This manuscript is textually identical with the published paper:

Caspian Chelicorophium species (Crustacea, Amphipoda, Corophiidae) by food particle size. Aquatic
Ecology 52(2): 179-190. DOI: 10.1007/s10452-018-9653-8

The original publication is available at:

Niche differentiation among invasive Ponto-Caspian Chelicorophium species (Crustacea, Amphipoda,
Corophiidae) by food particle size

Péter Borza¹2*, Thomas Huber³, Patrick Leitner³, Nadine Remund⁴, Wolfram Graf⁰

¹GINOP Sustainable Ecosystems Group, MTA Centre for Ecological Research, Klebelsberg Kuno utca
3, H-8237 Tihany, Hungary
²Danube Research Institute, MTA Centre for Ecological Research, Karolina út 29-31, H-1113
Budapest, Hungary
³Department of Water, Atmosphere & Environment, Institute for Hydrobiology & Water Management,
BOKU - University of Natural Resources and Applied Life Sciences, Gregor Mendel Strasse 33, A-
1180 Vienna, Austria
⁴Info fauna – CSCF, Passage Maximilien-de-Meuron 6, CH-2000 Neuchâtel, Switzerland
* E-mail: borza.peter@okologia.mta.hu, tel: +361-279-3100/306

Acknowledgements

Joint Danube Survey 3 was organized by the International Commission for the Protection of the
Danube River (ICPDR). We would like to thank everyone involved in the organization, field work,
and evaluation of the survey for their effort, and Zsuzsanna Trábert for her assistance during the
microscopy. This work was supported by the MARS project (Managing Aquatic ecosystems and water
Resources under multiple Stress) funded by the European Union under the 7th Framework Programme, grant agreement no: 603378, and the Economic Development and Innovation Operational Programme (GINOP) 2.3.2-15-2016-00019 grant. Péter Borza was supported by the Scholarship of the Scholarship Foundation of the Republic of Austria for Post-docs from October 2013 until March 2014 (funding organization: Österreichischer Austauschdienst GmbH on behalf of and financed by the Scholarship Foundation of the Republic of Austria).

Abstract

After Chelicorophium curvispinum, two other Ponto-Caspian tube-dwelling, filter feeding amphipod species (C. robustum and C. sowinskyi) have colonized several catchments in Central and Western Europe in recent decades. To reveal the mechanism of niche differentiation among them, we measured the mesh sizes of their filtering apparatus and analyzed multi-habitat sampling data from the River Danube using RDA-based variance partitioning between environmental and spatial explanatory variables. Morphometric data showed clear differentiation among the species by filter mesh size (C. curvispinum > C. robustum > C. sowinskyi). Field data also indicated the relevance of suspended matter; however, the mere quantity of suspended solids included in the analysis could not explain the abundance patterns effectively. Current velocity, substrate types, and total nitrogen content also had a non-negligible effect; however, their role in the niche differentiation of the species is not evident. In summary, differences in their filter mesh sizes indicate a niche differentiation by food particle size among the invasive Chelicorophium species, allowing their stable coexistence given sufficient size variability in their food source. Consequently, the two recent invaders increase the effectiveness of resource utilization, resulting in a more intensive benthic-pelagic coupling in the colonized ecosystems.

Keywords

benthic-pelagic coupling, filter feeding, invasion impact, River Danube, suspended matter
Introduction

Suspension feeding organisms play a key role in aquatic ecosystems by linking the pelagic and benthic compartments of the food web (Atkinson et al. 2013; Zhang et al. 2016; Griffiths et al. 2017).

Accordingly, the establishment of a filter feeding invader can induce profound changes in the functioning of both running and still waters (Sousa et al. 2014), well exemplified by the invasion impact of the Ponto-Caspian dreissenid mussels, implying reduced plankton biomass, increased water clarity favoring benthic algae and macrophytes, cyanobacterial blooms, increased benthic invertebrate biomass, and consequent changes in fish assemblages (Higgins and Vander Zanden 2010).

The tube-dwelling euryhaline amphipods of the Ponto-Caspian Chelicorophium genus are also suspension feeders, receiving attention mainly on account of their successful range expansion in several Central and Western European catchments since the early 20th century. Chelicorophium curvispinum (G.O. Sars, 1895), the first species of the genus to arrive in Western Europe (Bij de Vaate et al. 2002) had a dramatic impact on the colonized waters, especially in the eutrophic River Rhine.

Here, the species reached extreme high densities in the 1980-90s (Van den Brink et al. 1993), and formed a thick layer of muddy tubes on hard substrates which suffocated adult Dreissena mussels and prevented the settlement of their larvae, resulting in the decline of the population (Van der Velde et al. 1994). At the same time, the species became an important food source for fish (Kelleher et al. 1998).

Although its abundance had decreased in the Rhine by the 2000s, presumably due to increased predation pressure after the invasion of Dikerogammarus villosus (Sowinsky, 1894) (Van Riel et al. 2006), the species continues to be a key member of benthic macroinvertebrate assemblages in most invaded waters (Noordhuis et al. 2009; Hellmann et al. 2015).

Recently, two additional representatives of the genus extended their ranges in Central and Western Europe using the Danube-Rhine system. Chelicorophium robustum (G.O. Sars, 1895) – formerly present in the Danube only downstream of the Serbian river section – was recorded in the River Main in 2000 (Bernauer and Jansen 2006; Altermatt et al. 2015), and recently it was found in the Rhine (Bernauer and Jansen 2006; Altermatt et al. 2015).
as well as in several connected French waterways (Labat et al. 2011). The third species, *Chelicorophium sowinskyi* (Martynov, 1924) was found in the Middle Danube already in the 1910s (Borza 2011), and recent records confirmed its presence in Austria, Germany, France, and Switzerland, as well (Bernerth and Dorow 2010; Borza et al. 2010; Forcellini 2012; Altermatt et al. 2014).

Despite their key functional role in aquatic ecosystems, the ecology of the invasive *Chelicorophium* species has received little scientific attention so far. Consequently, the mechanism of niche differentiation among the three species – informative of how the two recent invaders modify the impact of *C. curvispinum* – has not been revealed. Benthic filter feeding species usually compete for food or space (Svensson and Marshall 2015). In the former case, niche differentiation is achieved through partitioning of food sources by particle size (e.g. Lesser et al. 1992; Kang et al. 2009), while in the latter case the species show spatial separation along certain environmental factors, such as substrate properties, current velocity, or water depth (e.g. Brönmark and Malmqvist 1982; Jones and Ricciardi 2005). The two factors cannot be separated in all instances; e.g. hydropsychid caddisflies with larger filter mesh sizes tend to occur in microhabitats with stronger currents (Wallace et al. 1977).

In the present study we aimed to reveal the mechanism of niche differentiation among the invasive *Chelicorophium* species by focusing on the two most likely factors. First, we examined whether differences can be observed in the mesh sizes of the filtering apparatus of the three species, suggesting niche differentiation by food particle size. Second, we tested whether certain environmental variables indicate spatial niche differentiation.

Material and methods

Morphometric data

We measured the filter mesh size of the invasive *Chelicorophium* species on microscopic dissections from specimens collected in the Lower Danube, where all three species occur natively (see ‘Field data’ for details on the sampling). Since abundant materials of all three species – allowing the representation
of their full body size spectrum in both genders – were not available from the same site, we included specimens from a site where the three species were present in similar density (river km 104, Sf. Gheorghe arm of the delta), and supplemented the material from sites where the species were abundant (river km 375 for *C. curvispinum* and *C. robustum*, and river km 532 for *C. sowinskyi*; Table 1).

The filter of corophiids is formed by two rows of plumose setae on the anterior margin of the merus of the second gnathopod, where the mesh size is determined by the distance between bristles (Riisgård and Larsen 2010: 275, fig. 25-26). To get a clear view on the medially oriented bristles of the distal (apical) row of setae, we carefully removed the medial (subapical) row of setae using a sharp pin under stereomicroscope. We then mounted the detached limbs on a slide and took digital photographs under light microscope with 100-fold magnification. Since the length of bristles appeared to increase toward the end of the setae and the distances between them increased accordingly, we took pictures of the relatively short and densely arranged basal bristles, the distances of which were assumed to provide a good approximation the filtered particle sizes (the long distal bristles can lean in the current, so the actual distances between them might be smaller). To diminish measurement error, we measured the distance between five bristles, which might imply a slight underestimation of the within-individual variation of filter mesh sizes (presented here as the distance between the centers of two neighboring bristles in μm). We made ten independent (i.e. non-overlapping) measurements on each specimen using the tpsdig 2.22 digital picture analysis software (Rohlf 2015).

Field data

The field samples analyzed in the present study were collected during the Joint Danube Survey 3 (13 August–26 September 2013) at 55 sites of the river between Ulm (river km 2,581) and the Delta (river km 18, Kiliya branch; Fig. 1) by the ’multi-habitat’ approach based on, but not strictly following the AQEM protocol (Hering et al. 2004). At each site, 4-7 samples (altogether 251) consisting of five pooled units covering 25 x 25 cm bottom area were collected in the littoral zone by hand net (aperture: 25 x 25 cm, mesh size: 500 μm), representing all available habitat types (Table 2). All samples were preserved in 4% formaldehyde solution in the field, and stored in 70% ethanol after sorting. Sorting
was facilitated by fractioning the material on a set of sieves (mesh sizes: 0.5, 2, 5, 10, and 20 mm). In some cases, two to 64-fold subsampling of the smallest one or two fractions was necessary due to the extremely high number of juvenile animals in the samples. Chelicorophium specimens (altogether 11,451 individuals) could be identified to species level above ~2 mm body length (9,282 ind.); unidentifiable juveniles were omitted. Depth (range: 0.1-1.2 m) and current velocity (0-0.37 m/s; measured at approx. 5 cm from the bottom using Marsh-McBirney Flo-Mate™ Portable Velocity Flow Meter Model 2000) were recorded for each subsample and averaged separately for each site. Conductivity (9.29-566.00 μS/cm), pH (7.89-8.43), dissolved O₂ (5.89-10.42 mg/l), dissolved organic carbon (1.59-7.63 mg/l), total nitrogen (0.52-3.37 mg/l), total phosphorus (0.02-0.11 mg/l), and chlorophyll-a concentration (0.10-18.77 μg/l) were measured at two points per site near the river banks, whereas the concentration suspended matter (‘total suspended solids’, TSS hereafter; 2.5-50.0 mg/l) was recorded at one point per site during the survey.

Statistical analysis

We modelled filter mesh sizes in two steps. First, for descriptive purposes, we fitted linear mixed-effects models on each species separately, including standard body length (measured between the tip of the rostrum and the tip of the telson), gender, and sampling site as fixed effects, and individuals as a random effect using the ‘nlme’ package (Pinheiro et al. 2016) in R 3.2.5 (R Core Team 2016).

Following the recommendations of Zuur et al. (2009), we assessed the fit of the models including all explanatory variables and their interactions using diagnostic figures. We then fitted variance functions, if considerable heteroscedasticity was detected (the choice of the function was based on AIC and BIC scores; the simpler model was preferred in cases of contradiction between the two scores), and after that we omitted non-significant fixed effects step-by-step based on the t-statistic (juveniles were included only if ‘gender’ was omitted). We characterized the optimal models by the parameters as well as the marginal R^2 (fixed effects; $R_{GLMM(m)}^2$) and conditional R^2 (fixed and random effects; $R_{GLMM(c)}^2$) as defined by Nakagawa and Schielzeth (2013), calculated by the ‘sem.model.fits’ function in the
'piecewiseSEM' package (Lefcheck 2016). We interpret among-individual variance (=random effects) as $R_{GLMM(c)}^2 - R_{GLMM(m)}^2$, and within-individual (=residual) variance as $1 - R_{GLMM(c)}^2$.

Second, to test for interspecific differences, we fitted a linear mixed-effects model on the three species, following the procedure as described for the single-species models. We did not include variables which had proved non-significant in the single-species models.

We tested for spatial niche differentiation by variance partitioning between environmental and spatial explanatory variables based on redundancy analysis (RDA), using the 'varpart' function in the 'vegan' package (Oksanen et al. 2017). We used ln(x+1) and Hellinger-transformed (Legendre and Gallagher 2001) count data (individuals per sample) in the analysis, but we show ind./m2 values in the results and in figures for the sake of comparability. We modelled the spatial structure of the study using the asymmetric eigenvector map (AEM) method (Blanchet et al. 2008a; Blanchet et al. 2011) allowing the consideration of directional spatial processes, induced by the currents in our case. Since the locations of the samples within sites were not recorded, we considered only sites, using river km distances (d_{ij}) weighted as $1/d_{ij}$ (conforming to Borza et al. 2017a), and replicated the values of the generated spatial variables (AEM eigenfunctions) for all samples within each site. We excluded two sites (8 samples) in the two minor arms of the Danube delta (Sulina and Sf. Gheorghe) allowing the one-dimensional representation of the study design including 152 samples from 46 sites (64 samples did not contain Chelicorophium species, and 27 additional samples were omitted due to missing values).

We used the eigenfunctions both with positive and negative Moran’s I values (modelling positive and negative spatial autocorrelation, respectively) in the analysis, which was possible due to the fact that we only had 45 (number of sites minus one) AEM eigenfunctions for 152 samples. We performed forward selection (Blanchet et al. 2008b) on the environmental variables with two different adding limits ($P = 0.05$ and 0.01; using the ‘ordiR2step’ function in the ‘vegan’ package) to provide more insight into their importance, but we used only the wider set of variables ($P = 0.05$) in variance partitioning. For this, we selected spatial variables with $P = 0.05$ adding limit, as well, and tested variance partitions of interest by ANOVA with 9999 permutations. We present the effect of the environmental variables based on their biplot scores in the model including both environmental and
spatial variables. We mapped the environmentally explainable fraction of variance (including the overlap) as well as the only spatially explainable part (without the overlap) by plotting the fitted site scores (= linear constraints; ‘LC’ scores) of the first canonical axis in the corresponding RDA models against river km after Legendre and Legendre (2012).

Results

Morphometric data

The largest mesh sizes were observed in *C. curvispinum* (6.33-18.35 μm; Fig. 2). The inclusion of body length as a fixed variance weight was supported (Table S1), whereas the effects of ‘gender’, ‘sampling site’, and all interaction terms could be neglected (Table S2). Among-individual variance was high and within-individual variation was also considerable, which resulted in a relatively weak but statistically significant body length-dependency (Table 3).

The filter mesh size of *C. robustum* ranged between 4.68 and 13.02 μm, increasing asymptotically with body length (Fig. 2). However, non-linear models did not provide a good fit due to the relatively short saturation interval; therefore, we divided the dataset into two approximately linear parts by maximizing the difference between the slopes of the two segments, which allowed comparability with the other two species. Below 5.5 mm, mesh sizes showed a clear linear increase with body length despite considerable among- and within-individual variation (Table 3), whereas the effects of ‘gender’, ‘sampling site’ and the interaction terms were not significant(Table S2). The inclusion of variance functions in the model was not supported (Table S1). Above 5.5 mm, the effect of body length on filter mesh size was not significant (*P* = 0.152). ‘Gender’ and ‘sampling site’ were not included in the model due to the strongly unbalanced design (only females attained sizes larger than ~ 6 mm, and large specimens were rare at river km 104), and the usage of variance functions was not necessary, either (Table S1). Since fixed effects were not included in the model and among-individual variability was moderate, most of the variation was attributable to within-individual differences (Table 3).
The filter mesh size of *C. sowinskyi* was the smallest among the three species, ranging between 2.64 and 6.87 μm (Fig. 2). The usage of body length as a fixed weight was supported (Table S1), as variance increased considerably with the size of the animals. Filter mesh size showed a clear linear increase with body length, and the interaction between body length and gender also proved significant (0.28, SE = 0.05; P<0.001), reflecting the fact that males attained smaller body lengths but had a mesh size range similar to females (the effects of ‘sampling site’ and the interaction terms could be neglected; Table S2). However, for the sake of comparability with the other species, we included only body length in the model shown in Table 3, indicating considerable among-individual, but relatively low within-individual variation.

To allow a meaningful interspecific comparison of filter mesh sizes in spite of the considerable effect of body length, we excluded specimens of *C. robustum* larger than 5.5 mm from the model involving all three species. As the effects of ‘gender’, ‘sampling site’ and the interaction terms proved insignificant in the single-species models (the body length-gender interaction was significant but negligible compared to interspecific differences in *C. sowinskyi*), they were not included in the initial model. The usage of a stratified variance structure was supported (Table S1; parameters. *C. curvispinum*: 1.20; *C. robustum*: 1; *C. sowinskyi*: 0.38). Body length showed negligible interactions among the species (*P* = 0.805 for *C. curvispinum*, *P* = 0.842 for *C. sowinskyi*), so interspecific differences in filter mesh size could be interpreted as the differences among the intercepts of the fitted lines (fixed effects), which were estimated 2.86 μm (SE = 0.37; *P* < 0.001) between *C. curvispinum* and *C. robustum*, and 3.52 μm (SE = 0.40; *P* < 0.001) between *C. robustum* and *C. sowinskyi* (Fig. 2).

Field data

Three *Chelicorophium* species were recorded during the survey of which *C. curvispinum* was the most common, occurring at 51 sites (169 samples) between river km 2,415 and 18 (Fig. 1) with a maximum density of 5,280 ind./m² (median: 42, interquartile range: 10-208; zeros not included). *C. sowinskyi* was found between river km 2,415 and 18 during the survey (38 sites, 106 samples); however, it was missing between river km 1,630 and 1,199 (Fig. 1). It reached extreme high densities (54,835 and
43,904 ind./m²) in two samples taken below the mouth of the River Jantra (river km 532), whereas in other parts of the river its density did not exceed 5,050 ind./m² (median: 37, interquartile range: 10-112 including the two extreme values). *C. robustum* was recorded at 37 sites (89 samples) between river km 2,415 and 26 with a notable gap between river km 1,367 and 1,159 (Fig. 1). The highest density of the species was 5,523 ind./m² (median: 16, interquartile range: 3-64).

The forward selection procedure with *P* = 0.05 adding limit selected TSS, substrate type, current velocity, and total nitrogen concentration of the environmental variables which altogether explained 22.7% (*df* = 13, *F* = 4.40, *P* < 0.001) of the total variation, whereas the nineteen selected AEM eigenfunctions accounted for 43.1% (*df* = 19, *F* = 7.01, *P* < 0.001). The overlap between the two variance portions was considerable (16.0%; not testable), hence 6.7% (*df* = 13, *F* = 2.35, *P* < 0.001) and 27.1% (*df* = 19, *F* = 4.91, *P* < 0.001) could be explained exclusively by environmental and spatial variables, respectively. The two variable sets together accounted for 49.7% (*df* = 32, *F* = 5.67, *P* < 0.001) of the total variation. With *P* = 0.01 adding limit, the only selected environmental variable was TSS, explaining 13.3% alone (*df* = 1, *F* = 24.14, *P* < 0.001).

The Mantel correlogram (Fig. 3) revealed significant positive spatial autocorrelation in the response variables at fine spatial scales (within sites and in the 0-156 river km distance class), which transitioned into significant negative correlation at intermediate distances (156-779 river km). In the largest distance class (934-1,090 river km) autocorrelation was positive again. The selected environmental variables accounted for most of the autocorrelation; the residuals of the environmental RDA model were significantly correlated only within sites. The inclusion of spatial variables successfully eliminated spatial autocorrelation in all distance classes.

The first canonical axis of the RDA (*R*² = 0.409, *df* = 1, *F* = 152.7, *P* < 0.001) separated *C. curvispinum* from *C. sowinskyi*, placing *C. robustum* in an intermediate position (Fig. 4). On the second axis (*R*² = 0.181, *df* = 1, *F* = 67.6, *P* < 0.001), however, *C. robustum* differentiated markedly from the other two species. TSS showed the strongest correlation with the first axis among the environmental variables (biplot scores: RDA1: -0.530, RDA2: 0.359), accounting mainly for the separation of *C. curvispinum* from the other two species. Total nitrogen concentration pointed almost exactly in the same direction as TSS; however, its effect was considerably weaker (RDA1: -0.157,
RDA2: 0.099. Current velocity (RDA1: -0.188, RDA2: -0.366) was associated mainly with C. robustum, whereas the centroids of substrate types concentrated around the origin of the ordination plane, indicating a relatively weak differentiation among the species in this regard. The environmentally explainable variance fraction concentrated between river km 1,300 and 1,159 as a result of a peak in TSS coinciding with the absence of C. sowinskyi and C. robustum (Fig. 5a). The only spatially explainable part of the variance showed a complex distribution along the river with notable peaks in the Iron Gates section and in the vicinity of the delta (Fig. 5b).

Discussion

Our measurements revealed considerable differences in the filter mesh sizes among the invasive Chelicorophium species.. The relationship between filter mesh size and particle capture efficiency is not evident; particles smaller than the mesh size might be retained, especially when the material of the filter is sticky (Shimeta and Jumars 1991). Nevertheless, clearance rate dropped steeply for particles smaller than the mesh size in Corophium volutator (Pallas, 1766) (Møller and Riisgård 2006) in accordance with the particle size distribution of gut contents (Fenchel et al. 1975), suggesting that the primary filtering mechanism in corophiids is sieving (i.e. the mechanical retention of particles larger than mesh size of the filter; Shimeta and Jumars 1991). On the other hand, hydraulic resistance increases with smaller mesh sizes (Cheer and Koehl 1987), implying that less water can be filtered with the same effort; therefore, filters are not efficient at capturing particles considerably larger than the mesh size. Consequently, there is a particle size range for each species where their capture rate is higher than that of the others. Within this range, the species can tolerate a lower resource density than the others, translating into competitive advantage (Chase and Leibold 2003). Nevertheless, a sufficiently wide size distribution of the food particles might allow the coexistence of the species even locally, and spatial heterogeneity in resource availability also might promote their coexistence at the regional scale (Chase and Leibold 2003). Accordingly, the interspecific differences in the filter mesh sizes among the invasive Chelicorophium species revealed in our study indicate niche differentiation by food particle size. Since spatial
differences were not detected over several hundred river km distances, our results can be considered as representative for the Lower Danube. Nevertheless, we expect that a similar pattern will be found wherever the three species coexist, and considerable differences will be observed only in situations where some of the species are missing, implying release from competitive pressure on the others. Our study identified sources of variation in filter mesh size within the species, as well. The body length dependency of the character was marked in all three species, most likely reflecting ontogenetic changes. However, since repeated measurements on cohorts were not made in our study, alternative explanations (i.e. differences among cohorts) cannot be excluded with full certainty. Slight differences could be observed between genders, too, especially in *C. sowinskyi*. However, these are not likely to have ecological relevance; they might merely reflect the considerable sexual dimorphism in body proportions (i.e. males attain smaller standard lengths but have larger antennae). The ratio of unexplained variance in the models was also considerable, especially among and within the individuals of *C. curvispinum*, calling for further analyses.

Field data indicated the relevance of suspended matter in the niche differentiation among invasive Ponto-Caspian *Chelicorophium* species; the majority of the environmentally explained variance was attributable to this factor. Nevertheless, since only the overall quantity of suspended matter could be included in the analysis, its role is not trivial. As the morphological differences suggest, considerable explanatory power could be expected only from detailed data on the qualitative composition and size distribution of suspended particles. The effect of TSS was attributable mainly to the coincidence of peak values with the absence of *C. robustum* and *C. sowinskyi* in the Serbian river section (Fig. 5a). Since the downstream spread of *C. robustum* was still in progress at the time of the survey, its absence might not necessarily be the result of environmental factors. On the other hand, unfavorable suspended matter composition in this river section (combined with current velocity and sediment composition; Borza et al. 2015) could explain why the upstream distributional limit of the species used to be here for a long time. Recently, the species has been found at some additional sites in this river section (river km 1,334; Žganec et al., unpublished data); however, it is still early to draw conclusions in this question.
The distributional gap of *C. sowinskyi* was not related to any of the environmental factors included in the analysis. However, former data show the eutrophic character of the river section downstream of Budapest (Dokulil and Donabaum 2014), which might provide a historical explanation. The central sewage treatment plant of the city began to operate only in 2010, so the species might not have had the time to respond to the changed conditions at the time of the survey. Its record downstream of the city might be an indication of its incipient spread (Borza et al. 2015).

High suspended matter load, however, does not necessarily lead to *C. curvispinum* dominance; the extreme high density of *C. sowinskyi* downstream of the River Jantra mouth might be related to the high TSS values in this tributary (125 mg/l during the survey). Unfortunately, TSS was measured at only one point per site in the middle of the channel during the survey, so the connection is not reflected in the data. Nevertheless, the peak densities recorded during the survey are still well below the values recorded in the eutrophic River Rhine shortly after the invasion of *C. curvispinum* (up to 750,000 ind./m²; Van den Brink et al. 1993). The generally low density values of *Chelicorophium* species and their strong response to the extra suspended matter load of tributaries suggest strong food limitation in most parts of the Danube at the present time.

The explanatory power of the remaining variables was rather low; therefore, our field data do not provide firm evidence for their importance in the niche differentiation of invasive *Chelicorophium* species. The weak effect of total nitrogen concentration could not be separated from that of TSS, and current velocity as well as substrate types also might be related to food availability, so they might not necessarily represent independent niche axes. On the contrary, we assume that the larger body size of *C. robustum* might be relevant to the coexistence of the species. In this case, various factors might be potentially involved, including microhabitat use, generation time, predation risk, or interference competition. Nevertheless, these can be expected only to modulate, not to overcome the differentiation by food particle size.

In summary, differences in their filter mesh sizes allow a stable coexistence among the three invasive *Chelicorophium* species, where their abundance is primarily determined by the quantity, quality, and size distribution of suspended matter. Consequently, the joint impact of the three species – as compared to *C. curvispinum* alone – is a more effective resource utilization, resulting in a stronger
benthic-pelagic coupling. Inferring from their smaller filter mesh sizes, the impact of the two recent invaders can be expected to be most pronounced if suspended matter is dominated by relatively small (< ~10 μm) food particles. It would be useful to compare invasive and presently non-invasive Chelicorophium species, which could provide insight into the factors of invasion success and allow a more accurate assessment of future invasion risks within the genus (Borza et al. 2017b). Similarly, to obtain a more complete overview about the utilization of suspended matter in the ecosystems concerned, it would be important to study all co-occurring filter feeding species jointly.

References

Table 1 Number of specimens involved in the morphometric measurements. *C. robustum* was divided into two size classes due to the non-linear body length dependence of its filter mesh size (see text)

<table>
<thead>
<tr>
<th>Species</th>
<th>river km 532</th>
<th>river km 375</th>
<th>river km 104</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. curvispinum</td>
<td>23 (9 ♂, 13 ♀, 1 juv.)</td>
<td>13 (7 ♂, 6 ♀)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>C. robustum (< 5.5 mm)</td>
<td>15 (6 ♂, 7 ♀, 2 juv.)</td>
<td>8 (3 ♂, 5 ♀)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>C. robustum (≥ 5.5 mm)</td>
<td>11 (3 ♂, 8 ♀)</td>
<td>2 (2 ♀)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>C. sowinskyi</td>
<td>20 (9 ♂, 10 ♀, 1 juv.)</td>
<td>10 (5 ♂, 5 ♀)</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Definitions of substrate types used in the study

<table>
<thead>
<tr>
<th>Substrate type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>riprap</td>
<td>rocks of variable size, artificial</td>
</tr>
<tr>
<td>macrolithal</td>
<td>blocks, large cobbles; grain size 20 cm to 40 cm</td>
</tr>
<tr>
<td>mesolithal</td>
<td>cobbles; grain size 6 cm to 20 cm</td>
</tr>
<tr>
<td>microlithal</td>
<td>coarse gravel; grain size 2 cm to 6 cm</td>
</tr>
<tr>
<td>akal</td>
<td>fine to medium-sized gravel; grain size 0.2 cm to 2 cm</td>
</tr>
<tr>
<td>psammal</td>
<td>sand; grain size 0.063-2 mm</td>
</tr>
<tr>
<td>psammopelal</td>
<td>sand and mud</td>
</tr>
<tr>
<td>pelal</td>
<td>mud (organic); grain size < 0.063 mm</td>
</tr>
<tr>
<td>argyllal</td>
<td>silt, loam, clay (inorganic); grain size < 0.063 mm</td>
</tr>
<tr>
<td>macrophytes</td>
<td>submerged macrophytes, including moss and Characeae</td>
</tr>
<tr>
<td>xylal</td>
<td>tree trunks, dead wood, branches, roots</td>
</tr>
</tbody>
</table>
Table 3 Parameters and variance components of the single-species linear mixed-effects models

<table>
<thead>
<tr>
<th>Species</th>
<th>Intercept (µm)</th>
<th>Slope (body length)</th>
<th>Body length-dependency (= fixed effects)</th>
<th>Among-individual variation (= random effects)</th>
<th>Within-individual variation (= residual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. curvispinum</td>
<td>7.51 (SE = 1.42; P < 0.001)</td>
<td>1.02 (SE = 0.40; P = 0.015)</td>
<td>0.15</td>
<td>0.80</td>
<td>0.05</td>
</tr>
<tr>
<td>C. robustum (< 5.5 mm)</td>
<td>5.02 (SE = 0.64; P < 0.001)</td>
<td>0.92 (SE = 0.16; P < 0.001)</td>
<td>0.41</td>
<td>0.27</td>
<td>0.32</td>
</tr>
<tr>
<td>C. robustum (≥ 5.5 mm)</td>
<td>9.90 (SE = 0.08; P < 0.001)</td>
<td>not significant</td>
<td>-</td>
<td>0.11</td>
<td>0.89</td>
</tr>
<tr>
<td>C. sowinskyi</td>
<td>1.77 (SE = 0.45; P < 0.001)</td>
<td>0.83 (SE = 0.14; P < 0.001)</td>
<td>0.52</td>
<td>0.44</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Figure captions

Fig. 1 Occurrences of *Chelicorophium* species in the River Danube during Joint Danube Survey 3 (multi-habitat samples only). White squares: *C. curvispinum*, grey circles: *C. sowinskiyi*, black triangles: *C. robustum*. The dark shaded area corresponds to the River Danube basin. Codes of the riparian countries: DE: Germany, AT: Austria, SK: Slovakia, HU: Hungary, HR: Croatia, RS: Serbia, RO: Romania, BG: Bulgaria, MD: Moldova, UA: Ukraine.

Fig. 2 Filter mesh sizes of *Chelicorophium* species as a function of body length. Lines represent the fitted values of the single-species linear mixed-effects models.

Fig. 3 Mantel correlograms of the response variables, the residuals of the environmental model (E), and the residuals of the environmental and spatial model (E + S). The distance class at 0 river km corresponds to within-site distances. Solid symbols indicate significant correlations (*: $P < 0.05$, **: $P < 0.01$, ***: $P < 0.001$). Numbers on the top of the graph indicate the number of pairs involved in the calculation of correlations for each distance class. Symbols are connected only to visualize the trends.

Fig. 5 The distribution of the environmentally (a) and the only spatially (b) explainable part of variance (i.e. the fitted site scores of the first canonical axis in the corresponding RDA models) along the investigated river section. Solid lines represent smoothed splines (function ‘smooth.spline’ in R).
with a smoothing parameter of 0.5. Total suspended solid (TSS) values are shown in (a) for comparison.

Figures

Fig. 1

Fig. 2
Fig. 3