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Abstract 

The effect of strong confinement on the positional and orientational ordering is examined in a 

system of hard rectangular rods with length L and diameter D (L>D) using the Parsons-Lee 

modification of the second virial density- functional theory. The rods are nonmesogenic (L/D<3) 

and confined between two parallel hard walls, where the width of the pore (H) is chosen in such 

a way that both planar (particle’s long axis parallel to the walls) and homeotropic (particle’s long 

axis perpendicular to the walls) orderings are possible and a maximum of two layers are allowed 

to form in the pore. In the extreme confinement limit of DH 2 , where only one layer 

structures appear, we observe a structural transition from a planar to a homeotropic fluid layer 

with increasing density, which becomes sharper as L H. In wider pores (2D<H<3D) planar 

order with two layers, homeotropic order, and even combined bilayer structures (one layer is 

homeotropic, while the other is planar) can be stabilized at high densities. Moreover, first order 

phase transitions can be seen between different structures. One of them emerges between a 

monolayer and a bilayer with planar orders at relatively low packing fractions.     

 

 Introduction 

 It is still a fascinating topic from both fundamental and practical points of view to 

examine hard body fluids in slit-like pores as a model system of nanoparticles in nanopores [1,2]. 

The reason for this is that the connection between two- and three dimensional systems can be 

examined by tuning the wall separation (H) between the parallel walls. For example, although 
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first order melting transitions of spherical hard particles weaken and become continuous with 

decreasing H, an intermediate hexatic phase emerges between fluid and solid structures as 

0H  [3]. In addition, several crystalline structures can be generated such as the layered 

structures with square and triangle symmetry inside the pore. The stability of these phases 

depends on how many layers can accommodate between the confining walls [4,5]. The case of 

anisotropic hard particles is more complicated in pores as several mesophases can be present, 

which are stable even in the bulk limit such as the nematic, smectic A and columnar mesophases 

[6,7]. Smooth surfaces usually prefer the planar ordering at the walls and promote the formation 

of orientationally ordered phase [8], while rough ones may work against ordering [9]. With some 

surface treatments and rubbing it is possible to achieve either planar or homeotropic ordering at 

contact to the wall, which is very important in the development of display devices [10-12].  The 

ordering behaviour can be examined in hybrid cells, too, where one wall favours the planar 

ordering, while homeotropic alignment is induced at the other wall. The ordering of anisotropic 

mesogenic particles may be uniform, linear and even step-like due to the subtle interplay 

between the anchoring energies of the conflicting walls [13-17].  

 The nematic ordering of hard rods is very different in wide and narrow slit-like pores 

even if only excluded volume (steric) interactions are present. The wall-particle repulsion 

supports planar ordering to maximize the available space for the particles, i.e. the surface of the 

wall is always wet by a planar nematic film even if  the system is very dilute and H . 

However, the middle of the pore can be isotropic and a capillary nematisation (isotropic-nematic 

transition) may occur with increasing density. This capillary transition weakens with decreasing 

H and terminates in a critical point [18,19]. The critical pore width (H) of the capillary 

nematisation is about 2-3 times larger than the length of the rod, but it depends weakly on the 

shape anisotropy of the particles [20]. Note that this is not a common property of all liquid 

crystals as the first order nature of the isotropic-nematic transition can survive even in the 

0H  limit in some systems [21]. Another important phenomenon in the system of confined 

hard rods is the biaxial nematic wetting at the walls. Due to the strong adsorption of particles at 

the walls, an in-plane aligning transition can be induced with increasing density, which takes 

place between uniaxial nematic and biaxial nematic films [22,23]. This transition survives even 

in the extreme confinement limit 0H ; therefore, it is interpreted as the isotropic-nematic 

transition of two-dimensional (2D) hard rods [24,25].  Along these lines, both experimental and 

theoretical studies have been devoted to the capillary nematisation and the surface ordering in 

strongly confined lyotropic and thermotropic liquid crystals [10, 26-30]. Even a second order 

isotropic-nematic phase transition can be observed in extremely confined semiflexible polymer 

solutions [31]. 

 In our study we examine the effect of strong confinement on the orientational and 

positional ordering of non-mesogenic hard rods. This is motivated by our recent study of 2D hard 

rectangles, where the particles are weakly anisotropic and are confined between two parallel 

lines [32]. Using the exact transfer operator method it has been shown that planar-to-



homeotropic orientational and monolayer-bilayer structural changes may arise in very strong 

confinements. These orientational and structural changes are continuous, without any 

nonanalytic behaviour in the thermodynamic quantities. However, the peak in the heat capacity 

and the sudden changes in the equation of state suggest that the confined rectangles undergo a 

strong structural transition which might turn to be a true phase transition in some three 

dimensional (3D) systems, such as the hard cuboids between two parallel walls.  To our best 

knowledge only very few works are devoted to the ordering properties of weakly anisotropic 3D 

hard particles, where the width of the confinement is of the order of the particles dimensions. 

Khadilkar and Escobedo examined the positional ordering of polyhedral particles in slit-like 

pores, where the width of the pore is varied to see the structure of layered phases up to five 

layers [33]. Computer simulation studies of hard ellipsoids [34] and hard spherocylinders [35] 

support the belief that the strong confinement of weakly anisotropic particles promotes the 

formation of nematic order and layered structures even if the shape anisotropy of the particles is 

not enough large to form a nematic phase in bulk. Here we investigate the role of strong 

confinement on both orientational and positional ordering of hard cuboids and search for the 

possible phase transitions and structural changes at low and high densities.      

 

Theory 

We examine the orientational and positional ordering of rectangular hard rods, which are 

placed between two parallel hard walls with wall-to-wall distance H. The rod-like particles are 

modelled as rectangular cuboids with dimensions D and L, where D is the length of the two 

shorter sides, i.e. the cross section of the particle is a square, while L is the length of the long 

side. The particle-particle and the particle-wall interactions are hard repulsive, i.e. the particles 

are not allowed to penetrate each other and to overlap with the confining walls. To determine the 

low and high density structures of the confined hard rods we resort to the classical Onsager’s 

density functional theory with the Parsons-Lee modification [36,37] to make it suitable for 

weakly anisotropic particles. Even though this theory is approximate, it reproduces the 

simulation results for confined liquid crystals quite accurately [38]. Note that exact theoretical 

results can be obtained only in the quasi-one-dimensional limit [39] and in some lattice gases 

[40].   Here we present only the working equations and the differences from the equations of our 

previous study [20], where we studied the phase behaviour of long hard rods (L/D>10) in wide 

pores. As before, we restrict the orientational space of the long axis of the particle to three 

mutually orthogonal directions (Zwanzig approximation), which are chosen to be the Cartesian 

axes (x, y and z), where x and y axes span the confining flat surfaces, while z axis is 

perpendicular to the walls.  We do not consider the possible in-plane positional order 

(crystallisation), which is known to be only quasi-long-ranged and the transition from isotropic 

fluid to solid is continuous Kosterlitz-Thouless type [41]. Therefore, the local density    

depends only on z coordinate of the position vector   zyxr ,,


 in our formalism. The packing 



fraction () with the above conditions can be determined from the local densities of orientations 

x, y and z, i.e.  
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where 2
0 LDv  is the volume of the cuboid particle, AHV   is the volume of the pore, A is the 

area of the confining walls,  zi  is the local density of the orientation i. The lower and upper 

limits of integrations in Eq. (1) are  2/,2/ DHD   for x  and y , while  2/,2/ LHL   

for z . This means that the origin of the Cartesian system is in one of the walls. The key quantity 

to determine the local densities in inhomogeneous fluids is the grand potential   . On the level 

of Onsager’s second virial theory with the Parsons-Lee modification, it is given by   
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where   1
 TkB  is the inverse temperature, i

extV  is the external potential acting on a particle 

with orientation i and the walls,   is the chemical potential,    2
14/31


 c is the 

Parsons-Lee prefactor and ij
excA is the excluded area between two cuboids with orientations i and 

j. The explicit expressions for i
extV  and ij

excA  can be found in our previous work [20]. Note that 

Eq. (2) reduces to Onsager’s theory in the low density limit ( 0 ), which corresponds to 

1c . In order to determine the equilibrium local densities, the grand potential has to be 

minimized with respect to all density components, i.e.     0// zA k  (k=x,y,z).  The 

functional differentiation results in 
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rearrangements of Eq. (3), we can express the local densities as 
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Eq. (4) defines a self-consistent set of equations for x , y  and z , which can be solved 

iteratively at a given chemical potential, shape anisotropy and pore width. Note that 0
d

dc
 in 

the original Onsager’s formalism. Instead of working with  , we substitute Eq. (4) into Eq. (1), 

which results in the following expression for the chemical potential  
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This expression allows us to replace   with  in Eq. (4) and obtain a set of equations for the 

local densities in terms of packing fraction as follows: 
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We have solved iteratively the above coupled equations for the local densities at a given , L/D 

and H. The numerical integrations are performed with the trapezoidal quadrature. Having 

obtained the local densities from Eq. (6), we can calculate the grand potential and the chemical 

potential using Eqs. (2) and (5). First order phase transitions are located at the intersection point 

of two different solutions of Eq. (6) in the A/   plane, which corresponds to the equality 

of chemical potentials and that of pressures of the coexisting phases. In the following section we 

present our results in dimensionless units, where D is the unit of distance, i.e. 3Dii   and 

DHH / . 

 

 



Results 

Even though our formalism can be applied for wide pores and long rods, here we 

consider only weakly anisotropic particles in very narrow pores and search for possible structural 

changes and phase transitions.  The shape anisotropy of the cuboidal particle (L/D) has two 

restrictions: 1) L/D<3, i.e. the particles are nonmesogenic in bulk, and 2) H>L, i.e. the particles 

are allowed to stay both in planar (long axis of the particle is parallel to the walls) and 

homeotropic (long axis of the particle is perpendicular to the walls) orientations in the pore. We 

also restrict our attention to such narrow pores that a maximum of two fluid layers are allowed to 

form. This can occur only if H<3D. Before presenting the results, it is worth determining the 

possible one- and two-layer structures in the close packing limit to check the reliability of the 

forthcoming results. Three different close packing structures can be identified in our confined 

system with the above conditions, which can be summarized as follows: a)  only one 

homeotropic layer is allowed to form for DH 2  and for DHD 32   if DL 2 , b) two 

layers with planar ordering for DHD 32   if DL 2  and DHL  , and c) one layer is 

planar, while the other is homeotropic for DHD 32   if L<2D and DHL  . These close 

packing structures are shown together in Figure 1. Note that we do not consider those cases when 

two homeotropic layers can form in the pore, i.e. when L<H/2. 

We first present our results for H/D=2, where only one layer of fluid is allowed to form 

both in planar and homeotropic orientations. In this case the local densities do not depend on z as 

all excluded areas are independent from 21 zz   distance of the particles 1 and 2. The structure of 

the monolayer for varying L/D is shown in Fig. 2, where the fraction of particles in planar and 

homeotropic configurations are calculated from  
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where the evaluation of the integrals are trivial for DH 2  as 

         yxyx DHzzdz   and      zz LHzdz  . Fig. 2 shows that the 

structure is dominantly planar at low densities, while it is homeotropic at high ones. As 

HL  the order is more and more planar for 5.0 , i.e. 1PX and 0HX . This can be 



attributed to the fact that the available space along z axis in planar orientation is DH  , while 

the homeotropic ordering allows less positions for the particles as the available room along z axis 

is just LH  .  The reason why the monolayer becomes homeotropic for 5.0  is that the 

maximum packing fraction ( max ) is just 0.5 in planar, while it is HD /2  in homeotropic order. 

This means that the only way to form closely packed structure if the monolayer undergoes a 

structural change from planar to homeotropic order. One can show that  

   DLHDHX P 232   at very low densities, because the translational and orientational 

entropy terms  ii  ln  determines the structure of the system, while the packing entropy 

(excluded area) terms are negligible. From this expression one can see immediately 

that 3/2PX for L=D (x, y and z directions are equally probably) and 1PX  for L=2D (all 

particles are in the x-y plane). However, at high densities the packing entropy term wins over the 

translational and orientational ones because the excluded volume term can be minimized 

between the particles by homeotropic ordering (  LHDdzAV zz
exc

zz
exc  

2 ) in Eq. (2).  

Therefore the structural planar-homeotropic change is the result of a subtle competition between 

the translational, orientational and the excluded volume terms of the grand potential. Our search 

for possible in-plane orientational ordering has resulted into no biaxial order, i.e. yx   for any 

DL 2 . This is not surprising because even 2D objects with a shape anisotropy less than 3 do 

not form a nematic phase in a plane. 

In wider pores, i.e. DHD 32  , we encounter the situation that an inhomogeneous 

fluid is allowed to form with two layers and the close packing structure depends on L.  We show 

the resulting phase diagrams in Fig. 3 for DH / 3, 2.5 and 2.2 and the possible structures in 

Fig. 4. These are the followings: uniaxial planar (UP), biaxial planar (BP), homeotropic 

monolayer (H), and special bilayers with homeotropic order at one end and uniaxial or biaxial 

planar order at the other one (UT and BT). The previously discussed planar-homeotropic 

structural change survives at DH / 3 if 2/ DL , but it is now first order transition between 

planar bilayer and homeotropic monolayer phases. The coexisting planar phase can be either 

uniaxial ( yx   ) or biaxial ( yx   ) as the second order uniaxial-biaxial (UP-BP) transition 

crosses the biphasic region. Therefore the following phase sequences can be seen with increasing 

density for DH / 3 (Fig. 3(a)): (1) UP  BP  H for 3/5.2  DL  and 1.2/2  DL  and 



(2) UP  H for 5.2/1.2  DL . The density profiles of these phases indicate that: (i) UP phase 

consists of two fluid layers with strong adsorption at the walls and a few percent of the particles 

with homeotropic order in the middle of the pore (Fig. 4(a)); (ii) in BP phase, particles mostly 

align along the x axis at both walls (Fig. 4(b)); and (iii) in H phase, particles order along the 

normal of the confining plates without adsorption at the wall (Fig. 4(c)).  It is clear that the UP-

BP transition line moves up in density with decreasing shape anisotropy as the excluded area 

gain becomes less with in-plane ordering. The widening stability region of the BP phase for 

L/D>2.5 is due to the translational entropy loss along the z axis in the homeotropic phase as 

3/ DL . However, it is harder to understand the stabilization of the planar phase with respect 

to homeotropic order for L/D<2.5 because the translational entropy term is now larger in the 

hometropic order. Therefore, the packing entropy may be the main factor in this phenomenon as 

the close packing planar and homeotropic densities are becoming closer to each other as 

2/ DL . The existence of biaxial structures at lower L/D is due to the stronger destabilization 

of the homeotropic ordering than that of UP-BP transition as 2/ DL . The situation is 

dramatically changed for 2/ DL  (see Fig. 3(a)), because combined bilayer phases (UT and 

BT) can be more packed than the planar and homeotropic structures. The density profiles for the 

case 85.1/ DL  with increasing density show that the planar particles are depleted from the 

middle of the pore at 3.0  (Fig. 4. (d)), both planar and homeotropic particles are adsorbed at 

the walls and the central region of the pore becomes practically empty at 55.0  (Fig. 4. (e)), 

segregation of the homeotropic and planar particles occurs at the opposite walls at 65.0 (Fig. 

4. (f)) and even biaxial order can take place in the planar layer at 75.0  (Fig. 4. (g)). 

Interestingly, the transition between UP and UT phases is of first order and becoming weaker 

with decreasing DL / . The disappearance of this transition is due to the fact that a homeotropic 

bilayer structure emerges for 5.1/ DL , which can be more packed than the combined one. 

Biaxial order can only be stable at very high densities through a second order UT-BT transition, 

as the shape anisotropy is very weak. The phase diagram in narrower pores ( 5.2/ DH  and 

2.2/ DH ) is similar, but the coexistence curve between planar bilayer and homeotropic 

monolayer structures is shifted to higher packing fractions and the coexisting planar bilayer is 

biaxial as there is no intersection between the first and second order transitions (see Fig. 3(b)). 

However, the region of DLDH 2 , which is not empty for DH 3 , is special in the sense 



that the close packing can be achieved with the planar bilayer structure. Therefore it is interesting 

that planar bilayer ordering develops continuously with increasing density for 5.2/ DH  in the 

range of 2/5.1  DL . In narrower pores ( 3.2/ DH ) we have found that the process of 

planar bilayer ordering is accompanied by a first order transition between monolayer and bilayer 

phases (see Fig. 5). The density distributions of these structures are shown in Figs. 4(h) and (i). 

We can see that the hard rods do not form a bilayer up to the transition point with increasing 

density, because the density profiles are uniform with some adsorption at the walls in planar 

orientation, 0 yx   in the middle of the pore, and with lots of particles in homeotropic 

orientation (see Fig. 4(h)). In addition, there is no reason to form a bilayer as the packing fraction 

is below the maximal packing fraction of the planar monolayer structure 

  HD /monolayermax  . Fig. 4(i) shows that the confined fluid consists of two planar layers 

at higher densities, as  0 yx   in the middle of the pore, and density profiles are strongly 

peaked at the walls, with  monolayermax  . It can also be seen that planar bilayers are 

interrupted by homeotropic particles, as 0z  in the middle of the pore. Therefore the phase 

transition in Fig. 5 can be considered as a monolayer-bilayer layering transition, which has been 

observed so far in a system of confined hard rods with larger shape anisotropies and with 

homeotropically aligning walls [42]. The existence of biphasic islands can be attributed to the 

presence of homeotropic rods. The left end of the island is due to the weak shape anisotropy as 

homeotropic short rods can easily reorient into the planar direction. The right end of the biphasic 

region can be also understood because there are less and less homeotropic rods with increasing 

shape anisotropy as translational entropy decreases. This can be seen clearly in the shift of the 

right end towards lower values of L/D with decreasing pore width H. The width of the pore is 

also an important factor in the stabilization of first-order layering transitions, because a 

substantial loss in the translational entropy is necessary during the formation of the bilayer. This 

happens when two layers cannot accommodate easily into the pore, i.e. DH 2 .  This is the 

reason why we do not observe layering transitions for 3.2/ DH . Note that the biphasic island 

exists for 1.2/ DH , but that it moves into the direction of very high packing fractions and 

becomes smaller. 

 



Conclusions  

We have shown that a system of weakly anisotropic rod-like particles can undergo a 

phase transition in narrow slit-like pores where the particle-particle and particle-wall interactions 

are hard repulsive. Therefore the system is athermal and entropy driven. The systems 

investigated are practically quasi-two-dimensional as the pore width is chosen such that a 

maximum of two layers are allowed to form between the confining hard walls. Depending on the 

shape anisotropy of the rods, pore width and density, several mesophases can be realized, such as 

orientationally ordered monolayers and bilayers with in-plane uniaxial or biaxial order. Although 

the hard walls always support the planar ordering to maximize the translational entropy, the 

packing entropy may win over the other entropy terms and give rise to homeotropic ordering at 

high densities. If only a monolayer is allowed to form, i.e. H<2D, the wall-induced planar 

monolayer transforms continuously into a packing-entropy-induced homeotropic monolayer with 

increasing density.  In wider pores 2D<H<3D, as a result of the competition between  

translational, orientational and packing entropy terms, our scaled Onsager theory predicts first 

order phase transitions between monolayers and bilayers.  The low density planar monolayer 

may transform continuously or discontinuously into middle density planar bilayer. At higher 

densities the bilayer may exhibit a second order ordering transition from uniaxial to biaxial 

phases, which takes place in the plane of the walls. In addition to this, the planar bilayer may 

transform into homeotropic monolayer or UT bilayer through first order phase transitions. 

Among these transitions, the monolayer-bilayer layering transition of the cases 3.2/ DH  takes 

place at the lowest packing fractions  5.0~ , which is far from the maximal  of the planar 

bilayer  1~/2max HD  . Interestingly the UP-UT transition can take place at similarly low 

packing fractions if HL ~2 . However, the UP-H transitions are located at very high densities, 

which are sometimes very close to the close packing of the homeotropic order, i.e.  

HL /~ max  . Therefore, it may happen that the confined bilayer fluid freezes first, and then 

the quasi-two-dimensional crystal transforms into the homeotropic one, both coexisting phases 

being crystalline. To resolve this issue, an extension of the theory for in-plane positional ordering 

is needed. Finally, we mention that our previous 2D exact results are consistent with our present 

mean field results in the sense that confined hard rectangles exhibit very similar structural 

changes [32].  



It is remarkable that a planar-to-homeotropic transition is observed in the presence of flat 

surfaces with increasing density. Such a phenomenon is also observed in a system of hard 

Gaussian overlap particles with a special wall-needle interaction [14] and in stiff ring polymers 

on hard walls [43]. Other examples belong to the realm of thermotropic liquid crystals, where the 

surfaces of the cell are treated and the planar-to-homeotropic transition takes place with 

decreasing temperature [44]. It remains an open question whether the density induced planar-to-

homeotropic ordering survives in wider pores and whether a bistable device or a pressure sensor 

could be fabricated with such hard particles [45].     
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Figure caption 

Figure 1 

Cartoons show the close packing structures of hard rectangular rods with square cross sections in 

a slit-like pore. A single homeotropic layer (upper panel), a planar bilayer (middle panel) and a 

combined bilayer (lower panel) structures can be realised with the shown H/D and L/D 

parameters. 

Figure 2 

Planar-to-homeotropic structural change of hard rods in a narrow slit-like pore (H/D=2), where 

only one layer of particles is allowed to form.  Fraction of hard rods in planar (XP) and 

homeotropic (XH) ordering is shown as a function of packing fraction for L/D=1.9, 1.99 and 

1.999. 

 

 



Figure 3 

Phase diagram of confined hard rods in the packing fraction  shape anisotropy (L/D) plane 

for wall-to-wall separations of H/D=3 (upper panel), H/D=2.5 (lower panel) and H/D=2.2 (inset 

of the lower panel).  The curves show the boundaries of the different structures. The following 

structures are found: uniaxial planar (UP), biaxial planar (BP), homeotropic (H), uniaxial (UT) 

and biaxial combined two-layer (BT) structures. The symbols designate few stable points of the 

observed phases. The structures of the hard rods at these symbols are shown in Figure 4. The 

biphasic regions are shaded with grey colour.  

Figure 4 

Density profiles of the stable structures as a function of z*=z/D in wide (H/D=3) and narrow 
(H/D=2.25) pores at different packing fractions and shape anisotropies, which can be identified 
with the help of the shown symbols in Figs. 3 and 5. The local density components 

 zx
 (black),  zy

  (red) and  zz
  (blue) are shown together in the diagrams. The following 

stable structures are seen: a) uniaxial planar       zzz zyx
   , b) biaxial planar 

      zzz zyx
   , c) homeotropic       zzz zyx

   , d) uniaxial weakly planar 

with non-negligible portion of particles in homeotropic order, e) uniaxial strongly planar with 
some homeotropically ordered particles at the vicinity of the walls, f) uniaxial bilayer with 
homeotropic order at the left wall and planar order at the right wall, g) biaxial bilayer, h) uniform 
monolayer with weak adsorption in planar order at the walls and i) uniaxial planar bilayer with 
few particles in the homeotropic order.    

 
Figure 5 

Phase coexistence between monolayer and bilayer fluids in packing fraction  shape anisotropy 

(L/D) plane for pore widths H/D=2.1, 2.15, 2.2 and 2.25. The density profiles of the uniform 

and planar phases, which are marked by symbols, can be seen in Figs. 4 h) and 4 i). 
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