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1. INTRODUCTION 

 

The optimum design process has the following three main phases: 

(a) preparation: selection of candidate structural versions defining the main 

characteristics to be changed, formulation of design constraints and cost function, 

(b) solution of the constrained function minimization problem by using efficient 

mathematical methods, 

(c) evaluation of results by designers, comparison of optimized versions, 

formulation of design rules, incorporation in expert systems. 

These phases show that the structural optimization has the following three main 

parts: cost function, design and fabrication constraints, and mathematical 

method. 

The following examples show how to elaborate these phases. 

 

2. OPTIMIZATION OF WELDED SQUARE CELLULAR PLATES WITH 

TWO DIFFERENT KINDS OF STIFFENERS 

 

Cellular plates consist of two face plates and a grid of stiffeners welded between 

them. In the present study, these rolled stiffeners are used. The comparison of the 

cellular plates with this stiffener shows that using optimization significant savings 

in mass and cost can be achieved.  

 

2.1.  Bending moments and deflections 

 

The cells produce a large torsional stiffness; thus, the cellular plates can be 

calculated as isotropic ones (Figure 1). Cellular plates have some advantages over 

stiffened ones as follows. (a) their torsional stiffness contributes to the overall 

buckling strength significantly, therefore, their dimensions (height and thickness) 

can be smaller, (b) their symmetry eliminates the large residual welding distortions, 

which can occur in stiffened plates due to shrinkage of eccentric welds. Therefore 

cellular plates can be cheaper than stiffened ones. Lee et al. [1] have solved the 

differential equation for rectangular orthotropic plates supported at four corners by 

using a polynomial function.  

Formulae have given for bending moments and deflections as a function of bending 

and torsional stiffnesses. In the case of a square cellular plate, the bending 

stiffnesses are equal to the torsional stiffness (Bx = By = H) and the maximum 

bending moment is 

Mmax = 0.15pL
2
      (1) 

and the maximum deflection is expressed by 

wmax = 0.025p0L
4
/Bx      (2) 



 
 

Figure 1. A cellular plate supported at four corners 
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Figure 2. Cellular plate and dimensions of halved rolled I-section stiffener 

 

where L is the plate edge length, p0 is the factored intensity of the uniformly 

distributed normal load and p is the load intensity including the self mass of the 

plate. 

Results for square isotropic plates according to Timoshenko & Woinowsky-Krieger 

[2] 

for  ν = 0.3    Mmax = 0.1404pL
2
               (3) 

and      wmax = 0.0249p0L
4
/Bx             (4) 

It can be seen that the constants are nearly the same. 



2.2.  Cellular plate with halved rolled I-section stiffeners (Figure 2) 

 

2.2.1.  Design constraints 

 

Stress constraint including normal stress due to local bending of an upper base plate 

part with built-in edges according to Timoshenko & Woinowsky-Krieger [2] 
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Constraint on stress in the lower face plate 
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Shear stress constraint at the corners 
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2.2.2.  Fabrication constraints 

 

Thickness limitation: tmin = 4 mm. Limitation of the distance between stiffener 

flanges to allow the welding of the stiffener web to the upper base plate: 

300ba  mm.     (10) 

 

2.2.3.  Structural variables 

 

- number of stiffeners in one direction (square symmetry) n, 

- thicknesses of the upper and bottom base plates  t1 and t2, 

- height of the rolled I-section stiffener h. 

 

2.2.4.  Numerical data 

 

Plate edge length: L = 18 m, factored load intensity p0 = 150 kg/m
2
 = 0.0015 

N/mm
2
, yield stress of steel  fy = 355 MPa, elastic modulus E = 2.1x10

5
 MPa, 

Poisson ratio ν = 0.3, steel density ρ = 7.85x10
-6

 kg/mm
3
,  ρ0 = 7.85x10

-5
 N/mm

3
. 

 

2.2.5.  Cost function 

 

The cost function is formulated according to the fabrication sequence [3]. 

(a)  Welding of the upper base plate (18x18 m) from 36 pieces of size 6 m x 1.5 m 

using single or double bevel welds with complete joint penetration (GMAW-C 

gas metal arc welding with CO2) 



(b)  Welding of n+2 continuous stiffeners to the upper base plate by double fillet 

welds (GMAW-C) 

(c)  Welding of n+2 intermittent stiffeners to the upper base plate and to the 

continuous stiffeners (webs with fillet welds, flanges with butt welds GMAW-C) 

(d)  Welding of the bottom plate parts to the flanges of stiffeners by fillet welds 

(GMAW-C) 

Cost of material   4VkK MM  ,   kM = 1 $/kg,           (11) 

Cost of painting 

3 PPPPP ,SkK  ,   kP = 14.4x10
-6

 $/mm
2
   (12) 

surface to be painted 

  223 1

2  nbhLLSP     (13) 

Total cost 

PwwwwM KKKKKKK  4321    (14) 

 

2.2.6.  Optimization and results 

 

A systematic search for the optima is performed using a MathCAD algorithm. The 

results are given in Table 1. 

 

Table 1. Results of a systematic search. Halved rolled I-stiffeners. The optima are 

marked by bold letters. Allowed normal stress (σ2) 322 MPa, allowed deflection 

wmax = 60 mm. Dimensions in mm 

 

h n t1 t2 σ2  MPa wmax mm Vx10
-9 

mm
3 

Kx10
-5

 $ 

683.5 4 11 4 286 38 6.766 1.273 

 5 9 4 315 40 6.435 1.258 

 6 8 4 317 41 6.429 1.286 

607.6 3 13 4 311 49 6.791 1.253 

 4 11 4 316 50 6.400 1.224 

 5 10 4 302 50 6.332 1.240 

 6 9 4 302 51 6.265 1.258 

 7 8 4 313 52 6.197 1.277 

533.1 3 14 5 312 55 7.200 1.292 

 4 12 5 314 57 6.761 1.255 

 5 11 5 298 57 6.646 1.263 

 6 10 5 296 58 6.530 1.272 

 

2.3.5.  Comparison of the optimized cellular plate 

 

It has been shown in previous studies that, in the case of square symmetry, the 

torsional stiffness of cellular plates equals to their bending stiffness. Thus, they can 

be calculated as isotropic ones and the bending moments and deflection for a square 

plate supported at four corners can be obtained by using the formulae for isotropic 

plates.  



In the optimization process the four variables are as follows: height and number of 

halved rolled I-section stiffeners. A systematic search considers the constraints on 

stresses and deflection, as well as the cost function to be minimized.  

According to the results summarized in Table 1 it can be concluded that the cellular 

plate the optima for cost and mass minima are different. It can be up to 10% saving 

in mass (volume). 

 

3. OPTIMAL DESIGN OF A COMPOSITE SANDWICH STRUCTURE BY 

PARTICLE SWARM OPTIMIZATION METHOD 

 

3.1. A new cellular sandwich plate model 

 

Our new structural model combines the sandwich and cellular plates, since it has 

FRP (fiber reinforced plastic) deck plates and more aluminium square hollow 

section stiffeners riveted into the deck plates. So it is a new combination of 

materials, stiffeners and fabrication technology, which results a high ratio of 

bending stiffness to density. 

The sandwich plate model under consideration is depicted in Figure 3. The CFRP 

plates are constructed from laminated layers. Plates are riveted to the upper and 

lower flanges of the aluminium square hollow section (SHS) profiles. 
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Figure 3. Cellular sandwich plate structure. 

 

The structure is simply supported, and a uniformly distributed loading of 3,510
-3 

N/mm
2
. (p = 7 N/mm line pressure) acts on the total surface of the structure. The 

dimensions of the structure are: L = 2250 mm, B = 2000 mm. 

The material parameters of a pre-impregnated CFRP layer are given as follows: the 

thickness of a layer t* = 0,2 mm, the longitudinal Young's modulus Ex = Ec =120 

GPa and the transverse modulus Ey = 9 GPa. The specific mass of the CFRP plate 

c = 180 g/m
2
, and Poisson's ratios xy = 0,25 and yx = 0,019. 

 

3.2. Objective functions and constraints 

 

3.2.1. Cost function 

 

The structure is optimized with respect to minimum cost K, which can be 

formulated as the sum of the material and manufacturing costs, i.e. 



f(x) = K = KCFRP + KAl + Kheat treatment+ Kmanufacturing 

K (Є)= 2·(n·31,047)+ kAl [ns (Al 4 hAl tw L)]+2 n kht+kf [n·14min + ns·26min+ 110min]  

                   (15) 

where n represents the number of CFRP layers, ns the number of stiffeners, Al the 

density of the Al profile, h the height and tw thickness of the SHS Al profiles. 

In our case the material cost of composite plates is cost reached 31,047 Euro/layer. 

The cost of the Al profile is 4,94 Euro/kg. The specific fabrication cost kf =0,6 

Є/min. The cost of heat treatment is kht =1 Euro/layer. 

The total fabrication cost (as the function of time [min]) is the sum of the cost 

required for the manufacturing of the CFRP plates, the cutting cost of the Al profiles 

and the total assembly costs. 

 

3.2.2. Mass function 

 

The total cost of the structure is the sum of the CFRP and Al components:  

m= 2 c [B L( n t*)] + ns Al [L (4 hAl tw - 4 tw
2
)]   (16) 

 

3.2.3. Constraints 

 

3.2.3.1. Deflection of the total structure 
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where: Ic, IAl: moment of inertia of the CFRP plate and Al profile, 

Ec, EAl: reduced modulus of elasticity of the CFRP lamina and Young's modulus of 

Al profile. 

There is the effect of the relative movement between the components, and is 

expressed as a function of the differences in predicted stresses in the middle of Al 

profile and CFRP plate. Due to difference in stress () there is a corresponding 

difference in the equivalent applied moment (M). 

 

3.2.3.2. Composite plate buckling [4] 
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where bc: plate width between stiffeners,  max: maximal stress in the CFRP lamina 

Ex, Ey, Gxy: laminate moduli, xy, yx: Poisson's ratios. 

 

3.2.3.3. Web buckling in the Al profiles [5,6] 
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where: EAl, ESteel: Young's modulus of elasticity of Al and Steel. 



3.2.3.4. Stress in the composite plates 

 

The moment acting on the total structure is distributed on the components of the 

structure. XcM is the part of total moment which is acting on composite plate, XAlM 

is the part of total moment which is acting on stiffeners.  
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 : allowable stress, XcM: 

moment acting on composite plate, T: tensile strength of composite lamina, c: 

safety factor (=2). 

 

3.2.3.5. Stress in the Al stiffeners 
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3.2.3.6. Eigenfrequency of the total structure 
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m: weight/unit length of the structure [kg/m], f0: limitation for eigenfrequency (50 

Hz). 

 

3.2.3.7. Size constraints for design variables 

 

10   hAl   100 

      2   tw   6     (23) 

16   n   32 

7   ns   20 

These represent physical limitations on the design variables [mm], taking 

economical and manufacturing aspects into consideration. 

 

3.3. Particle Swarm Optimization method 

 

During the Particle Swarm Optimization [7] the normalized weighting method were 

used to show the weight of the cost- and mass objective functions. The normalized 

objectives method solves the problem of the pure weighting method e.g. at the pure 

weighting method, the weighting coefficients do not reflect proportionally the 

relative importance of the objective, because of the great difference on the nominal 



value of the objective functions. At the normalized weighting method we reflect 

closely the importance of objectives. 

f(x) =  
i

r




1

wi fi(x) / fi
0  where  wi   0  and   

i

r




1

wi = 1 (24) 

The condition 0
0

i
f   is assumed. 

 

3.4. Numerical results of multiobjective optimization 

 

We used sensitivity analysis to determine how sensitive the structure is to changes 

in the value of the parameters of the model and to changes in the structure of the 

model. Different values of many parameters were set to see how a change in the 

parameters causes a change in the optimal structural construction.  

At first design variables were analysed in aspect of sensitivity in case of the 20, 22, 

24, 26 layered plate structures [8, 9]. 

It can be realised that design variables have no significant effect on value of 

objective functions. After that we analysed the other components of the objective 

functions. We have found that the optimal solution is very sensitive to changing of 

specific fabrication cost (kf). 

We completed the multiobjective optimization for case of different values (1; 2; 2.5; 

3; 4 times higher value) of specific fabrication cost to present the effect of 

sensitivity. 

Table 2 includes the result of optimization completed for 26 layered deck plate 

structure. 

Table 2. Result of Particle Swarm Optimization 

 

 Weights of 

objective functions 

hAl 

[mm] 

tw 

[mm] 

ns 

[mm] 

kf [Euro/min] 100-0% 60 2,5 8 

2
.
kf  [Euro/min] 

0-100% 50 3 9 

50-50% 50 3 9 

80-20% 50 3 9 

90-10% 55 3 8 

95-5% 60 3 8 

100-0% 70 3 7 

2,5
.
kf [Euro/min] 100-0% 80 4 6 

3
.
kf [Euro/min] 100-0% 85 4 6 

4
.
kf [Euro/min] 100-0% 90 4 6 

 
Cost-mass 

objective functions 
   

 

Table 2 includes the optimal structure alternatives for 26 layered deck plate model. 

Table 2 summarises the optimal stiffener number and stiffener geometries in case of 

different value of specific fabrication cost and different weight of objective 

functions. The first number of weight (2. column of Table 2) represents the effect of 

cost function in percentage, the second number represents the weight of mass 

objective function in the multiobjective optimization. 



4. EXPERIENCE OF WEARING OF THE NEW WELDED BUCKET AND 

CUTTING TOOTH OF BUCKET LADDER EXCAVATOR 

 

This chapter briefly outlines the operative wearing results of an optimized cutting 

tooth. The description of the rock cutting process is very complex. Thus the 

investigation of the effect of lateral forces was complicated through cutting tests. A 

finite element analysis of cutting tooth was presented in which the linear increase of 

the lateral force is taken into consideration. The simulation results have shown that 

the maximum stresses decrease if the lateral force increases. Operative results show 

the correctness of the simulation. This design process and results are summarized in 

this paper [10, 11]. 

 

4.1. Development of the aggrading channel and the digging ladder 

 

Design of the new construction of bucket excavator the exchangeability, the 

placement of the teeth and the form of the aggrading channel represent constraints, 

and it is important to take into account the manufacturability and better breakage. 

Based on these polygonal flat plates the cutting edge, cutting edge supporters and 

digging ladder back side designed to be simpler and more accurate for 

manufacturing and refurbishment. On this way a more precise digging ladder can be 

manufactured (Figure 4). 

 

 
Figure 4. 3D model of the new digging ladder 

 

In order to achieve the goals of the development, a lot of monitoring, data 

acquisition, planning, design, etc. had to be done on a coordinated way to reach a 

new uniform digging ladder with changeable teeth. We had to take into account the 

applied technology from the point of view of the breakage as well as the aspect of 

geometry in terms of energy, and the changeability and the refurbishment. 

Theoretical and technological studies have shown that a digging ladder has a 



complex motion performed during breakage. Digging ladder has a parabolic move 

in yawing during every moment of the orientation there is an angle between the 

breakage to the digging ladder [12].  

The developed finite element model gave the stress distribution in the digging 

ladder as it is visible on Figure 5.  

 

 
Figure 5. Reduced stress distribution in the new digging ladder 

 

The higher strength digging ladder has less detrimental deformation, and expected 

to be less technical problems.  

The lower specific cutting force requires less drive performance, as well as the 

smaller side forces, the power consumption of the translation will be less. The 

welded edge protectors of the cutting teeth increase its life. 

 

5. CONCLUSIONS 

 

There were three different applications shown in this paper. These applications 

demonstrate the applicability and the efficiency of the optimization.  

In the first application the cellular plates with two face plates and a grid of stiffeners 

welded between them are optimized. In the present study, these rolled stiffeners are 

used. The comparison of the cellular plates with this stiffener shows that using 

optimization significant savings in mass and cost can be achieved.  

The second application is the new structural model combines the sandwich and 

cellular plates, since it has FRP (fiber reinforced plastic) deck plates and more 

aluminium square hollow section stiffeners riveted into the deck plates. So it is a 

new combination of materials, stiffeners and fabrication technology, which results a 

high ratio of bending stiffness to density. We have shown the efficiency of this 

structure is load carrying applications. 

In the third application the optimized cutting tooth is shown. A finite element 

analysis of cutting tooth was presented in which the linear increase of the lateral 

force is taken into consideration. The simulation results have shown that the 

maximum stresses decrease if the lateral force increases. Operative results show the 

correctness of the simulation.  
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