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Abstract. Given n continuous open curves in the plane, we say that
a pair is touching if they have only one interior point in common and
at this point the first curve does not get from one side of the second
curve to its other side. Otherwise, if the two curves intersect, they are
said to form a crossing pair. Let t and c denote the number of touching

pairs and crossing pairs, respectively. We prove that c ≥ 1

105

t
2

n2 , provided
that t ≥ 10n. Apart from the values of the constants, this result is best
possible.
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1 Introduction

In the context of the theory of topological graphs and graph drawing, many
interesting questions have been raised concerning the adjacency structure of a
family of curves in the plane or in another surface [5]. In particular, during the
past four decades, various important properties of string graphs (i.e., intersection
graphs of curves in the plane) have been discovered, and the study of different
crossing numbers of graphs and their relations to one another has become a vast
area of research. A useful tool in these investigations is the so-called crossing
lemma of Ajtai, Chvátal, Newborn, Szemerédi and Leighton [1], [7]. It states the
following: Given a graph of n vertices and e > 4n edges, no matter how we draw
it in the plane by not necessarily straight-line edges, there are at least constant
times e3/n2 crossing pairs of edges.

This lemma has inspired a number of results establishing the existence of
many crossing subconfigurations of a given type in sufficiently rich geometric or
topological structures [2], [10], [11], [6].

In this note, we will be concerned with families of curves in the plane. By
a curve, we mean a non-selfintersecting continuous arc in the plane, that is, a
homeomorphic image of the open interval (0, 1). Two curves are said to touch

each other if they have precisely one interior point in common and at this point
the first curve does not pass from one side of the second curve to the other. Any
other pair of curves with nonempty intersection is called crossing. A family of
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curves is in general position if any two of them intersect in a finite number of
points and no three pass through the same point.

Let n be even, t be a multiple of n, and suppose that n ≤ t < n2

4
. Consider

a collection A of n− 2t
n > n

2
pairwise disjoint curves, and another collection B

of 2t
n curves such that

(i) A ∪B is in general position,

(ii) each element of B touches precisely n
2
elements of A, and

(iii) no two elements of B touch each other.

The family A ∪ B consists of n curves such that the number of touching pairs
among them is t. The only pairs of curves that may cross each other belong to

B. Thus, the number of crossing pairs is at most
(

2t/n
2

)

≤ 2t2

n2 . See Figure 1.

n/2

2t/n
B

A

Fig. 1. A set of n curves with t touching pairs and at most 2t
2

n2 crossing pairs.

The aim of the present note is to prove that this construction is optimal up
to a constant factor, that is, any family of n curves and t touchings has at least

constant times t2

n2 crossing pairs.

Theorem. Consider a family of n curves in general position in the plane which

determines t touching pairs and c crossing pairs.

If t ≥ 10n, then we have c ≥ 1

105
t2

n2 . This bound is best possible up to a

constant factor.

We make no attempt to optimize the constants in the theorem.

Pach, Rubin, and Tardos [8] established a similar relationship between t, the
number of touching pairs, and C, the number of crossing points between the
curves. They proved that C ≥ t(log log(t/n))δ, for an absolute constant δ > 0.
Obviously, we have C ≥ c. There is an arrangement of n red curves and n blue
curves in the plane such that every red curve touches every blue curve, and the
total number of crossing points is C = Θ(n2 logn); cf. [4]. Of course, the number
of crossing pairs, c, can never exceed

(

n
2

)

.

Between n arbitrary curves, the number of touchings t can be as large as
(3
4
+ o(1))

(

n
2

)

; cf. [9]. However, if we restrict our attention to algebraic plane

curves of bounded degree, then we have t = O(n3/2), where the constant hidden
in the notation depends on the degree [3].



2 Proof of Theorem

We start with an easy observation.

Lemma. Given a family of n ≥ 3 curves in general position in the plane, no

two of which cross, the number of touchings, t, cannot exceed 3n− 6.

Proof. Pick a different point on each curve. Whenever two curves touch each
other at a point p, connect them by an edge (arc) passing through p. In the
resulting drawing, any two edges that do not share an endpoint are represented
by disjoint arcs. According to the Hanani-Tutte theorem [13], this means that
the underlying graph is planar, so that its number of edges, t, satisfies t ≤ 3n−6.
�

Proof of Theorem. We proceed by induction on n. For n ≤ 20, the statement is
void. Suppose that n > 20 and that the statement has already been proved for
all values smaller than n.

We distinguish two cases.

CASE A: t ≤ 10n3/2.

In this case, we want to establish the stronger statement

c ≥
1

104
t2

n2
.

By the assumption, we have

1

104
t2

n2
≤

n

100
. (1)

LetGt (resp.,Gc) denote the touching graph (resp., crossing graph) associated
with the curves. That is, the vertices of both graphs correspond to the curves,
and two vertices are connected by an edge if and only if the corresponding curves
are touching (resp., crossing).

Let T be a minimal vertex cover in Gc, that is, a smallest set of vertices
of Gc such that every edge of Gc has at least one endpoint in T . Let τ = |T |.
Let U denote the complement of T . Obviously, U is an independent set in Gc.
According to the Lemma, the number of edges in Gt[U ], the touching graph
induced by U , satisfies

|E(Gt[U ])| < 3|U | ≤ 3n. (2)

By the minimality of T , Gc has at least |T | = τ edges. That is, we have

c ≥ τ , so we are done if τ ≥ 1

104
t2

n2 .

From now on, we can and shall assume that τ < 1

104
t2

n2 . By (1), we have
1

104
t2

n2 ≤ n
100

. Hence, |T | ≤ n
100

and

|U | = n− |T | ≥
99n

100
. (3)



T  (cover)
|T|= τ

U(isolated)0U

Gc

Fig. 2. Graph Gc.

Let U ′ ⊆ U denote the set of all vertices in U that are not isolated in the
graph Gc. By the definition of T , all neighbors of a vertex v ∈ U in Gc belong

to T . If |U ′| ≥ 1

104
t2

n2 , then we are done, because c ≥ |U ′|.

Therefore, we can assume that

|U ′| <
1

104
t2

n2
≤

n

100
, (4)

where the second inequality follows again by (1).
Letting U0 = U \ U ′, by (3) and (4) we obtain |U0| = |U | − |U ′| ≥ 98n

100
.

Clearly, all vertices in U0 are isolated in Gc.
Suppose that Gt[T ∪ U ′] has at least t

10
edges. Consider the set of curves

T ∪ U ′. We have n0 = |T ∪ U ′| ≤ 2n
100

and, the number of touchings, t0 =
|E(Gt[T ∪ U ′])| ≥ t

10
. Therefore, by the induction hypothesis, for the number

of crossings we have c0 = |E(Gc[T ∪ U ′])| ≥ 1

105

t2
0

n2

0

≥ 1

104
t2

n2 and we are done.

Hence, we assume in the sequel that Gt[T ∪ U ′] has fewer than t
10

edges.
Consequently, for the number of edges in Gt running between T and U0, we

have

|E(Gt[T, U0])| ≥ t− |E(Gt[T ∪U ′])| − |E(Gt[U0 ∪U ′])| ≥ t−
t

10
− 3n >

t

2
. (5)

Here we used the assumption that t ≥ 10n.
Let χ = χ(Gc[T ]) denote the chromatic number of Gc[T ]. In any coloring of

a graph with the smallest possible number of colors, there is at least one edge

between any two color classes. Hence, Gc[T ] has at least
(

χ
2

)

≥ 1

104
t2

n2 edges, and
we are done, provided that χ > 1

70
· t
n .



Thus, we can suppose that

χ = χ(Gc[T ]) ≤
1

70
·
t

n
. (6)

Consider a coloring of Gc[T ] with χ colors, and denote the color classes
by I1, I2, . . . , Iχ. Obviously, for every j, Ij ∪ U0 is an independent set in Gc.
Therefore, by the Lemma, Gt[Ij ∪U0] has at most 3n edges. Summing up for all
j and taking (6) into account, we obtain

|E(Gt[T, U0])| ≤

χ
∑

j=1

|E(Gt[Ij ∪ U0])| ≤
1

70
·
t

n
3n ≤

t

20
,

contradicting (5). This completes the proof in CASE A.

CASE B: t ≥ 10n3/2. Set p = 10n3

t2 ≤ 1

10
. Select each curve independently with

probability p. Let n′, t′, and c′ denote the number of selected curves, the number
of touching pairs, and the number of crossing pairs between them, respectively.
Clearly,

E[n′] = pn, E[t′] = p2t, E[c′] = p2c. (7)

The number of selected curves, n′, has binomial distribution, therefore,

Prob[|n′ − pn| >
1

4
pn] <

1

3
. (8)

By Markov’s inequality,

Prob[c′ > 3p2c] <
1

3
. (9)

Consider the touching graph Gt. Let d1, . . . , dn denote the degrees of the
vertices of Gt, and let e1, . . . , et denote its edges, listed in any order. We say
that an edge ei is selected (or belongs to the random sample) if both of its
endpoints were selected. Let Xi be the indicator variable for ei, that is,

Xi =

{

1 if ei was selected,
0 otherwise.

We have E[Xi] = p2. Let t′ =
∑t

i=1
Xi. It follows by straightforward com-

putation that for every i,

var[Xi] = E[(Xi − E[Xi])
2] = p2 − p4,

If ei and ej have a common endpoint for some i 6= j, then

cov[Xi, Xj ] = E[XiXj ]− E[Xi]E[Xj ] = p3 − p4.

If ei and ej do not have a common vertex, then Xi and Xj are independent
random variables and cov[Xi, Xj ] = 0. Therefore, we obtain

σ2 = var[t′] =
t

∑

i=1

var[Xi] +
∑

1≤i6=j≤t

cov[Xi, Xj ]



= (p2 − p4)t+ (p3 − p4)
n
∑

i=1

di(di − 1) < p2t+ 2p3nt.

From here, we get σ <
√

p2t+
√

2p3nt < p2t = E[t′]. By Chebyshev’s inequality,

Prob[|t′ − p2t| ≥ λσ] ≤
1

λ2
.

Setting λ = 1

4
,

Prob[|t′ − p2t| ≥
p2t

4
] ≤

1

42
<

1

3
. (10)

It follows from (8), (9), and (10) that, with positive probability, we have

|n′ − pn| ≤
1

4
pn, c′ ≤ 3p2c, |t′ − p2t| ≤

1

4
p2t. (11)

Consider a fixed selection of n′ curves with t′ touching pairs and c′ crossing
pairs for which the above three inequalities are satisfied. Then we have

t′ ≥
3

4
p2t =

300

4
·
n6

t3
,

n′ ≤
5

4
pn =

50

4
·
n4

t2
,

and, hence,

t′ ≥
6n2

t
n′ ≥ 10n′. (12)

On the other hand,

t′ ≤
5

4
p2t =

500

4
·
n6

t3
,

n′ ≥
3

4
pn =

30

4
·
n4

t2
,

so that

10(n′)3/2 ≥ 10 ·
303/2

43/2
·
n6

t3
> t′. (13)

According to (12) and (13), the selected family meets the requirements of the
Theorem in CASE A. Thus, we can apply the Theorem in this case to obtain

that c′ ≥ 1

104
t′2

n′2 . In view of (11), we have

3p2c ≥ c′, t′ ≥
3

4
p2t, n′ ≤

5

4
pn.

Thus,

3p2c ≥ c′ ≥
1

104
t′2

n′2
≥

1

104
(3p2t/4)2

(5pn/4)2
=

1

104

(

3

5

)2
p2t2

n2
.



Comparing the left-hand side and the right-hand side, we conclude that

c ≥
1

105
t2

n2
,

as required. This completes the proof of the Theorem. �
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Theory and Practice of Combinatorics, North-Holland Mathematics Studies 60,
North-Holland, Amsterdam, 1982, 9–12.

2. Dey, T. K.: Improved bounds on planar k-sets and related problems, Discrete
Comput. Geom. 19 (1998), 373–382.

3. Ellenberg, J. S., Solymosi, J., Zahl, J.: New bounds on curve tangencies and or-
thogonalities, Discrete Anal. (2016), Paper No. 18, 22 pp.

4. Fox, J., Frati, F., Pach, J., Pinchasi, R.: Crossings between curves with many tan-
gencies, in: WALCOM: Algorithms and Computation, Lecture Notes in Comput.
Sci. 5942, Springer-Verlag, Berlin, 2010, 1–8. Also in: An Irregular Mind, Bolyai
Soc. Math. Stud. 21, János Bolyai Math. Soc., Budapest, 2010, 251–260.

5. Fox, J., Pach, J.: A separator theorem for string graphs and its applications, Com-
bin. Probab. Comput. 19 (2010), 371–390.
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Combin. Probab. Comput. 6 (1997), no. 3, 353–358.

13. Tutte, W. T.: Toward a theory of crossing numbers, J. Combinatorial Theory 8
(1970), 45–53.


	Many Touchings Force Many Crossings

