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Abstract

The problem of finding “small” sets that meet every straight-line which intersects a given
convex region was initiated by Mazurkiewicz in 1916. We call such a set an opaque set or
a barrier for that region. We consider the problem of computing the shortest barrier for a
given convex polygon with n vertices. No exact algorithm is currently known even for the
simplest instances such as a square or an equilateral triangle. For general barriers, we present

an approximation algorithm with ratio 1

2
+ 2+

√
2

π
= 1.5867 . . .. For connected barriers we achieve

the approximation ratio 1.5716, while for single-arc barriers we achieve the approximation ratio
π+5

π+2
= 1.5834 . . .. All three algorithms run in O(n) time. We also show that if the barrier is

restricted to the (interior and the boundary of the) input polygon, then the problem admits a
fully polynomial-time approximation scheme for the connected case and a quadratic-time exact
algorithm for the single-arc case.

Keywords: Opaque set, opaque polygon problem, point goalie problem, traveling salesman
problem, approximation algorithm, Cauchy’s surface area formula.

1 Introduction

The problem of finding small sets that block every line passing through a unit square was first
considered by Mazurkiewicz in 1916 [34]; see also [3, 22]. Let C be a convex body in the plane.
Following Bagemihl [3], we call a set B an opaque set or a barrier for C, if it meets all lines that
intersect C. A barrier may consist of one or more rectifiable arcs. It does not need to be connected
and its portions may lie anywhere in the plane, including the exterior of C; see [3, 7]. We restrict
our attention to barriers for convex bodies because every line that intersects a non-convex object
must also intersect its convex hull.

What is the length of the shortest barrier for a given convex body C? In spite of considerable
efforts, the answer to this question is not known even for the simplest instances of C, such as
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a square, a disk, or an equilateral triangle; see [8], [9, Problem A30], [13], [15], [16], [19, Sec-
tion 8.11], [23, Problem 12]. The three-dimensional analogue of this problem was raised by Martin
Gardner [20]; see also [2, 7].

A barrier blocks any line of sight across the region C or detects any ray that passes through
it. Motivated by potential applications in guarding and surveillance, the problem of short barriers
has been studied by several research communities. Recently, it circulated in internal publications
at the Lawrence Livermore National Laboratory [10]. The shortest barrier known for the square,
of length 2.6389 . . ., is illustrated in Fig. 1 (right). It is conjectured to be optimal. The current
best lower bound is 2, established by Jones [24].
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Figure 1: Four barriers for the unit square. From left to right: 1: single-arc; 2–3: connected; 4: disconnected.
The first three from the left have lengths 3, 2

√
2 = 2.8284 . . ., and 1+

√
3 = 2.7320 . . .. Right: The diagonal

segment [(1/2, 1/2), (1, 1)] together with three segments connecting the corners (0, 1), (0, 0), (1, 0) to the

point (1
2
−

√
3

6
, 1

2
−

√
3

6
) yield a barrier of length

√
2 +

√
6

2
= 2.6389 . . ..

Another real-world application is mentioned by Faber et al. [16, 15]: A repairman from a
telephone company, while repairing buried cable, has discovered that often the cable is not directly
under the marker which is supposed to be erected above it. Assuming that the cable is straight and
is always within 2 meters from the marker in a horizontal plane, what is shortest length of a trench
that the repairmen has to dig such that the cable is guaranteed to be found? In the terminology
of the opaque set problem, the disk of radius 2 meters centered at the marker is the convex body,
the possible locations of the cable are the lines intersecting the convex body, and the trench is the
barrier.

Some entertaining variants of the opaque set problem appeared in different forms [25, 29, 30];
see also [9, Problem A30]. For instance, what should a swimmer at sea do in a thick fog if he knows
that he is within a mile of a straight shoreline? Here the convex body is the disk of radius one mile
centered at the start location of the swimmer, and the barrier is the route taken by the swimmer.
This is almost the same problem as that for the telephone company except that the barrier here is
restricted to be a single curve originating from the disk center.

Related work. The type of curve barriers considered may vary: the most restricted are barriers
made from single continuous arcs, then connected barriers, and lastly, arbitrary (possibly discon-
nected) barriers. For the unit square, the shortest known in these three categories have lengths 3,

1 +
√
3 = 2.7320 . . . and

√
2 +

√
6
2 = 2.6389 . . ., respectively. They are depicted in Fig. 1. Inter-

estingly, it has been shown by Kawohl [26] that the barrier in Fig. 1 (right) is optimal in the class
of curves with at most two components (there seems to be an additional implicit assumption that
the barrier is restricted to the interior of the square). For the unit disk, the shortest known barrier
consists of three arcs. See also [15, 19].

If instead of curve barriers, we want to find discrete barriers consisting of as few points as
possible with the property that every line intersecting C gets closer than ε > 0 to at least one of
them in some fixed norm, we arrive at a problem raised by László Fejes Tóth [17, 18]. The problem
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has been later coined suggestively as the “point goalie problem” [40]. For instance, if C is an axis-
parallel unit square, and we consider the maximum norm, the problem was studied by Bárány and
Füredi [4], Kern and Wanka [28], Valtr [43], and Richardson and Shepp [40]. Makai and Pach [33]
considered another variant of the question, in which we have a larger class of functions to block.

The problem of short barriers has attracted many other researchers and has been studied at
length; see also [8, 14, 23, 31, 32]. Obtaining lower bounds for many of these problems appears to
be notoriously hard. For instance in the point goalie problem for the unit disk (with the Euclidean
norm), while the trivial lower bound is 1/ε, as given by the opaqueness condition in any one
direction, the best lower bound known is only 1.001/ε as established in [40] via a complicated
proof.

Our results. Even though we have so little control on the shape or length of optimal barriers,
for any convex polygon, barriers whose lengths are somewhat longer can computed efficiently. Let
P be a given convex polygon with n vertices.

1. A (possibly disconnected) barrier for P , whose length is at most 1
2 +

2+
√
2

π
= 1.5867 . . . times

the optimal, can be computed in O(n) time.

2. A connected polygonal barrier whose length is at most 1.5716 times the optimal can be
computed in O(n) time.

3. A single-arc polygonal barrier whose length is at most π+5
π+2 = 1.5834 . . . times the optimal

can be computed in O(n) time.

4. For interior single-arc barriers we present an algorithm that finds an optimal barrier in O(n2)
time.

5. For interior connected barriers we present an algorithm that finds a barrier whose length is
at most (1 + ε) times the optimal in polynomial time.

It might be worth mentioning to avoid any confusion: the approximation ratios are for each
barrier class, that is, the length of the barrier computed is compared to the optimal length in the
corresponding class; and of course these optimal lengths might differ. For instance the connected
barrier computed by the approximation algorithm with ratio 1.5716 is not necessarily shorter than
the (possibly disconnected) barrier computed by the approximation algorithm with the larger ratio
1
2 +

2+
√
2

π
= 1.5867 . . ..

However, we believe that the approximation ratios of the first two algorithms mentioned above
are substantially better than 1.57. In support of this belief, we present a couple of lower bound
examples for which the ratios are below 1.1.

2 Preliminaries

Definitions and notations. For a curve γ, let |γ| denote the length of γ. Similarly, if Γ is a set
of curves, let |Γ| denote the total length of the curves in Γ. When there is no danger of confusion,
|A| also denotes the cardinality of a set A.

In order to be able to speak of the length len(B) of a barrier B, we restrict our attention to
rectifiable barriers. A rectifiable curve is a curve of finite length. A rectifiable barrier is the union of
a countable set of rectifiable curves, Γ = ∪∞

i=1γi, where
∑∞

i=1 |γi| < ∞ (or Γ = ∪n
i=1γi for some n).
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A segment barrier is a barrier consisting of straight-line segments (or polygonal paths). A curve is
a convex curve if it is a subset of the boundary of a convex set.

We first show that the shortest segment barrier is not much longer than the shortest rectifiable
one.

Lemma 1. Let B be a rectifiable barrier for a convex body C in the plane. Then, for any ε > 0,
there exists a segment barrier Bε for C, consisting of a countable set of straight-line segments, such
that len(Bε) ≤ (1 + ε) len(B).

Proof. Suppose that B is the union of a countable set of rectifiable curves. Decompose each
rectifiable curve in the set into a sequence of convex curves by cutting at points where the curvature
changes sign or the curve crosses itself. Then B becomes the union of a countable set Γ of convex
curves.

For each convex curve γi ∈ Γ, let Ci be the convex hull of γi, and let B′
i be an arbitrary barrier

for Ci. Note that every line intersecting C is blocked by some curve γi, every line blocked by γi
intersects Ci, and every line intersecting Ci is blocked by B′

i. Thus the union B′ of the barriers
B′

i for Ci is a barrier for C. Since any convex curve γ : [0, 1] → R
2 is a barrier for its convex hull

conv(γ), it suffices to prove the lemma for barriers B consisting of a single convex curve γ, with
C = conv(γ).

In this simple case, we can approximate the convex curve γ by a polygonal path γ′ with the
same endpoints, which avoids the interior of C, such that |γ′| ≤ (1 + ε) |γ|. Then the union of the
segments in γ′ is the desired segment barrier Bε for C.

Denote by per(C) the perimeter of a convex body C in the plane. The following lemma providing
a lower bound on the length of an optimal barrier for C in terms of per(C), is used in the analysis
of our approximation algorithms. Its proof is folklore; see for instance [16].

Lemma 2. Let C be a convex body in the plane and let B be a barrier for C. Then the length of
B is at least 1

2 · per(C).

Proof. Let B = {s1, . . . , sn} consist of n segments of lengths ℓi = |si|, where L = |B| = ∑n
i=1 ℓi.

Let αi ∈ [0, π) be the angle made by si with the x-axis. For each direction α ∈ [0, π), the blocking
(opaqueness) condition for a convex body C requires

n
∑

i=1

ℓi| cos(α− αi)| ≥ W (α). (1)

Here W (α) is the width of C in direction α, i.e., the minimum width of a strip of parallel lines
enclosing C, whose lines are orthogonal to direction α. By integrating this inequality over the
interval [0, π], one gets:

n
∑

i=1

ℓi

∫ π

0
| cos(α− αi)| dα ≥

∫ π

0
W (α) dα. (2)

According to Cauchy’s surface area formula [36, pp. 283–284], for any planar convex body C, we
have

∫ π

0
W (α) dα = per(C). (3)

Since
∫ π

0
| cos(α− αi)| dα = 2,

4



we get

2L =

n
∑

i=1

2ℓi ≥ per(C) ⇒ L ≥ 1

2
· per(C), (4)

as required.

For instance, for the square, per(C) = 4, and Lemma 2 immediately gives L ≥ 2, the lower
bound of Jones [24]).

Remark. Obviously, the boundary of C, ∂C, is a barrier for C of length per(C). Consequently,
once Lemma 2 is established, a 2-approximation (for each type of barrier) follows immediately.
A much better approximation can be obtained for “thin” convex bodies whose widths are much
smaller than their diameters (and hence much smaller than their perimeters). For a convex body
of width w and perimeter p, algorithm A1 in Section 3 constructs a single-arc barrier of length
p/2+w, which is close to the lower bound p/2 when w is relatively small. This also shows that the
lower bound in Lemma 2 is almost tight for thin convex bodies.

A key fact in the analysis of our approximation algorithms is the following lemma. This in-
equality is implicit in [44]; another proof can be found in [12].

Lemma 3. Let P be a convex polygon. Then the minimum-perimeter rectangle R containing P
satisfies per(R) ≤ 4

π
per(P ).

Let P be a convex polygon with n vertices. Let OPTarb(P ), OPTconn(P ) and OPTarc(P ) denote
optimal barrier lengths of the types arbitrary, connected, and single-arc. Observe the following
inequalities:

OPTarb(P ) ≤ OPTconn(P ) ≤ OPTarc(P ). (5)

We first deal with connected barriers, and then with arbitrary (i.e., possibly disconnected)
barriers.

3 Connected barriers

Theorem 1. Given a convex polygon P with n vertices, a connected polygonal barrier whose length
is at most 1.5716 times longer than the optimal can be computed in O(n) time.

Proof. We start with the following algorithm A1 that computes a connected barrier consisting
of a single-arc; refer to Fig. 2. First compute a parallel strip of minimum width enclosing P .

ℓ3 ℓ4

ℓ2

ℓ1

P2

P1

e

f

c

b

a

d

Figure 2: The approximation algorithm A1 returns B2 (in bold lines).
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Assume w.l.o.g. that the strip is bounded by the two horizontal lines ℓ1 and ℓ2. Second, compute
a minimal orthogonal (i.e., vertical) strip enclosing P , bounded by the two vertical lines ℓ3 and
ℓ4. Let a, b, c, d, e, f be the six segments on ℓ3 and ℓ4 as shown in the figure; here b and e are the
two (possibly degenerate) segments on the boundary of P . Let P1 be the polygonal path (on P ’s
boundary) between the lower vertices of b and e. Let P2 be the polygonal path (on P ’s boundary)
between the top vertices of b and e.

Consider the following two barriers for P : B1 consists of the polygonal path P1 extended upward
at both ends until they reach ℓ2. B2 consists of the polygonal path P2 extended downwards at both
ends until they reach ℓ1. The algorithm returns the shorter of the two. We show below that its
approximation ratio is at most π+5

π+2 = 1.5834 . . ..
Let p, w, and r, respectively, be the perimeter, the width, and the in-radius of P . Clearly

|P1|+ |P2|+ |b|+ |e| = p.

We have the following equalities:

|B1| = |a|+ |b|+ |P1|+ |e|+ |f |,
|B2| = |c|+ |b|+ |P2|+ |e|+ |d|.

By adding them up we get

|B1|+ |B2| = |P1|+ |P2|+ |b|+ |e|+ 2w = p+ 2w.

Hence
min{|B1|, |B2|} ≤ p/2 + w.

By Blaschke’s Theorem [6] (see also [45, Exercise 2-5]), every planar convex body of width w
contains a disk of radius w/3, hence r ≥ w/3. This inequality cannot be improved: equality is
attained for the equilateral triangle. According to a result of Eggleston [13], the optimal connected
barrier for a disk of radius r has length (π+2)r. It follows that the optimal connected barrier for P
has length at least (π + 2)w/3. By Lemma 2, p/2 is another lower bound on the optimal solution.
Thus the approximation ratio of the algorithm A1 is at most

p/2 + w

max{(π + 2)w/3, p/2} = min

{

p/2 + w

(π + 2)w/3
,
p/2 + w

p/2

}

= min

{

3

2(π + 2)
· p
w

+
3

π + 2
, 1 + 2 · w

p

}

.

One can check that the quadratic equation

3x

2(π + 2)
+

3

π + 2
= 1 +

2

x

has one positive real root

x0 =
2(π + 2)

3
.

Consequently, the approximation ratio of the algorithm A1 is at most 1 + 3
π+2 = π+5

π+2 =
1.5834 . . .. Clearly the algorithm takes O(n) time, since computing the width of P takes O(n)
time [37, 42], and the two barriers B1 and B2 can be computed within the same time.

We next achieve a better approximation, 1.5716, by means of a more elaborated approach. The
idea is to do something different when P is “close to” an equilateral triangle. In this case, one of
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the two barriers B1 and B2 computed by algorithm A1 is substantially shorter than the average
of the two, namely, min{|B1|, |B2|} is substantially shorter than (|B1|+ |B2|)/2, and the previous
argument becomes wasteful. Our revised algorithm is A2.

To explain the algorithm, we need to enter the details of the proof of Blaschke’s Theorem, as
given in [45, Exercise 6-2]. Let Ω be a largest circle contained in P ; let r be its radius. Then Ω
either contains two diametrically opposite points of P , or else it contains three boundary points of
P which form an acute triangle. In the former (easier) case, r = w/2, and this yields a much better
approximation than that obtained earlier using the inequality r ≥ w/3; to put it short, this is not
the bottleneck case. Assume therefore that Ω is incident to three boundary points, A,B,C ∈ P
which form an acute triangle, ∆ABC. Then the supporting lines at A, B, C must form a triangle
T = ∆A′B′C ′ which is circumscribed to both the polygon P and the circle Ω. Denote the sides
of this triangle by a, b, c, where a is a longest side, and the corresponding altitudes by ha, hb, hc.
Denote by wa, wb, wc the widths of P in the directions of a, b and c, respectively. Obviously, we
have ha ≥ wa ≥ w, hb ≥ wb ≥ w, and hc ≥ wc ≥ w. See Fig. 3.

B
′ C

′

ha

wa

T

aA

B

b

C

c

A
′

Figure 3: P (in bold lines) and T .

We now present the revised algorithm. The algorithm A2 first computes the two barriers B1

and B2 as done by algorithm A1. In addition, it also computes a third barrier, B3, which is a
Steiner minimal tree of the three points A′, B′, C ′, if they exist; otherwise B3 is undefined and
|B3| = ∞. Since P is contained in T , B3, which is a connected barrier for T , is also a connected
barrier for P . The algorithm then returns the shorter of the three barriers, B1, B2, B3.

Recall that a Steiner minimal tree of three points that determine no angle larger or equal to
2π/3 is a star, whose any two consecutive edges make an angle of 2π/3 between them; see e.g., [21],
or [39, Ch. 6].

Returning now to the proof of Blaschke’s Theorem, the area of T can written is several ways:

Area(T ) =
(a+ b+ c)r

2
=

aha
2

=
b hb
2

=
c hc
2

. (6)

Since a ≥ b, a ≥ c it follows that

r =
a

a+ b+ c
ha ≥ ha

3
≥ wa

3
≥ w

3
. (7)

This concludes the proof of Blaschke’s Theorem. Observe that if a is somewhat larger than
(a+ b+ c)/3, then r is somewhat larger than w/3, and one could use this improved bound to get a
better approximation ratio as in the analysis of Case 1. We next analyze the approximation ratio
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of algorithm A2. We can assume w.l.o.g. that the perimeter of T is 1, i.e., a + b + c = 1, and
further that c ≤ b. Then a ≥ 1/3. We make use of two parameters λ and δ = 3 − 1/λ, where
1/3 < λ ≤ 3/8 and correspondingly 0 < δ ≤ 1/3, which will be later set to λ = 0.3403 . . . and
δ = 0.0615 . . . in order to optimize the approximation ratio of A2. We distinguish two cases:

Case 1. a ≥ λ. Then according to (7), we have r = aha ≥ awa ≥ aw ≥ λw. Similar to the
previous analysis of A1, the approximation ratio of A2 is at most

p/2 + w

max{(π + 2)λw, p/2} = min

{

p/2 + w

(π + 2)λw
,
p/2 + w

p/2

}

= min

{

1

2λ(π + 2)
· p
w

+
1

λ(π + 2)
, 1 + 2 · w

p

}

.

As before, one can easily check that the quadratic equation

x

2λ(π + 2)
+

1

λ(π + 2)
= 1 +

2

x

has one positive real root
x0 = 2λ(π + 2).

Under the assumption in Case 1, it follows that the approximation ratio is at most

1 +
2

x0
= 1 +

1

λ(π + 2)

For future reference, set

ρ1 := 1 +
1

λ(π + 2)
(8)

Case 2. a ≤ λ. Obviously, we also have b, c ≤ λ. Then b = 1 − a − c ≥ 1 − 2λ, and similarly,
c ≥ 1− 2λ. To summarize,

1− 2λ ≤ a, b, c ≤ λ, a ≥ 1

3
. (9)

Recall that a ≤ λ ≤ 3/8 <
√
2− 1, which implies that a2 < 2(1 − a)2/4 ≤ b2 + c2. It follows that

T is an acute triangle. We further distinguish two sub-cases, Case 2.1 and Case 2.2.

Case 2.1. At least one of the following three inequalities holds: (i) wa ≤ (1 − δ)ha; (ii)
wb ≤ (1 − δ)hb; (iii) wc ≤ (1 − δ)hc. Let ξ ∈ {a, b, c} and assume that wξ ≤ (1 − δ)hξ . Then (6)
and (9) yield

r = ξhξ ≥ (1− 2λ)
wξ

1− δ
≥ (1− 2λ)

w

1/λ− 2
= λw.

As in the analysis of Case 1, it follows that the approximation ratio is again at most ρ1 under the
assumption in Case 2.1.

Case 2.2. None of the inequalities in Case 2.1 holds. We then have wξ ≥ (1 − δ)hξ , for each
ξ ∈ {a, b, c}. Construct a triangle T ′ containing P as described below, and as shown in Fig. 4.
Assume w.l.o.g. that the side a is the horizontal base of T . Consider the three lines, ℓa, ℓb, ℓc, each
parallel to the corresponding side of T : a line ℓa parallel to a and tangent to P from above, etc.
Observe that the triangles T and T ′ are similar, by construction. Let δ1a, δ2b, δ3c, be the segments
of intersection of the three lines with T .

8



A
′

B′ C
′

b

T

T
′

c

a

Figure 4: P (in bold lines), T (in solid lines) and T ′ (in dashed lines).

By the assumption of Case 2.2., we have h′ξ ≤ δhξ , for each ξ ∈ {a, b, c}. where h′a, h′b, h′c denote
the altitudes from A′, B′, and C ′ in the three smaller similar triangles incident to A′, B′, and C ′.
It follows that

δ1 + δ2 + δ3 =
h′a
ha

+
h′b
hb

+
h′c
hc

≤ 3δ.

It is easily seen that the similarity ratio between T ′ and T is 2− δ1 − δ2 − δ3. By the previous
bound, this ratio is at least 2 − 3δ ≥ 1. Observe that P is incident to the three sides of the acute
triangle T ′. It is well-known that the minimum-perimeter triangle inscribed in a given acute triangle
∆ (i.e., with a vertex incident to each side of ∆) is the orthic triangle of ∆ [27, Theorem 17]; or
see [39, Ch. 5]. The vertices of the orthic triangle are the feet of the altitudes of ∆. It is also known
that the semiperimeter of the orthic triangle of an acute triangle with semiperimeter s, and sides
x, y and z is equal to

4s(s− x)(s− y)(s − z)

xyz
.

In particular, since a+ b+ c = 1, the semiperimeter of the orthic triangle of T is

2(12 − a)(12 − b)(12 − c)

abc
.

Since the similarity ratio between T ′ and T is at least 2− 3δ, by taking into account (9), we obtain
that the semiperimeter of the orthic triangle of T ′ is at least

2(2 − 3δ)(12 − a)(12 − b)(12 − c)

abc
= 2

(

3

λ
− 7

)(

1

2a
− 1

)(

1

2b
− 1

)(

1

2c
− 1

)

≥ 2

(

3

λ
− 7

)(

1

2λ
− 1

)3

.

Since P is incident to the three sides of T ′, its semiperimeter p/2 is bounded from below by the
above expression, thus

p

2
≥ 2

(

3

λ
− 7

)(

1

2λ
− 1

)3

. (10)
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We now bound from above the length of the third barrier B3. Recall that a ≥ b ≥ c. We have
∠C ≤ π/3, thus − cos(∠C + π/3) ≤ 1/2. One can deduce from [21, Section 5] (or from [39, Ch. 6])
and by using our assumptions in Case 2 that

|B3|2 = a2 + b2 − 2ab cos(∠C + π/3) ≤ a2 + b2 + ab ≤ 3λ2,

hence |B3| ≤ λ
√
3. Taking into account (10), under the assumptions in Case 2.2, the approximation

ratio is at most

ρ2 :=
λ
√
3

2
(

3
λ
− 7
) (

1
2λ − 1

)3 . (11)

Clearly, the approximation ratio of algorithm A2 is at most ρ = max{ρ1, ρ2}. To balance Cases
1 and 2.1 with Case 2.2, we let λ be the solution to the equation ρ1(λ) = ρ2(λ) below; recall (8)
and (11):

1 +
1

λ(π + 2)
=

λ
√
3

2
(

3
λ
− 7
) (

1
2λ − 1

)3 . (12)

A routine calculation shows that λ = 0.3403 . . . and, correspondingly, δ = 3− 1/λ = 0.0615 . . . and
ρ1 = ρ2 = 1.5715 . . .. We conclude that the approximation ratio of algorithm A2 is at most 1.5716,
as claimed.

The largest circle inscribed in a convex polygon can be found by linear programming in linear
time [35]. Computing B3 given T takes constant time, thus B3 can be computed in O(n) time.
Recall that B1 and B2 can be computed in O(n) time too. Consequently, the algorithm A2 takes
O(n) time.

It is easy to see that the connected barrier computed by A2 is not optimal in general (in the
class of connected barriers). The square gives an easy example. The length of the third barrier from
the left in Fig. 1 is 1 +

√
3, while the length of the barrier computed by A2 is 3 (|B1| = |B2| = 3,

|B3| = ∞). This example shows a lower bound of 1.098 . . . on the approximation ratio of the
algorithm A2.

4 Single-arc barriers

Since algorithm A1 computes a single-arc barrier, and we have OPTconn(P ) ≤ OPTarc(P ), we
immediately get an approximation algorithm with ratio π+5

π+2 = 1.5834 . . . for computing single-arc
barriers.

Theorem 2. Given a convex polygon P with n vertices, a single-arc polygonal barrier whose length
is at most π+5

π+2 = 1.5834 . . . times longer than the optimal can be computed in O(n) time.

One may ask whether the single arc barrier computed by A1 is optimal (in the class of single arc
barriers). We show that this is not the case: Consider (a sufficiently fine polygonal approximation
of) a Reuleaux triangle T of (constant) width 1, with three vertices a, b, c. Now slightly shave
the two corners at b and c and obtain a convex body T ′ of (minimum) width 1 − ε along bc. The
algorithm A1 would return a curve of length close to π/2 + 1 = 2.57 . . ., while the optimal curve
has length at most 2π/3+2−

√
3 = 2.36 . . .. This example shows a lower bound of 1.088 . . . on the

approximation ratio of the algorithm A1. On the other hand, we believe that the approximation
ratio of A1 is much closer to this lower bound than to 1.5834 . . ..

We next present an improved version A3 of our algorithm A1 that computes the shortest
single-arc barrier of the form shown in Fig. 2. Let P be a convex polygon with n sides, and let ℓ

10



be a line tangent to the polygon, i.e., P ∩ ℓ consists of a vertex of P or a side of P . For simplicity
assume that ℓ is the x-axis, and that P lies in the closed halfplane y ≥ 0 above ℓ. Let T = (ℓ1, ℓ2)
be a minimal vertical strip enclosing P . Let p1 ∈ ℓ1 ∩P and p2 ∈ ℓ2 ∩P , be the two points of P of
minimum y-coordinates on the two vertical lines defining the strip. Let q1 ∈ ℓ1 and q2 ∈ ℓ2 be the
projections of p1 and p2, respectively, on ℓ, and arc(p1, p2) ⊂ ∂P be the polygonal arc connecting
p1 and p2 on the top boundary of P .

The U -curve corresponding to P and ℓ, denoted U(P, ℓ) is the polygonal curve obtained by
concatenating q1p1, arc(p1, p2), and p2q2, in this order. Obviously, for any line ℓ, the curve U(P, ℓ)
is a single-arc barrier for P . Let Umin(P ) be the U -curve of minimum length over all directions
α ∈ [0, π) (i.e., lines ℓ of direction α).

We next show that given P , the curve Umin(P ) can be computed in O(n) time. The algorithm
A3 is very simple: instead of rotating a line ℓ around P , we fix ℓ to be horizontal, and rotate P over
ℓ by one full rotation (of angle 2π). We only compute the lengths of the U -curves corresponding to
lines ℓ, ℓ1, ℓ2, supporting one edge of the polygon. The U -curve of minimum length among these
is output. There are at most 3n such discrete angles (directions), and the length of a U -curve for
one such angle can be computed in constant time from the length of the U -curve for the previous
angle. The algorithm is similar to the classic rotating calipers algorithm of Toussaint [42], and it
takes O(n) time by the previous observation.

To justify its correctness, it suffices to show that if each of the lines ℓ, ℓ1, ℓ2 is incident to only
one vertex of P , then the corresponding U -curve is not minimal.

Lemma 4. Let P be a convex polygon tangent to a line ℓ at a vertex v ∈ P only, and tangent to
ℓ1 and ℓ2 at vertices p1 and p2 only. Then the corresponding U -curve U(P, ℓ) is not minimal.

Proof. For convenience, assume that ℓ is horizontal, and that P lies in the closed halfplane above
ℓ. Refer to Fig. 5.

p2p1

vq1 q2

ℓ1

ℓ

ℓ2

Figure 5: The curve U(P, ℓ).

Let p1, q1 ∈ ℓ1 and p2, q2 ∈ ℓ2 be as defined earlier. Observe that v belongs to the closed segment
q1q2. If v = q1 (hence v = q1 = p1) or v = q2 (hence v = q2 = p2), then by rotating P (clockwise or
counterclockwise, as needed) around v by a small angle, the length of the curve U(P, ℓ) decreases.
So we can assume that v lies in the interior of the segment q1q2. Observe that if P rotates clockwise
or counterclockwise by a small angle around v, p1 and p2 remain the same, so the angle ∠p1vp2
also remains the same. Put α = ∠q1vp1, β = ∠p1vp2, and γ = ∠p2vq2, so α + β + γ = π. Put
a = |p1v|, b = |p1p2|, and c = |vp2|. The length of U(P, ℓ) for this angle α is

f(α) = a sinα+ |arc(p1, p2)|+ c sin γ.

11



The first two derivatives of f(·) are

f ′(α) = a cosα− c cos(π − α− β) = a cosα− c cos γ.

f ′′(α) = −a sinα− c sin(π − α− β) = −a sinα− c sin γ.

Since α, γ ∈ (0, π/2), we have f ′′(α) < 0, which means that f(α) is not a local minimum.

Theorem 3. Given a convex polygon P with n vertices, the single-arc barrier (polygonal curve)
Umin(P ) can be computed in O(n) time.

Obviously, the approximation ratio of the algorithm A3 is not worse than that achieved by
algorithm A1, hence it is also bounded by π+5

π+2 = 1.5834 . . .. One may ask again whether the single
arc barrier computed by A3 is optimal (in the class of single arc barriers). We show again that this
is not the case. Consider the pentagon with vertices (0, ε), (−3, 0), (−1,−ε), (1,−ε), (3, 0). The
optimal curve is no longer than the curve ((−3, 0), (−1,−ε), (0, ε), (1,−ε), (3, 0)), whose length is
6 +O(ε2). On the other hand, the algorithm A3 returns a curve of length 6 + Ω(ε). Let now ε be
sufficiently small.

We can fine-tune (numerically) the above pentagon to obtain a lower bound of 1.065 . . . on the
approximation ratio of A3. See Fig. 6.

(a)

(b)

(c)

A

C D

EB

Figure 6: A pentagon with five vertices A = (0, h), B = (−x, y), C = (−1, 0), D = (1, 0), E = (x, y), where
x = 1.4507 . . ., y = 0.2072 . . ., and h = 0.3806 . . .. The algorithm A3 returns a barrier of length 3.3364 . . .
as in (a) or (b), but the barrier in (c) has a shorter length of 3.132 . . .. This gives a lower bound of 1.065 . . .
on the approximation ratio of the algorithm.

5 Arbitrary barriers

Theorem 4. Given a convex polygon P with n vertices, a (possibly disconnected) barrier for P ,

whose length is at most 1
2 + 2+

√
2

π
= 1.5867 . . . times longer than the optimal can be computed in

O(n) time.

Proof. Consider the following algorithm A4 which computes a (generally disconnected) barrier.
First compute a minimum-perimeter rectangle R containing P ; refer to Fig. 7. Let a,b,c,d,e,f ,g,h,
i,j,k,l be the 12 segments on the boundary of R as shown in the figure; here b, e, h and k are

12



(possibly degenerate) segments on the boundary of P contained in the left, bottom, right and top
side of R. Let Pi, i = 1, 2, 3, 4 be the four polygonal paths on P ’s boundary, connecting these four
segments as shown in the figure.

h

i

gP1
P2

P3P4

d e f

l k j

c

b

a

d B

C

A

D

A

D C

B

Figure 7: The approximation algorithm A4.

Consider four barriers for P , denoted Bi, for i = 1, 2, 3, 4. Bi consists of the polygonal path
Pi extended at both ends on the corresponding rectangle sides, and the height from the opposite
rectangle vertex in the complementary right-angled triangle; see Fig. 7 (right). The algorithm
returns the shortest of the four barriers. Let hA, hB , hC , hD denote the four altitudes from A, B,
C, and D, respectively, in the right-angled triangles ∆ABD, ∆BCA, ∆CBD, and ∆DAC. We
have |hA| = |hB | = |hC | = |hD| and the following other equalities:

|B1| = |a|+ |b|+ |P1|+ |e|+ |f |+ |hC |,
|B2| = |d|+ |e|+ |P2|+ |h|+ |i|+ |hD|,
|B3| = |g|+ |h|+ |P3|+ |k|+ |l|+ |hA|,
|B4| = |j|+ |k|+ |P4|+ |b|+ |c|+ |hB |.

By adding them up yields

4
∑

i=1

|Bi| =
(

|b|+ |e|+ |h|+ |k|+
4
∑

i=1

|Pi|
)

+
(

|a|+ . . . + |l|
)

+
(

|hA|+ |hB |+ |hC |+ |hD|
)

= per(P ) + per(R) + 4|hA|. (13)

The length of the altitude |hA| in the right-angled triangle ∆ABD is given by the formula

|hA| =
xy

√

x2 + y2
,

where x and y are the lengths of the two sides of R. By Lemma 3 we have

per(R) = 2(x+ y) ≤ 4

π
per(P ).

Under this constraint, |hA| is maximized for x = y = per(P )
π

, namely

|hA| ≤
per(P )

π
√
2

⇒ 4|hA| ≤
2
√
2

π
per(P ).

Hence (13) yields

min
i

|Bi| ≤
1

4

(

1 +
4

π
+

2
√
2

π

)

per(P ).
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Recall that per(P )/2 is a lower bound on the length of an optimal solution. The ratio between
the length of the solution and the lower bound on the optimal solution is

π + 4 + 2
√
2

2π
=

1

2
+

2 +
√
2

π
= 1.5867 . . .

Consequently, the approximation ratio of the algorithm A4 is 1
2+

2+
√
2

π
= 1.5867 . . .. The algorithm

takes O(n) time, since computing the minimum-perimeter rectangle containing P takes O(n) time
with the standard technique of rotating calipers [37, 42]. This completes the proof of Theorem 4.

The above analysis of the approximation ratio of A4 is tight for a circle, in particular if P is
a regular n-gon with n tending to infinity. Indeed, for a unit-radius circle, per(P )/2 = π while
the length of the barrier computed by A4 is 2 + π/2 +

√
2. The approximation ratio is exactly

(2 + π/2 +
√
2)/π = 1.5867 . . . in this case.

6 Interior-restricted versus unrestricted barriers

In certain instances, it is infeasible to construct barriers guarding a specific domain outside the do-
main (which presumably belongs to someone else). We call such barriers constrained to the interior
and the boundary of the domain, interior-restricted, or just interior, and all others unrestricted.
For example, all four barriers for the unit square illustrated in Fig. 1 are interior barriers.

In the late 1980s, Akman [1] soon followed by Dublish [11] had reported algorithms for com-
puting a minimum interior-restricted barrier of a given convex polygon (they refer to such a barrier
as an opaque minimal forest of the polygon). Both algorithms however have been shown to be
incorrect by Shermer [41] in 1991. He also proposed (conjectured) a new exact algorithm instead,
but apparently, so far no one succeeded to prove its correctness. To the best of our knowledge, the
computational complexity of computing a shortest barrier (either interior-restricted or unrestricted)
for a given convex polygon remains open.

Next we show that a minimum connected interior barrier for a convex polygon can be computed
efficiently:

Theorem 5. Given a convex polygon P , a minimum Steiner tree of the vertices of P forms a mini-
mum connected interior barrier for P . Consequently, there is a fully polynomial-time approximation
scheme for finding a minimum connected interior barrier for a convex polygon.

Proof. Let B be an optimal barrier. For each vertex v ∈ P , consider a line ℓv tangent to P at v,
such that P ∩ ℓv = {v}. Since B lies in P , ℓv can be only blocked by v, so v ∈ B. Now since B is
connected and includes all vertices of P , its length is at least that of a minimum Steiner tree of P , as
claimed. Recall that the minimum Steiner tree problem for n points in the plane in convex position
admits a fully polynomial-time approximation scheme that achieves an approximation ratio of 1+ε
and runs in time O(n6/ε4) for any ε > 0 [38].

A minimum single-arc interior barrier for a convex polygon can be also computed efficiently.
As it turns out, this problem is equivalent to that of finding a shortest traveling salesman path
(i.e., Hamiltonian path) for the n vertices of the polygon.

Theorem 6. Given a convex polygon P , a minimum Hamiltonian path of the vertices of P forms
a minimum single-arc interior barrier for P . Consequently, there is an O(n2)-time exact algorithm
for finding a minimum single-arc interior barrier for a convex polygon with n vertices.
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Proof. The same argument as in the proof of Theorem 5 shows that any interior barrier for P
must include all vertices of P . By the triangle inequality, the optimal single-arc barrier visits each
vertex exactly once. Thus a minimum Hamiltonian path of the vertices forms a minimum single-arc
interior barrier.

We now present a dynamic programming algorithm for finding a minimum Hamiltonian path
of the vertices of a convex polygon. Let {v0, . . . , vn−1} be the n vertices of the convex polygon
in counter-clockwise order; for convenience, the indices are modulo n, e.g., vn = v0. Denote by
dist(i, j) the Euclidean distance between the two vertices vi and vj . For the subset of vertices from
vi to vj counter-clockwise along the polygon, denote by S(i, j) the minimum length of a Hamiltonian
path starting at vi, and denote by T (i, j) the minimum length of a Hamiltonian path starting at
vj . Note that a minimum Hamiltonian path must not intersect itself. Thus the two tables S and
T can be computed by dynamic programming with the base cases

S(i, i + 1) = T (i, i+ 1) = dist(i, i + 1)

and with the recurrences

S(i, j) = min{dist(i, i + 1) + S(i+ 1, j), dist(i, j) + T (i+ 1, j)},
T (i, j) = min{dist(j, j − 1) + T (i, j − 1), dist(j, i) + S(i, j − 1)}.

Then the minimum length of a Hamiltonian path on the n vertices is

min
i

min{dist(i, i + 1) + S(i+ 1, i − 1), dist(i, i− 1) + T (i+ 1, i− 1)}.

The running time of the algorithm is clearly O(n2).

Remark. Observe that the unit square contains a disk of radius 1/2. According to the result of
Eggleston mentioned earlier [13], the optimal (not necessarily interior-restricted) connected barrier
for a disk of radius r has length (π + 2)r. This optimal barrier is a single curve consisting of
half the disk perimeter and two segments of length equal to the disk radius. It follows that the
optimal (not necessarily interior-restricted) connected barrier for the unit square has length at least
(π + 2)/2 = π/2 + 1 = 2.5707 . . .. Compare this with the current best construction (illustrated in
Fig. 1, third from the left) of length 1+

√
3 = 2.7320 . . .. Note that this third construction in Fig. 1

gives the optimal connected interior barrier for the square because of Theorem 5. Further note that
the first construction in Fig. 1 gives the optimal single-arc interior barrier because of Theorem 6.

7 Conclusion

Interesting questions remain open regarding the structure of optimal barriers and the computational
complexity of computing such barriers. For instance:

(1) Does there exist an absolute constant c ≥ 0 (perhaps zero) such that the following holds?
The shortest barrier for any convex polygon with n vertices is a barrier consisting of at most
n+ c segments.

(2) Is there a polynomial-time algorithm for computing a shortest barrier for a given convex
polygon with n vertices?

(3) Can one give a characterization of the class of convex polygons whose optimal barriers are
interior?
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In connection with question (2) above, let us notice that the problem of deciding whether a
given barrier B is an opaque set for a given convex polygon is solvable in polynomial time:

Theorem 7. Given a convex polygon P with n vertices, and a barrier B with k segments, there is
a polynomial-time algorithm for deciding whether B is an opaque set for P .

Proof. Let V (B) denote the 2k endpoints of the segments in B. Consider the set of lines (directions)
L determined either by pairs of distinct points in V (B) or that are incident to a point in V (B) and
tangent to P . Observe that L has O(k2) elements, and it can be easily constructed in O(nk + k2)
time. If B is not an opaque set for P , there exists a line ℓ ∈ L such that a small rotation (clockwise
or counterclockwise) around ℓ yields a direction, say ℓ+ or ℓ−, such that the projection of B onto
the line orthogonal to it does not cover the projection of P onto the same line. That is, the union
of the projection segments does not include the segment which represents the projection of P . We
say that the opaqueness condition fails with respect to ℓ+ or ℓ−.

To see this, take a line that intersects P without intersecting B. Fix a point p in P (in the
interior or on the boundary of P ) on this line and rotate the line around p until it hits a segment
in B, say at its endpoint q. Start rotating the line around q until either it becomes tangent to P
(as it leaves P ), or it hits another segment endpoint in V (B).

For a given ℓ ∈ L the opaqueness condition for ℓ+ and ℓ− can be easily checked in O(n+k) time.
Since there are O(k2) lines in L, the overall opaqueness can be checked in O((n+k)·k2) time. Hence
whether B is an opaque set for P can be determined in O(nk+ k2 + (n+ k) · k2) = O((n+ k) · k2)
time. (A faster algorithm can be obtained by using rotational sweep [5, p. 328].)

We have presented several approximation and exact algorithms for computing shortest barriers
of various kinds, for a given convex polygon. The two approximation algorithms with ratios close
to 1.58 probably cannot be improved substantially without either increasing their computational
complexity or finding a better lower bound on the optimal solution than that given by Lemma 2.
The question of finding a better lower bound is particularly intriguing, since even for the simplest
polygons, such as a square, we don’t possess any better tool. While much research up to date focused
on upper or lower bounds for specific example shapes, obtaining a polynomial time approximation
scheme (in the class of arbitrary barriers) for an arbitrary convex polygon is perhaps not out of
reach.
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[4] I. Bárány and Z. Füredi, Covering all secants of a square, in Intuitive Geometry (G. Fejes
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[30] R. Klötzler and S. Pickenhain, Universale Rettungskurven II, Zeitschrifte für Analysis und
ihre Anwendungen, 6 (1987), 363–369.

[31] E. Kranakis, D. Krizanc, L. Narayanan, K. Xu, Inapproximability of the perimeter defense
problem, in Proceedings of the 21st Canadian Conference on Computational Geometry (CCCG
2009), Vancouver, Canada, August 2009, pp. 153–156.

[32] E. Makai, Jr., On a dual of Tarski’s plank problem, Discrete Geometrie, 2, Kolloq., Inst. Math.
Univ. Salzburg, 1980, pp. 127–132.

[33] E. Makai, Jr. and J. Pach, Controlling function classes and covering Euclidean space, Studia
Scientiarum Mathematicum Hungaricae, 18 (1983), 435–459.
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