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1 INTRODUCTION

All in situ deformation tests are expensive, often difficult to 
measure and time-consuming. Because of this, the modulus 
of deformation is often estimated indirectly from 
observations of relevant rock mass classification systems –
such as Rock Mass Rate (RMR, introduced by Bieniawski, 
1973), Tunneling Quality Index (Q, see Barton et al. 1974), 
Rock Mass index (RMi, developed by Palmström, 1995)
and Geological Strength Index (GSI, published firstly Hoek 
et al. 1995). Palmström and Singh (2001) compared these 
empirical relationships, determining the validity of them. 
Recently, Hoek and Diederichs (2006) examined a large 

set of field measurement data and suggested new formulas 
to estimate the deformation modulus of the rock mass (Erm), 
using the Geological Strength Index (GSI) and the 
disturbance factor (D). Their formula is based on the 
observation that a sigmoid function can be fitted well, both 
for the usual test data of empirical estimation formulas 
(Serafim & Pereira, 1983; Bieniawski, 1978; and Stephens 
& Banks, 1989) and for the larger data set of Chinese and 
Taiwanese measurements (Hoek & Brown, 1997). Sigmoid 
functions are common in several areas of technology and 
physics (e.g. the Fermi-Dirac distributions in quantum ideal 
gases). 
Determination both the Geological Strength Index (GSI)

and the disturbance factor (D) are very subjective. Recently, 
Edelbro et al. (2007) published their results, determining the 
different rock mass values by 11 independent participants, 
getting high differences between the minimum and the 
maximum values. The disturbance factor can be more 
difficult to determine exactly – up to now it is not 
standardized. This is why so important to know how 
sensitive Erm measurements using the published Hoek-
Diederichs equations are as a consequence of this 
subjectivity (Hoek & Diederichs, 2006).
The published analysis method can be used to determine 

the sensitivity for the other applied rock mass deformation 

modulus empirical equations (summarized and analyzed
them e.g. Palmström &  Singh 2001), as well.

2 HOEK-DIEDERICHS FORMULAS

The Hoek-Diederichs formulas (Hoek & Diederichs, 2006) 
are based on the value of the Geological Strength Index 
(GSI) and the disturbance factor (D), which factor was 
firstly introduced by Hoek et al. (2002). Hoek et al (2002) 
and Hoek and Diederichs (2006) give several examples to 
estimate the disturbance in particular practical situations, 
however it is very subjective: it is assigned a value between 
0 (undisturbed) and 1 (fully disturbed).
The introduced formula of Hoek and Diederichs (2006) 

calculates the deformation modulus from the GSI value and 
D factor as:
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or if the deformation modulus of the intact rock (Ei) is 
known, equation (1) can be modified to:
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The simplified (Eq. 1) and the more comprehensive 
Hoek-Diederichs equation (2), are shown in Figure 1 and 2, 
respectively.
Using the two formulas the estimated deformation moduli 

are not the same, they depend on the deformation modulus 
of the intact rock – the ratio of the two results in case of low 
GSI values can be large. For different disturbance factors (D 
= 0, 0.5 and 1), these differences are plotted on Figures 3-5, 
respectively.
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Figure 1. Simplified Hoek-Diederichs equation (1) for empirical 
estimates of rock mass deformation modulus based on GSI and D
only.

Figure 2. Hoek-Diederichs equation (2) for empirical estimates of 
rock mass deformation modulus based on GSI, D and intact rock 
modulus Ei.

Figure 3. The ratio of Eq(2) and Eq(1) as a function of deformation 
modulus of intact rock in case of different GSI values (D = 0). GSI 
=(10, 20, 40, 60, 80, 100) from above, respectively.

Figure 4. The ratio of Eq(2) and Eq(1) as a function of deformation 
modulus of intact rock in case of different GSI values (D = 0.5)
GSI =(10, 20, 40, 60, 80, 100) from above, respectively.

Figure 4. The ratio of Eq (2) and Eq(1) as a function of 
deformation modulus of intact rock in case of different GSI values 
(D = 1), GSI =(10, 20, 40, 60, 80, 100) from above, respectively.

3 APPLIED SENSITIVITY ANALYSIS

The sensitivity of a function f regarding the uncertainties of 
the variables can be characterized by the formula commonly 
known as propagation of error (Bronstein & Semendjajew, 
2004).
Let us suppose that f is a real function which depends on 

n variables x1, x2, … xn and the uncertainty of each we can 
calculate the uncertainty ∆f of f that results from the 
uncertainties of the variables:
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4 SENSITIVITY OF THE H-D EQUATIONS 

The sensitivity of different empirical formulas to parameter 
uncertainty is an important factor for a designer. To 
establish good empirical formulas one should have some 
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sense on the effect of variations in the input parameters to 
judge the acceptability of the design. In this note we analyze 
the above formulas from this point of view, giving some 
practical tools to enable rapid sensitivity analyses.
In estimating the sensitivity, it was assumed that the 

variables are uncorrelated, therefore, one can apply equation 
(3) (Bronstein & Semendjajew, 2004). Assuming that the 
sensitivity in the disturbance factor D is ∆D and in the GSI 
it is ∆GSI, one can get:
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where

( ) 11/2575 DGSIeA −−=
The relative sensitivity for the simple Hoek-Diederichs

criteria of equation (1) is plotted in the case of ∆D = 0.05 
and ∆GSI/GSI = 0.05 in Figure 6 for disturbance values of 
D = 0, 0.5 and 1. One can see that the sensitivity in the rock 
mass modulus is between 15-35% and strongly depends on 
the GSI value. There is a peak in the sensitivity between 
GSI values of 60 and 80. Figure 7 shows the corresponding 
absolute sensitivity according to equation (4). The law of 
Gauss applied to the modified Hoek-Diederichs criteria (Eq. 
2) gives
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where
( ) 11/1560 DGSIeA −−=

The relative sensitivity estimated by equation (4) is 
plotted for ∆D = 0.05 and ∆GSI/GSI = 0.05 in Figure 8 for 
values of D = 0.0, 0.5 and 1.0. The sensitivity in the rock 
mass modulus is between 0.5-22 % and again, it strongly 
depends on the GSI value. The peaked property is even 
more apparent in this case, with the greatest sensitivity 
occurring for GSI values between 40 and 60. Figure 9
shows the corresponding absolute sensitivity according to 
equation (5).
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Figure 6 Relative sensitivity of the simple Hoek-Diederichs 
function (Eq. 1) as a function GSI, in case ∆D = 0.05, ∆GSI/GSI = 
0.05 if D = 0, 0.5 and 1 (from below).
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Figure 7 Absolute sensitivity of the simple Hoek-Diederichs 
function (Eq. 1) as a function GSI, in case ∆D = 0.05, ∆GSI/GSI= 
0.05 if D = 0, 0.5 and 1 (from below). The dashed lines around the 
solid ones denote the sensitivity bar levels.
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Figure 8 Relative sensitivity of the modified Hoek-Diederichs 
equation (Eq.2) as a function GSI, in case ∆D = 0.1 and ∆GSI = 0 
if D = 0, 0.5 and 1 (from below at left).
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Figure 9 Absolute sensitivity of the modified Hoek-Diederichs 
equation (Eq. 2) as a function GSI, in case ∆D = 0.05, ∆GSI/GSI= 
0.05 if D = 0, 0.5 and 1 (from below). The dashed lines around the 
solid ones denote the sensitivity bar levels.

5 CONCLUSIONS

Using the Hoek-Diederichs equations, the rock mass 
deformation modulus can be determined if the Geological 
Strength Index (GSI) and the disturbance factor (D) are 
known. The determination of each parameter is subjective, 
and thus, to know the sensitivity of these equations is very 
important. Using the formula of Gauss, the sensitivity of the 
equations was analyzed for ∆D = 0.05 and ∆GSI/GSI = 0.05 
for D = 0, 0.5 and 1. It was shown, that in case of simple H-
D equation the sensitivity in the rock mass modulus is 
between 15-35 % and for the modified H-D equation it is 
between 0.5-22 %. In both cases the sensitivity strongly 
depends on the GSI value.
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