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Abstract

We establish the following result related to Erdős’s problem on distinct distances. Let V
be an n-element planar point set such that any p members of V determine at least

(

p

2

)

− p+ 6

distinct distances. Then V determines at least n
8

7
−o(1) distinct distances, as n tends to infinity.

1 Introduction

In his classic 1946 paper [4], Erdős asked to determine or estimate the minimum number of distinct
distances determined by an n-element planar point set V . He showed that a

√
n × √

n integer
lattice determines Θ(n/

√
log n) distinct distances, and conjectured that any n-element point set

determines at least n1−o(1) distinct distances. Several authors established lower bounds for this
problem, and Guth and Katz [10] answered Erdős’s question by proving that any n-element planar
point set determines at least Ω(n/ log n) distinct distances.

In [8], Erdős and Gyárfás studied the following generalization. For integers p and q with
q ≤

(

p
2

)

, let D(n, p, q) denote the minimum number of distinct distances determined by a planar
n-element point set V with the property that any p points from V determine at least q distinct
distances. Trivially, we have D

(

n, p,
(

p
2

))

= Θ(n2), and it follows from the Guth-Katz result that
D(n, p, q) = Ω(n/ log n) for every p and q.

By considering the
√
n×√

n integer lattice, we get D(n, 3, 2) = O(n/
√
log n), and the Guth-Katz

result gives D(n, 3, 2) = Ω(n/ log n).
For the value D(n, 3, 3), it is easy to see that D(n, 3, 3) ≥ n − 1. In this setting, no three

points form an isosceles triangle. Thus, all distances between an arbitrarily fixed point and the
remaining n − 1 points are distinct. It is not known whether D(n, 3, 3) = O(n). This problem
is closely related to another classical question: What is the largest number of elements one can
select from {1, 2, . . . , n} without choosing 3 numbers that form an arithmetic progression? Suppose
we can select δn numbers satisfying this condition, for some δ > 0. Regarding them as points
in the plane, they induce no isosceles triangle, and altogether, the number of distinct distance
determined by them is at most n − 1. Thus, we would obtain that D(δn, 3, 3) < n, that is,
D(n, 3, 3) ≤ (1/δ)n = O(n). However, Roth [12] and, more generally, Szemerédi [16] showed
that no such δ exists. The best known upper bound, D(n, 3, 3) = neO(

√
logn), follows from a 1-

dimensional construction of Behrend [1] and a proper 2-dimensional one of Erdős, Füredi, Pach,
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and Ruzsa [7]. Erdős conjectured that

lim
n→∞

D(n, 3, 3)

n
= ∞,

and this is still open.
For larger values of p, the problem becomes increasingly complicated. Clearly, D(n, 4, 3) =

O(n/
√
log n), see, e.g., Sheffer [14]. Dumitrescu [3] observed that D(n, 4, 4) = neO(

√
logn). Erdős

[5] also conjectured that D(n, 4, 5) grows quadratically in n, but the best known lower and upper
bounds are only Ω(n) and O(n2).

For any p ≥ 4, we have

D

(

n, p,

(

p

2

)

− ⌊p/2⌋ + 2

)

≥ Ω(n2).

To see this, it is enough to notice that in this setting no distance can occur ⌊p2⌋ times, because
otherwise any p-element set of points containing all endpoints of the corresponding segments would
determine only at most

(

p
2

)

− (⌈p2⌉−1) distinct distances. Erdős and Gyárfás [8] proved that even if
we reduce by one the required number of distinct distances among any p points to q =

(

p
2

)

−⌊p2⌋+1,
the number of distinct distances in the whole n-element set must be superlinear in n. Specifically,
we have

D

(

n, p,

(

p

2

)

− ⌊p/2⌋+ 1

)

= Ω
(

n4/3
)

.

Furthermore, a result of Sárkőzy and Selkow [13] implies that for every p ≥ 6 there exists ǫ =
ǫ(p) > 0 with

D

(

n, p,

(

p

2

)

− p+ ⌈log p⌉+ 4

)

= Ω
(

n1+ǫ
)

.

The last two results were established in the following Ramsey-theoretic framework. We color all
point pairs that determine the same distance with the same color. Then any p-element set contains
pairs of at least q distinct colors. Using the last assumption alone, one can prove that the total
number of colors cannot be too small.

The aim of the present note is to improve the Sárközy-Selkow bound by exploring the special
properties of the above coloring that can be deduced from the geometric constraints. Our main
result is the following.

Theorem 1. Let p ≥ 6 be an integer. Then the minimum number of distinct distances determined

by n points in the plane with the property that any p of them induce at least
(p
2

)

− p + 6 distinct

distances, satisfies

D

(

n, p,

(

p

2

)

− p+ 6

)

≥ n
8
7
−o(1),

as n tends to infinity.

Let us remark that for p < 9, one can obtain a better bound of Ω(n2) by the simple argument
stated above.

For a fixed p, define q1(p) to be the largest integer q for which D(n, p, q) = O(n). Likewise,
let q2(p) denote the smallest integer q for which D(n, p, q) = Ω(n2). By the Guth-Katz result, we
have q1(p) ≥ Ω(p/ log p). As we have seen above, q2(p) ≤

(

p
2

)

− ⌊p2⌋ + 2, and it was observed by
Sheffer [14] that q2(p) ≥ 2⌊p2⌋.
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2 Graph-theoretic tools

Before we prove Theorem 1, we list several results that we will use. Let V be an ordered point set
in R

d, and let E ⊂
(V
2

)

. We say that E is a semi-algebraic relation on V with complexity at most
t if there are at most t polynomials g1, . . . , gs ∈ R[x1, . . . , x2d], s ≤ t, of degree at most t and a
Boolean formula Φ such that for vertices u, v ∈ V such that u comes before v in the ordering,

(u, v) ∈ E ⇔ Φ(g1(u, v) ≥ 0; . . . ; gs(u, v) ≥ 0) = 1.

At the evaluation of gℓ(u, v), we substitute the variables x1, . . . , xd with the coordinates of u, and
the variables xd+1, . . . , x2d with the coordinates of v. Here we only consider symmetric relations
E, that is, (u, v) ∈ E if and only if (v, u) ∈ E.

A classical result due to Kővári, Sós, and Turán, and independently Erdős, in extremal graph
theory states the following.

Theorem 2.1 (Kővári-Sós-Turán [11], Erdős). Let G = (U, V,E) be a bipartite graph. If G does

not contain the subgraph K2,r with 2 vertices in U and r vertices in V , then

|E(G)| = O(|U |
√

|V |+ |V |),

where the hidden constant depends on r.

In particular, noting that every graph has a bipartite subgraph with at least half of its edges,
we have that for any fixed r, all K2,r-free graphs on |V | vertices have O(|V |3/2) edges. The next
result improves this upper bound under the additional condition that the edge set E of the graph
is a semi-algebraic relation with bounded description complexity.

Theorem 2.2 (Theorem 1.2 in [9]). For fixed d ≥ 4, r ≥ 2 and t ≥ 1, let U, V ⊂ R
d be finite point

sets such that |U | ≤ |V |, and let E ⊂ U ×V be a semi-algebraic relation with complexity at most t.

If the bipartite graph G = (U ∪ V,E) is K2,r-free, then |E| ≤ |V |
3
2
− 1

4d−2
+o(1)

.

Let us remark that Theorem 1.2 in [9] is stated for incidences between points and varieties, but
the proof remains valid for semi-algebraic relations up to a constant factor depending on r. We
also note that a result of Sheffer [15] shows that Theorem 2.2 is tight up to the o(1) factor in the
exponent. We will use the d = 4 special case of Theorem 2.2. We also need Vizing’s theorem.

Lemma 2.3 ([17]). Let G = (V,E) be a graph with maximum degree p. Then the edges of G can

be partitioned into p+ 1 matchings.

We are now ready to prove Theorem 1.

3 Proof of Theorem 1

Let p ≥ 6 be a fixed integer. We want to show that

D

(

n, p,

(

p

2

)

− p+ 6

)

= Ω
(

n1+ 1
7+δ

)

,

where δ is an arbitrarily small constant. Let V be an n-element planar point set such that any
p points from V determine at least q =

(p
2

)

− p + 6 distinct distances. Suppose V determines x
distinct distances d1, . . . , dx with multiplicity m1, . . . ,mx, respectively, where m1+ · · ·+mx =

(

n
2

)

.
Notice we have the following simple claim.
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(b) |u− v
′| = |u′ − v|.

Figure 1: Edge (uu′, vv′) in G.

Claim 3.1. For any i and for any u ∈ V , there are at most p− 5 points of V at distance di from u.

Together with Vizing’s theorem, we have the following.

Corollary 3.2. For any i, the pairs of points in V at distance di can be partitioned into at most

p− 5 + 1 < p matchings.

By partitioning the pairs of points in V at distance di into p matchings, let mi,j denote the size of
the jth matching (0 ≤ mi,j ≤ n/2).

Let us fix the lexicographic ordering of the points in V . We define a new point set W =
(V
2

)

in
R
4, where uv ∈ W if and only if u, v ∈ V and u comes before v in the ordering. Let G be the graph

with vertex set W =
(

V
2

)

, and (uu′, vv′) ∈ E(G) if and only if u, u′, v, v′ are distinct elements of V ,
and |u− v| = |u′ − v′| or |u− v′| = |u′ − v|. See Figure 1. Clearly, E(G) is a semi-algebraic relation
with description complexity at most four. We can assume that x <

(

n
2

)

/(10p), since otherwise we
are done. Therefore, by the Jensen’s inequality, we have

|E(G)| ≥
x

∑

i=1

p
∑

j=1

(

mi,j

2

)

≥ xp

(

∑

i

∑

j

mi,j

xp

2

)

≥ xp

(
(n
2

)

/(xp)

2

)

≥ n4

9xp
,

provided that n is sufficiently large. Hence, we have

x ≥ n4

9p
· 1

|E(G)| , (1)

and it is sufficient to bound |E(G)| from above. By a standard probabilistic argument, we can
partition W = W1 ∪ W2 such that at least half of the edges in G are between W1 and W2 and
|W1|, |W2| ≥ ⌊|W |/2⌋. Let G′ be the bipartite graph with parts W1,W2, such that E(G′) =
{(uu′, vv′) ∈ E(G) : uu′ ∈ W1, vv

′ ∈ W2}. Therefore, it is enough to bound the number of edges in
G′.

Fix a vertex u1u2 ∈ W1, and let N(u1u2) ⊂ W2 such that

N(u1u2) = {v1v2 ∈ W2 : (u1u2, v1v2) ∈ E(G′)}.

Consider the graph G0 with V (G0) = V and E(G0) = N(u1u2). Then, applying the following
lemma with r = p, we obtain that the maximum degree of the vertices of G0 is less than p− 3.

Lemma 3.3. For r ≥ 4, suppose there is a vertex v with degree r − 3 in G0 with neighbors

w1, . . . , wr−3. Then the points u1, u2, v, w1, . . . wr−3 determine at most
(

r
2

)

−r+3 distinct distances.
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Proof. We proceed by induction on r. The base case r = 4 follows since (u1u2, vw1) ∈ E(G′). Now
assume that the statement holds up to r − 1. By the induction hypothesis, u1, u2, v, w1, . . . , wr−4

determine at most
(

r − 1

2

)

− (r − 1) + 3 =

(

r

2

)

− 2(r − 1) + 3

distinct distances. Since (u1u2, vwr−3) ∈ E(G′), we have either |u1−v| = |u2−wr−3| or |u1−wr−3| =
|u2−v|. Thus, adding wr−3 introduces at most r−2 new distances. Therefore, u1, u2, v, w1, . . . wr−3

determine at most
(

r

2

)

− 2(r − 1) + 3 + (r − 2) =

(

r

2

)

− r + 3

distinct distances, as required.

Lemma 3.4. Suppose that the vertices u1u2, u3u4 ∈ W1 and v1v2, v3v4, . . . , v2r−1v2r ∈ W2 induce

a K2,r in G′, such that v1, v2, . . . , v2r−1, v2r are distinct points of V . Then there are 2r + 4 points

in V that determine at most
(2r+4

2

)

− 2r distinct distances.

Proof. The proof falls into two cases: either u1, u2, u3, u4 are distinct, or we can assume without
loss of generality that u2 = u3, say.

Case 1. Suppose u1, u2, u3, u4 are all distinct. Since (u1u2, vivi+1), (u3u4, vivi+1) ∈ E(G′), for
every odd integer i ∈ {1, 3, 5, . . . , 2r − 1}, we get 2r elements of E(G′), and each such element
gives a repeated distance. Hence, the number of repetitions is at least 2r, so u1, u2, u3, u4, v1, . . . v2r
determine at most

(2r+4
2

)

− 2r distinct distances.

Case 2. Suppose u2 = u3. In view of Lemma 3.3 (with r = 5), the five points u1, u2, u4, and vi, vi+1,
for i odd, determine at most

(5
2

)

− 2 distinct distances. Hence, u1, u2, u4, v1, . . . v2r determine at
most

(

2r + 3

2

)

− 2r

distinct distances. Now adding any point w to u1, u2, u4, v1, . . . v2r gives us 2r + 4 points that
determine at most

(

2r + 3

2

)

− 2r + (2r + 3) =

(

2r + 4

2

)

− 2r

distinct distances.

Suppose that p is even and recall that p ≥ 6. Then the bipartite graph G′ is K
2,

(p−3)(p−4)
2

-

free. Indeed, otherwise by Lemmas 3.3 and 2.3, we would have vertices u1u2, u3u4 ∈ W1 and
v1v2, . . . , vp−3vp−4 ∈ W2 that induce a K2, p−4

2
in G′, such that the points v1, v2, . . . , vp−3, vp−4 are

distinct elements of V . Then by Lemma 3.4, we would have p points in V that determine at most
(

p
2

)

−p+4 distinct distances, which is a contradiction. Therefore, applying Theorem 2.2 with d = 4
we obtain

|E(G)| ≤ 2 · |E(G′)| ≤ O
(

|W |
3
2
− 1

14+ε

)

≤ O
(

n3− 2
14+ε

)

,

where ε = 2δ. Together with (1), we get
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x ≥ Ω

(

n4

|E(G)|

)

≥ Ω
(

n1+ 2
14+ε

)

.

If p is odd, then G′ is K
2,

(p−3)(p−5)
2

-free. Indeed, otherwise by Lemmas 3.3 and 2.3, we would have

vertices u1u2, u3u4 ∈ W1 and v1v2, . . . , vp−4vp−5 ∈ W2 that induce a K2, p−5
2

in G′, such that the

points v1, v2, . . . , vp−4, vp−5 are all distinct. Then by Lemma 3.4, we would have p− 1 points that
determine at most

(

p− 1

2

)

− p+ 5 =

(

p

2

)

− 2p+ 6

distinct distances. Adding any point to our collection would give us p points that determine at
most

(

p
2

)

− p+ 5 distinct distances, a contradiction. Just as above, we have

|E(G)| ≤ O
(

|W |
3
2
− 1

14+ε

)

≤ O
(

n3− 2
14+ε

)

.

Combining this with (1), we obtain

x ≥ Ω

(

n4

|E(G)|

)

≥ Ω
(

n1+ 2
14+ε

)

= Ω
(

n1+ 1
7+δ

)

.

This completes the proof of Theorem 1.
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[4] P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–150.
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