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1. Abstract  

A cantilever column is loaded by a compression force and a bending moment caused by a horizontal force. It can  

be derived that, in the case of uniaxial bending, the rectangular cross section is more economic than the square one. 

In the given numerical case, the plate thicknesses are too large for enabling fabrication. Therefore stiffened plates 

should be used. Thus, the aim of the p resent study is to elaborate the minimum cost design of a column with 

rectangular cross-section and cellula r plate walls. Cellu lar p lates are constructed from two plates and longitudinal 

stiffeners welded between them. Previous studies have shown that welded T-stiffeners are more economic than the 

halved rolled I-section stiffeners, thus, welded T-stiffeners are used. 

Stress and horizontal deformat ion constraints are formulated. In the stress constrain t, face plate buckling is taken  

into account by using effective widths. Local buckling constraint is used for the web of T-stiffeners. 

Variables are as follows: he ights of welded T-sections, thicknesses of stiffener webs  and flanges, number of 

stiffeners in  both directions, main d imensions of the rectangular box section, thicknesses of outer and  inner face 

plates in smaller and larger walls. 

The cost function is formulated according to the fabrication sequence and consists of cost of material, welding and 

painting. The constrained function minimizat ion is performed by using an effective mathematical optimizat ion 

method. 

2. Keywords: structural optimization, minimum cost design, cellular plates, columns. 

 

3. Introduction 

 

Steel columns are widely used for buildings, bridges, as supports of highways etc. The optimum design of such 

columns has been treated, which constructed from various structural types, such as circular cylindrical unstiffened 

and stiffened shells and square box sections with walls from stiffened and cellular p lates [1]. Bending caused by 

horizontal force plays an important role in seismic design. A detailed literature survey concerning the cellu lar 

plates can be found in [1]. 

Steinhardt [2] has proposed a design method for box beams with stiffened flange plates using formulae for 

effective p late width. Nakai et al. [3] have worked  out empirical formulae for stiffened box stub-columns subject to 

combined actions of compression and bending.  

Ge et  al. [4] and Usami et  al. [5] have studied the cyclic behaviour and ductility of stiffened steel box columns used 

as bridge piers. Longitudinal flat p late stiffeners and diaphragms as well as constant compressive axial force and 

cyclic lateral loading  have been considered. Empirical formulae have been proposed for u ltimate strength and 

ductility capacity. 

Other papers about bridge piers can be found in conference proceedings as follows: Yamao,T. et al. [6], Ohga,M. 

et al. [7] and Hirota,T. et al. [8].  

 

In our previous studies it has been shown that, in the case of uniaxial compression, cellular plates are more 

economic than a longitudinally stiffened ones (Farkas & Jármai [9]). In a study we have elaborated a min imum 

cost design of a cellular plate subject to uniaxial compression (Farkas & Jármai [10]).This method is used in  the 

present paper for a square box column constructed from four equal cellular plates.  

 

A column is loaded by a compression force NF and a bending moment caused by a horizontal force HF = 0.1NF 

shown in Figure 1. Firstly, the unstiffened rectangular cross section is optimized. It will be derived that, in the case 

of uniaxial bending, the rectangular cross section is more economic than the square one. 

It will be shown that, in the given numerical case, the plate thicknesses are too large for fabrication. Therefore 

stiffened plates should be used. 

 

Results obtained for square box columns have shown that the cellular plate elements are more economic than the 
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plates stiffened on one side [1]. 

The stiffeners can be made of halved rolled I-sections (UB profiles are used) or by welded T-sections. Advantages 

of welded T-sections are that their dimensions (mainly  the web  thickness) can be freely varied. The  economy of 

welded T-stiffeners depends on local buckling strength caused by the stress state (compression or bending). 

Thus, the aim of the present study is to elaborate the minimum cost design of a column with rectangular and square 

cross-sections and cellular plate walls. We have considered the welded structure with init ial imperfections 

according to the standards [11, 12]. Dented structures have not been considered [13]. That is another problem. 

 

4. Numerical data 

 

The factored compression force is NF =108 [N], the height of the column is a0 = 15 m, the steel yield stress is fy = 

355 MPa, the Young-modulus is E = 2.1x105 MPa.  

 

5. Minimum cross-sectional area design of a rectangular unstiffened box section 

 

The cross-sectional area is expressed as  

 

             
fw

bthtA 2          (1) 

h is the height of the web, b is the width of the flange, tw and tf the thicknesses of the box section. 

Local buckling of plate elements can be avoid by using the constraints on plate slendernesses , where  and  are 

the limit slenderness values for the web and the flange. 
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Figure 1: Box column with walls 

of unstiffened and cellular plates, 

the two ends are built-in 

Figure 2: Deformation and bending moment 

distribution of the column caused by the horizontal 

force 
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According to Eurocode 3 [12] 

 

            34/1,/235,42/1  
y

f        (3) 

 

The value of  β depends on the stress distribution (Fig. 2). The stress constraint is formulated as  
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Taking the constraints on limit ing plate slenderness as active from Eq. 2, since the largest slendernesses give the 

smallest objective function of the column, the moment of inertia is as follows: 
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The section modulus is the following: 
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Eqs (7) and (8) g ive the limiting plate slenderness  in the case of different edge stresses according to Eurocode 3 

[12] Table 5.2. 1 2 are defined in Eq (4). 

The constraint on horizontal d isplacement of the top (Fig. 1) is formulated for a co lumn which is built-in at both 

ends (Fig. 2), thus 
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γM = 1.5 is the safety factor used for factored forces in the case of displacement calculation. 

 

.1000  

 

The optimum is found by using a MathCAD program. It makes a systematic search to find the minimum of the 

cross-sectional area (A). Table 1 shows the search results. The minimal area means the minimum mass of the 

column. Note that the actual value of β is determined by iteration. 

 

Table 1: Cross-sectional area (A) in the function of dimensions of the rectangular box section. Dimensions in  mm, 

stresses in MPa, cross-sectional area in mm2. The optimum values are marked by bold letters. 

 

h b w σ1 σ2 σ 1/β Ax10-5 

2500 2250 14.9 180 157 337 49.00 5.529 

2600 2110 14.8 186 163 349 49.15 5.370 

2700 2000 14.7 188 166 354 49.30 5.310 

2800 1910 14.2 188 167 355 49.33 5.325 

2900 1820 13.8 187 168 355 49.44 5.351 

3000 1730 13.4 185 168 353 49.56 5.392 

 

It can be seen that the displacement constraint is active for smaller h-values and the stress constraint is active for 
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larger h-values. 

The optimum plate thicknesses are 

 

8.5834/2000,8.5430.49/27002/ 
fw

tt mm. 

For the optimum the  value is calculated by Eq (3). For the square box a similar systematic search is performed  

considering that h = b. 

The optimum dimensions of the unstiffened square box section one can find in a similar way 

 

h = b = 2400 mm,  6.70,492/,49/1,150,174
21


fw

tt mm, A = 5.739x10-5 mm2. 

 

From the above calculation one can conclude that 

 

(a) The rectangular cross-section is more economic than the square one since 
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where As and Ar are the square and the rectangular columns cross sections. 

 

(b) The plate thicknesses are very large, unsuitable for fabrication, thus, stiffened plate walls should be used.  

(c) The optimum ratio of b/t for a rectangular box section is 2700/2000 = 1.35. 

 

Based on the above conclusions, in  the present study the optimum cost design of a rectangular box co lumn with 

cellular plate walls is derived. 

 

6. Minimum cost design of column of rectangular box section with cellular plate walls  

 

Cellu lar plates are constructed from two plates and longitudinal stiffeners welded between them. Welded and 

rolled T-sections are selected for stiffeners. Figures 3 and 4 show the dimensions of cellular plate walls.  Variables 

are as follows: height of welded T-sections h1/2 = h/2 – tf, h11/2 = h2/2 – tf1, thickness of stiffener webs tw and tw1, 

number of stiffeners in both directions n and n1, main dimensions of the rectangular box section b0 and b01, 

thicknesses of outer and inner face plates in s maller and larger walls t and t1. Ranges of variables are as follows: t  

= 4 – 40 mm, h = 300 – 1000 mm, b = 30 – 300 mm. Ranges for number of stiffeners are n = 2 – 20 mm. 

 

For the rolled stiffener cross sections we chose universal beam UB profiles. The sizes of the section tf, tw, b are 

calculated by the catalogue of ArcelorMittal [14] with curve fitting calculat ion in the function of the height of the 

section h. 

 

   tf =a+ba*h+c*h2+d*h3+e*h4+f*h5+g*h6+ha*h7+p*h8     (10) 

 

   tw =a+ba*h+c*h2+d*h3+e*h4+f*h5+g*h6+ha*h7+p*h8     (11) 

 

   b =a+ba*h+c/h+d*h2+e/h2+f*h3+g/h3+ha*h4+p/h4+r*h5+ o/h5   (12) 

 

A T-stiffener has four dimensions. Using Eqs (10), (11) and (12) the number of unknown dimensions is reduced to 

one (h). Table 2 shows the approximation functions. For a good approximation so many decimal numbers are 

needed. The curve fitting is made by TableCurve2D program. 

 

Table 2. Curve fitting approximation of the sizes of the rolled I-beam 

 

 tf tw b 

a -26.93815960004096 4.598131596507252 -1108926.658794802 

ba 0.7030053163805572 -0.1667245080692302 2054.96457373585 

c -0.00569333794408951 0.002662252638593643 394347552.4221416 

d 2.383106250400329D-05 -1.662919423768273D-05 -2.475920494568994 

e -5.605511588090933D-08 5.42570607199179D-08 -91315532919.66857 

f 7.662794270183799D-11 -1.003562930723944D-10 0.001858445891156483 

g -5.902409057606285D-14 1.063362616433473D-13 13189053888762.85 
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ha 2.267417890058806D-17 -6.028516559742138D-17 -7.856977790442618D-07 

p -2.999371273581411D-21 1.419727612597333D-20 -1073670362507492 

r   1.422535840934241D-10 

o   3.744384150518803D16 

 

7. Geometric characteristics for displacement constraint 

 

Cross-sectional area for both cellular plate walls  
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Figure 3: Cross-section of the rectangular box 

column with cellular plate walls (see a lso Fig. 1). The 

T-stiffeners and the plate parts are marked by lines 

only. 

 

 

Figure 4: Details of the corner for the box section 

with cellular plate walls  
 

 

Distance of the gravity centre 
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Moment of inertia 
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Moment of inertia of the whole rectangular box section for axis η 
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The displacement constraint is given as  

 

         15
12

0

3

0 


a

IE

aH
w

xM

F mm        (20) 

or 

          
M

F

E

LH
II




h

12

2

0          (21) 

 

Numerical data are given in Section 4. With these data the moment of inertia is as follow: 
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109524.5 xI   mm4. 

 

8. Geometric characteristics for stress constraint 

 

The local buckling of face plates is avoided by considering effective plate widths according to Eu rocode 3 [11]: 

The cross sectional area Ae is  
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        1y             if          673.0py       (23b) 

For the displacement constraint Iη is used (calculated with zG for plates with full width), for the stress constraint Iηe 

is used with zGe considering the effective plate widths. 
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The stress constraint is given by 
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U-profiles are used to strengthen the corners (Fig. 4) with a cross-sectional area 
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It should be noted that the effect of the g lobal buckling of box column walls can be neglected, since the cellu lar 

plates have very large torsional stiffness. Calculations show that all the optimized column structures satisfy the 

constraint on flexural buckling about the weak axis. 

 

9. Constraint on local buckling of welded stiffener webs  

 

The webs are subject to uniform compression. According to Eurocode 3 [12] 
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10. Fabrication constraints  

 

In order to guarantee the welding of stiffeners web to the base plates, to have enough space, the following 

constraints should be considered  
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300 mm space is needed to ease the welding process . 

 

11. Cost function 

 

The cost function is formulated according to the fabrication sequence. 

(1) Welding of outer face plates with butt welds (SAW – submerged arc welding). A plate element has sizes of 

6000x1500 mm or less. 

Plate of sizes a0xb0: volume V0 = a0b0t, weld length LW 0 = 2b0 + (q-1)a0,  

 

            000
03.13 W

n

WWW LtCVqkK   ,  kW  = 1.0 $/min     (39) 
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where kW is the specific welding cost, we used 60 $/hour which can be valid in Europe. 

           q is the number of plate elements in the direction of b0 so that  1500/0 qb mm, 

            is the factor of complexity, 

            is the density of the steel, 

           t is the thickness of the plate, 

           LWi is the weld length. 

The factor of complexity of the assembly is taken as Θ = 2. 

 

              For  t < 11   2,101346.0 0

3   nxCW
      (40) 

 

           for   11t    904.1,101033.0 0

3   nxCW
      (41) 

 

Plate of sizes   

              010101101001010 12;: aqbLtbaVxba W        (42) 

 

               01101101
0313 W

n

WWW LtC.VqkK         (43) 

 

q and q1 are the numbers of plate strips of width smaller than 1500 mm. 

 

(2) Welding of stiffeners’ webs to outer face plates and to flange with double fillet welds (GMAW -C gas metal arc 

welding with C02). 

Plate of sizes a0xb0.  

For welded stiffeners: 
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For welded stiffeners: 
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For rolled stiffeners: 
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aW  = 0.4tw   but   aW min = 4 mm 

 

Plate of sizes a0xb01. 

For welded stiffeners: 
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For welded stiffeners: 
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For rolled stiffeners: 
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aW 1 = 0.4tw1   but   aW 1min = 4 mm 

 

(3) Welding of inner plate strips of width sy and sz from 3-3 parts with butt welds excluding the outside strips: 
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(3a) Welding of the outside strips of width sy/2 and sz/2: 
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12121 3132         (54) 

 

(4) Welding of inner face plate strips to the stiffener flanges with double fillet welds: 

 

         naLtbaVV W 020013 2,         (55) 

 

         2

2

2

3

33 1033940312 WWWW Lax.x.VnkK        (56) 

 

taW 7.02     but   aW 2min = 3 mm 

 

          102110101131 2,3 naLtthbaVV W        (57) 

 

             21

2

21

3

31131 1033940312 WWWW Lax.x.VnkK        (58) 

 

121 7.0 taW   but aW 21min = 3 mm 

 

(5) Welding of 2 U-elements to the ends of the smaller wall with 2-2 fillet welds 

 

          ttt
h

A fU 







 802

2

1 ,  304 2 VaAV U        (59) 

 

         0

2

2

3

44 41033940313 aax.x.VkK WWW

        (60) 

 

(6) Welding of larger walls to the smaller ones with fillet welds  

 

         033145 8,22 aLVVV W         (61) 

 

V5 contains the whole volume (see also Eqs . (44), (48), (55) and (61). 

 

        3

2

21

3

55 1003394314 WWWW Laxx.VkK         (62) 

 

The material cost 

         0.1,5  MMM kVkK  $/kg       (63) 

 

The painting cost is calculated as  

        
610414  x.k,SkK PPPP   $/mm2       (64) 
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Surface to be painted 

            







 11

111
100 2

2
2

2
222 tt

h
tt

h
bbaS ffP      (65) 

 

The total cost 

       aWWaWWWWWWM KKKKKKKKKK 2121221110102  

          PWWWW KKKKK  543132        (66) 

 

12. Particle swarm optimization 

 

The particle swarm optimization (PSO) is a parallel evolutionary computation technique developed by Kennedy 

and Eberhart  [15] based on the social behaviour metaphor. A standard textbook on PSO, treating both the social 

and computational paradigms, is Yang [16]. The PSO algorithm is init ialized with a population of random 

candidate solutions, conceptualized as particles. Each part icle is assigned a randomized velocity and is iteratively  

moved through the problem space. It is attracted towards the location of the best fitness achieved so far by the 

particle itself and by the location of the best fitness achieved so far across the whole population (global version of 

the algorithm). 

Additionally, each member learns from the others, typically from the best performer among them. Every  

individual of the swarm is considered as a particle in a mult idimensional space that has a position and a velocity. 

These particles fly through hyperspace and remember the best position that they have seen. Members of a swarm 

communicate good positions to each other and adjust their own position and velocity based on these good 

positions. The Particle Swarm method of optimization testifies the success of bounded rationality and 

decentralized decision making in reaching at the global optima. It has been used successfully to optimize 

extremely difficult multimodal functions. 

PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The 

system is init ialized with a population of random solutions and searches for optima by updating generations. 

However, un like GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential 

solutions, called particles, fly through the problem space by following the current optimum particles.  

Each particle keeps track of its coordinates in the problem space which are associated with the best solution 

(fitness) it has achieved so far. (The fitness value is also stored.) This value is called pbest (pb). Another "best" 

value that is tracked by the particle swarm optimizer is the best value, obtained so far by any particle in the 

neighbours of the particle. This location is called lbest, when a part icle takes all the population as its topological 

neighbours, the best value is a global best and is called gbest (gb). 

The particle swarm optimizat ion concept consists of, at each t ime step, changing the velocity of (accelerating) each 

particle toward its pbest and lbest locations (local version of PSO). Acceleration is weighted by a random term, 

with separate random numbers being generated for acceleration toward pbest and lbest locations.  

In past several years, PSO has been successfully applied in many research and application areas. It is demonstrated 

that PSO gets better results in a faster, cheaper way compared with other methods.  

One reason that PSO is attractive is that there are few parameters to adjust. One version, with slight variations, 

works well in a wide variety of applicat ions. Particle swarm optimization has been used across a wide range of 

applications, as well as for specific applications focused on a specific requirement. 

The method is derivative free, constrained problems can simply be accommodated using penalty functions. The 

calculation of the velocity vector and the new position is according to Eqs. 67 and 68. 

 

         )()(: 2211

k

i

bk

i

b

i

k

i rcrc xgxpvv
1k

i  ,       (67) 

 

           t1k

i

k

i

1k

i

  vxx : ,        (68) 

 

where 1r  and 2r  are independently generated random numbers in the interval [0,1], and 1c , 2c  are parameters 

with appropriately chosen values. v is the velocity vector, x is the position vector, t is the time step. We have used 

crazy b irds with the probability of 1.5 %. The particle number was 500. The cognitive learning coefficient is c1 = 

2.0, the social learning coefficient is c2 = 1.4 [17]. 

In the PSO process the cost function represents the fitness value to be minimized. Th is value is used for the 

selection of the alternatives. 
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Table 3: Results of optimization with discrete values 

 

 Rectangular, welded Square, welded Rectangular, rolled Square, rolled 

b0 2650 4500 1110 4250 

b01 5250 4500 4450 4250 

q 2 3 1 3 

q1 4 3 3 3 

h 560 670 610 914 

h2 400 460 914 914 

tw 8 10 11.1  15.9 

tw1 6 8 15.9 15.9 

n 4 8 4 8 

n1 7 3 6 3 

t 6 8 5 5 

t1 7 4 10 5 

tf 40 40 17.3 23.9 

tf1 30 40 23.9 23.9 

b 300 260 228.2 304.1 

b1 300 140 304.1 304.1 

σ  [MPa] 354.6<355 354.7<355 346.5<355 352.2<355 

K  [$] 97857.3 102667.4 92226.1 96837.6 

 

13. Results of the optimization 

 

Table 3 shows the optimum sizes of the structure using particle swarm optimization. There are 1 4 unknowns for 

welded, 8 unknowns for ro lled  sections  and one constraint on stress (Eq. 32), one on horizontal deformat ion (Eq. 

20), two for stiffener web buckling (Eqs, 36, 37) and two for fabrication (Eq . 38). The stress constraint is usually 

active. Reliability aspects here in this design has not been considered, but in other cases it has been considered 

[18]. 

 

14. Conclusions 

 

A cantilever co lumn loaded by a compression force and a bending moment caused by a horizontal force is 

investigated. We found that, in case of uniaxial bending, the rectangular cross section is more economic than the 

square one. In the given numerical example, the plate thicknesses should be too large for fabrication in  the 

unstiffened case. Therefore stiffened plates should be used. We have elaborated  the minimum cost design of a 

column with rectangular cross-section and cellular plate walls. 

Stress and horizontal deformat ion constraints are formulated. In the stress constraint the face plate buckling is 

taken into account by using effective widths. Local buckling constraint is used for the web of welded T-stiffeners. 

The calculation shows, that the rectangular cellu lar plate is more economic then the square one. The cost saving is 

around 13 %. Calcu lations show, that using rolled stiffeners is slightly more economic than welded stiffeners  due 

to the fact that less welding is needed. 

The cost function is formulated according to the fabrication sequence and consists of cost of material, welding and 

painting. The constrained function min imization is performed by using the particle swarm optimization method. 

The result shows, that using cellular plate for this type of co lumn can be economic, even if the weld ing is an  

expensive procedure. 
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