.0
BnC (Default) 6173.5 6194.0 0.3 7869 0 600.0
BnC (Parity) 6191.0 6191.0 0.0 3 21 11.2

5 BnB 5954.8 5996.0 0.7 18 052 0 600.0
BnC (Default) 5963.3 5975.0 0.2 10 208 0 600.0
BnC (Parity) 5973.0 5973.0 0.0 55 14 28.2

6 BnB 6017.1 6059.0 0.7 14 655 0 600.0
BnC (Default) 6017.1 6041.0 0.4 10 356 0 600.0
BnC (Parity) 6036.0 6036.0 0.0 60 18 27.7

7 BnB 6051.3 6087.0 0.6 17 068 0 600.0
BnC (Default) 6057.0 6070.0 0.2 7370 0 600.0
BnC (Parity) 6070.0 6070.0 0.0 98 22 39.4

8 BnB 5932.2 5963.0 0.5 20 137 0 600.0
BnC (Default) 5933.0 5952.0 0.3 12 154 0 600.0
BnC (Parity) 5951.0 5951.0 0.0 4 21 8.2

9 BnB 5891.8 5929.0 0.6 22 698 0 600.0
BnC (Default) 5908.8 5911.0 0.0 15 587 0 600.0
BnC (Parity) 5911.0 5911.0 0.0 6 10 8.7

10 BnB 5930.8 5963.0 0.5 20 668 0 600.0
BnC (Default) 5935.4 5952.0 0.3 11 010 0 600.0
BnC (Parity) 5950.0 5950.0 0.0 57 19 32.0

avg BnB 6062.8 6109.5 0.8 16 331.7 0 600.0
BnC (Default) 6068.3 6084.3 0.3 9923.6 0 600.0
BnC (Parity) 6081.8 6081.8 0.0 32.9 16.4 23.3


