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Abstract 

Prediction performances often depend on the applied cross- and test validation protocols 

as well. Several combination of different cross-validation variants and model building techniques 

were used to reveal their complexity. Two case studies (acute toxicity data) were examined, 

applying five-fold cross-validation (with random, contiguous and Venetian blind forms) and leave-

one-out cross-validation (CV). External test sets showed the effects and differences amongst the 

validation protocols. The models were generated with multiple linear regression (MLR), principal 

component regression (PCR), partial least squares (PLS) regression, artificial neural networks 

(ANN) and support vector machines (SVM). The comparisons were made by sum of ranking 

differences (SRD) and factorial ANOVA.  

The largest bias and variance could be assigned to the MLR method and contiguous block 

cross-validation. SRD can provide a unique and unambiguous ranking of methods and CV variants. 

Venetian blind cross-validation is a promising tool. The generated models were also compared 

based on their basic performance parameters (R2 and Q2). MLR produced the largest gap, while 

PCR gave the smallest. Although PCR is the best validated balanced technique, SVM always 

outperformed the other methods, when experimental values were the benchmark. Variable 

selection was advantageous, and the modeling had a larger influence than CV variants. 
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Introduction 

Quantitative structure-activity (toxicity, property, etc.) relationships (abbreviated as QSAR, 

QSTR, QSPR, etc.) occupy a paradoxical status in the toolbox of computational chemistry. On one 

hand, they are one of the oldest approaches to predicting molecular properties, dating back to the 

work of Hansch and Fujita in the sixties (QSAR) [1,2], and even further back to the approach of 

Hammett to describe the equilibrium and rate constants for many reactions involving benzoic acid 

derivatives in the thirties (QSPR) [3]. As a consequence, these approaches had several decades, 

along with a large popularity among the scientific community to be refined and matured, and 

indeed, with the immense computational speed-up of the past decades, building QSAR models 

have become a routine task by the present day. 

On the other hand, for the very same reason, many alternatives have emerged to each of the sub-

tasks associated with QSAR modeling (including molecular descriptor calculation, variable 

selection, model building and validation), resulting in endless possibilities to realize the generation 

and selection of QSAR models. In the lack of intention to recapitulate the evolution of QSAR, we 

simply point the reader’s attention to two works overviewing the QSAR field: the landmark book 

of Hugo Kubinyi [4] and a recent review from an international team of the acknowledge experts 

of the field [5]. Since the abbreviations QSAR, QSTR, etc. are merely formal notations of the 

modeled property (A for activity, T for toxicity, etc.) without a difference in the methodology 

itself, we will use the abbreviation QSAR as an umbrella term for any computational task aimed at 

the modeling of a molecular property based on other molecular properties. 

Two sub-areas of QSAR modeling with particularly thriving discussions in the relevant literature 

is the descriptors used for QSAR models (especially the application of 2D vs. 3D descriptors [6]), 

and the validation practices recommended or preferred in such studies (especially cross-validation 

vs. external validation [7]). 3D-QSAR is a wide collection of ligand-based (e.g. CoMFA [8]) and 

receptor-based methods that utilize descriptors encoding information about the 3D structure of the 

ligands or their protein targets [9]. While the concept is successfully applied even to the present 

day [10], it has also received criticism over the years [11]. Similarly, validation practices are highly 

debated with some authors advocating external validation as the true measure of predictive 

performance [12,13], while others argue that cross-validation is superior to hold-out samples 

[14,15]. Recently, we have contributed to this discussion by systematic comparisons of various 

performance parameters calculated based on cross- and external validation [16,17]. Briefly, our 



results have highlighted the importance of cross-validation based performance metrics, which 

generally provide a more reliable assessment of the overall performances of QSAR models (in 

comparison to external validation-based performance metrics), as demonstrated by SRD-based 

comparisons. Additional works to note are the instructional paper of Dearden et al. on the common 

pitfalls of QSAR modeling [18], the recent article of Hanser et al. on the very important, but 

somewhat subjective concept of the applicability domain [19] and a historical overview of QSAR 

validation parameters by Gramatica and Sangion [20]. 

According to the relevant literature [21,22] at least five-seven techniques should be evaluated for 

a fair method comparison study. Sources with less comparisons are abundant for example: [23-

25]. QSAR model building can be realized by a number of regression (MLR, PCR, PLS) and 

machine learning (SVM, ANN) methods. 

In this work, we have carried out an analysis on the effects of the chosen modeling and validation 

methods on the same QSAR modeling task. Based on two case studies of toxicity datasets, we 

have identified the significant factors with our established combination of SRD and ANOVA 

analyses [26], and suggest best practices for QSAR modeling and validation. 

 

Materials and methods 

Dataset preparation 

Two published QSAR datasets were used for the evaluations: a toxicological study by Bertinetto 

and coworkers (Case study 1) [27] and a bigger toxicology dataset provided by Casotti and 

coworkers (Case study 2) [28]. In case study 1 the toxicity values were expressed as acute toxicities 

(negative base 10 logarithm of 96 h LC50, or pLC50) for the fathead minnow (Pimephales 

promelas), in case study 2 the predictions were carried out for acute aquatic toxicities towards 

Daphnia Magna (48 h LC50 data). The training and test (external) set splitting was applied as in 

the original studies without any modifications. For case studies 1 and 2, 51 and 435 samples were 

used as training, and 18 and 110 samples were used as external test sets, respectively. With the use 

of the original molecular structures, two sets of molecular descriptors were generated for each 

dataset: the complete descriptor sets of QikProp (51) [29], and of RDKit (117) [30]: in total, 168 

descriptors. Highly correlated (R2 > 0.999) and constant descriptors were removed from the 

analysis. 

 



Regression analysis 

For modeling, PLS toolbox and MATLAB were used [31]. Five modeling methods were applied, 

from the commonly used multiple linear regression (MLR), principal component regression 

(PCR), partial least squares regression (PLS) methods to the more complex machine learning 

techniques such as support vector machines (SVM) and artificial neural networks (ANN). The 

aforementioned MLR, PCR and PLS are linear methods, where the parameters to be optimized are 

the vector b of regression coefficients. Thus, these techniques can be considered more robust 

compared to the more complex ones. On the other hand, SVM and ANN have additional 

regularization (or meta) parameters, which need to be optimized, such as the value of Gamma and 

C in the case of SVM, or the number of hidden layers and nodes in the case of ANN. For SVM, 

automatic grid selection was used based on the heat map plot generated by PLS Toolbox. The 

architecture of ANN has been selected to contain one hidden layer with one hidden node. 

For data pretreatment, autoscaling was used for the X matrices and mean centering for the Y vector 

in each case; latent variable selection was carried out based on the first local minimum of the root 

mean squared error of cross-validation (RMSECV) or in the case of a missing minimum (for the 

first ten components), the start of the plateau was used. The models were built with variable 

selection and without any variable selection as well. For variable selection, an automated version 

implemented in PLS Toolbox was used, which is based on the calculation of variable importance 

in projection (VIP) and selectivity ratios (SR) together. 

Fivefold cross validation with a) randomized (with twenty iterations), b) Venetian blind and c) 

contiguous blocks, in addition to d) leave-one-out cross-validation was applied and compared for 

each method. The different types of validations are summarized in Figure 1From the four types of 

cross-validation, leave-one-out can be the most controversial, because in combination with some 

methods (particularly with ANN), it can cost a very long processing time compared to the other 

variants, in case of many samples (n > 100). 

 

Figure 1. Cross-validation variants on the example of three-fold cross-validation: a) random 

selection; b) Venetian blinds; c) contiguous blocks (i.e. stratified); d) leave-one-out [32]. 

Reproduced by permission of The Royal Society of Chemistry. 



 

 

It should be noted that the literature is not unambiguous (uniform) in terms of how each variant is 

called. We distinguish k-fold and leave-many-out cross-validation, in the sense that the latter 

allows repeated resampling ((𝑛
𝑘
) combinations), whereas k-fold CV utilizes k approximately equal 

parts of the original data set. The latter also called Monte Carlo resampling or bootstrap. 

 

Comparison of models 

Sum of (absolute) ranking differences (SRD) with Analysis of Variance (ANOVA) was used for 

the comparison of the regression models. SRD is a relatively novel and simple method to compare 

methods, models, or any type of variables (arranged in columns) in our matrices [33,34]. It gives 

a fair comparison, with the use of a gold standard (e.g. reference values) or generated references 

such as the average, minimum of maximum values of the rows according to the features of the 

input matrix. The process was clearly summarized in our recent work [35] with a video slide show, 

but the basic steps are summarized here for clarity and easy understanding: i) first the original 

matrix has to have the variables to be compared in the columns and the samples (compounds) in 

the rows; ii) the reference (measured or generated) should be added to the matrix (as the last 

column); iii) the ranks are assigned in increasing magnitude for each column (including the 

reference); iv) the absolute differences are calculated between the reference’s ranks and the ranks 

of each variable; v) the sums of the absolute ranking differences (SRD values) are calculated for 

each column separately. The smaller the SRD values, the better, i.e. the given method, or variant 

is closer to the benchmark experimental (or calculated) reference. SRD has a complete double 

validation protocol as well. SRD values are also calculated in a normalized scale (between 0 and 

100), because this way the input matrices with different numbers of rows can be compared to each 



other. Randomization test is also implemented and the Gaussian-like distribution of random 

numbers is plotted with the given SRD values together.  

Uncertainties are calculated to SRD values by a bootstrap-like cross-validation: a randomized 

repeated resampling; approximately one fifth of the rows of the input matrix is left out randomly 

and with replacement five times and the SRD procedure is repeated on the remaining 

(approximately) 4/5th, the whole process is repeated ten times. This type of bootstrap-like cross-

validation should not be confused with the cross-validation options for model building.  

In our study the gold standard reference has been selected as the original, measured toxicity values. 

Additionally, we have repeated the comparisons with the use of the average values as the reference 

(consensus), as this choice cancels out some of the systematic and random errors that are present 

in the experimental values (according to the maximum likelihood principle we are better off using 

the average than any of the individual observation). These comparisons gave almost the same 

results and are reported in the Supplementary information. 

Five-split bootstrap cross-validation was used with random ten outcomes, and these ten repetitions 

made a factorial ANOVA possible. 

Factorial ANOVA decomposed the SRD values (ten values for each regression model) into three 

factors: i) types of cross-validations (4 levels, contiguous blocks, leave-one-out, randomized and 

Venetian blind denoted by CON, LOO, RND VEN, respectively); ii) use of variable selection 

(2 levels, yes or no); iii) types of regression methods (“methods”, 5 levels, multiple linear 

regression, artificial neural network, principal component regression, partial least squares 

regression, and support vector machine, denoted by MLR, ANN, PCR, PLS, and SVM, 

respectively). With ANOVA, we can establish which of these factors affect the SRD values 

significantly (at a given probability level). 

 

Results and discussion 

Comparison based on R2 and Q2 values 

The definitions of the determination coefficient and its cross-validated counterpart: 
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In eqs. (1) and (2), 𝑦𝑖 is a single experimental value, �̅� is the mean of experimental values, �̂�𝑖 is a 

single predicted value, �̂�𝑖/𝑗 is the predicted value for the ith sample when the jth part of the 

dataset is left out from the training (the whole dataset is split into m parts), n is the number of 

samples, and i is the sample index. 

The differences of these performance parameters were evaluated in the first step for both case 

studies. All in all, 40 models were built for Case study 1 and 36 for Case study 2. (Four models 

with leave-one-out cross-validation in the case of neural networks were excluded due to the very 

long processing times.) The R2 and Q2 values were plotted for Case study 1 and 2 in Figures 2a 

and 2b. Box and whisker plots were produced for each method, showing the previously mentioned 

performance parameters. 

 

 

Figure 2. Box & whisker plots of the R2 and Q2 values for model building methods (A for Case 

study 1 and B for Case study 2). Median was used as the center points (boxes), the rectangles 

contain 50% of the data (first and third quartile) and the whiskers are located at the minimum and 

maximum values.  

 

Here, the gap between the R2 and Q2 values is the most important in comparing the modeling 

methods: a larger gap means worse performance. A large enough gap reveals one or more 

influential points (outliers)[36].  

 It is clear that the validation performance of MLR in both case studies is quite poor, and that PCR 

and PLS are more robust, although they have smaller R2 and Q2 values, than SVM and ANN. 



Neural networks were very unreliable based on the performance parameters. SVM also provided 

somewhat debatable, but more reliable and better results than ANN in both cases. Thus, judging 

from the performance parameters, MLR is not a wise choice for regression model building, 

whereas the other methods are naturally grouped based on being linear or non-linear. 

 

Comparison based on SRD values for case study 1 

SRD values were calculated for each model in the two case studies based on the predicted values 

of the internal and external validation samples together. In this way we could implement the 

possible error of both validation types and exclude the overoptimistic choice between the models. 

Normalized SRD values were used to the further evaluations in ANOVA for each case. A typical 

example of an SRD plot can be seen in Figure 3.  

 

 

Figure 3. SRD plot comparing the models of Case study 1. Normalized SRD values are shown on 

the y axis and the distance of the columns from the origin (which is also their height) represents 

their distance from the vector of reference values. The cumulative probability curve shows the 

cumulative distribution of SRD values for random ranking: any method overlapping with this 

curve (here, model 40) is not significantly better than the use of random numbers. 



The model codes for the figure are summarized in Table 1. 

 

Table 1. The codes for the models in Figure 3. (Var. Sel.: variable selection, CV: cross-

validation.) The abbreviations for CV variants are the same as in the text. 

Rank Method Var. Sel. CV Rank Method Var. Sel. CV 

1 SVM Yes LOO 21 MLR Yes LOO 

2 PLS Yes VEN 22 PCR Yes CON 

3 SVM Yes VEN 23 ANN No VEN 

4 SVM Yes RND 24 ANN Yes CON 

5 SVM Yes CON 25 ANN Yes VEN 

6 SVM No LOO 26 PLS No RND 

7 SVM No VEN 27 MLR Yes VEN 

8 ANN Yes RND 28 PLS No CON 

9 PLS No VEN 29 PCR No VEN 

10 ANN Yes LOO 30 ANN No CON 

11 PLS No LOO 31 PCR No LOO 

12 PLS Yes RND 32 PCR No RND 

13 PLS Yes LOO 33 MLR Yes CON 

14 SVM Yes LOO 34 ANN No RND 

15 PCR Yes LOO 35 ANN No LOO 

16 PCR Yes RND 36 MLR Yes RND 

17 PLS No CON 37 MLR No VEN 

18 PCR Yes VEN 38 MLR No RND 

19 PCR No CON 39 MLR No CON 

20 SVM No CON 40 MLR No LOO 

 

The use of variable selection, CV variants and modeling methods were used as factors for 

ANOVA. SRD analysis was performed with the original experimental values (toxicity values) and 

the average as the reference, as well. With the experimental values we can choose those models 

and combinations of parameters which led to the best predictions of the original experimental 

values. On the other hand, the use of average could show us the most consistent models. On 

Figure 4 the averages of normalized SRD values are plotted based on the different factors in Case 



study 1. Ten randomly picked SRD values from bootstrap cross-validation were used for each 

model in the calculation process. 

 

 

Figure 4. Results of factorial ANOVA with three factors. Blue continuous line means no variable 

selection (VS no), while the red dashed line corresponds to the variable selected models. 

Normalized SRD values (%) are plotted on the y axis. 

 

Figure 4 shows that with each cross-validation variant, MLR performed the worst, especially 

without variable selection. On the other hand, based on the predicted values, SVM is very 

promising (with and without variable selection). It seems that the importance of variable selection 

for SVM is less than for other methods. The shapes of the lines are quite similar to each other in 

the different cases. The plots were made with the use of the average values as the reference as well, 

and the results were very similar to Figure 4. This version can be found in Suppl. Mat. Fig. 1. In 

that case SRD values were lower, thus all-in-all the models were closer to the consensus. If we 



pick another point of view in ANOVA analysis, we can see on Figure 5 the differences between 

the behaviors of the methods according to the cross-validation variants. 

 

 

Figure 5. Results of factorial ANOVA with three factors. Blue continuous line means no variable 

selection (VS no), and the red dashed line corresponds to the variable selected models. Normalized 

SRD values (%) are plotted on the y axis. 

 

It seemed that PCR was the most robust technique, because we can detect only minor changes 

between the use of different cross-validation variants (as compared to the other modeling 

methods), but on the other hand it rarely gave us the best model. This plot also reveals the huge 

differences in the case of MLR with and without variable selection, thus in this case the variable 

selection has a bigger importance than the validation types. From another point of view, the use of 

different validation variants is always case-dependent. It seems that every method has its own 

“favorite” type, which can give us the most reliable results. However, we can conclude that the 



contiguous block variant is never the best option. The results acquired with the use of the average 

as the reference show a very similar pattern with lower SRD values and can be found in Suppl. 

Mat. Fig. 2. 

Factorial ANOVA was also performed with the use of modeling methods and CV variants as 

factors. In this case, variable selection was not a separation factor, the models with or without VS 

were used together. In Figure 6. one can understand the differences amongst the optimization 

opportunities, thus it can be a nice conclusion of Case study 1. In this figure we can see the 

decreasing magnitude of the SRD values between the different methods. SVM clearly gave the 

best results in all forms of cross-validation compared to the others, and MLR has much bigger 

errors than the other techniques. Thus, MLR is not recommended if we have a chance to apply 

more sophisticated methods. 

 

 

Figure 6. Results of factorial ANOVA with two factors for Case study 1. Average SRD values 

(%) are plotted against the different methods. The cross-validation variants are plotted with 

different types of lines and shapes. 



In each ANOVA analysis, the factors of cross-validation, methods and variable selection had 

always a statistically significant difference at the α = 0.05 value. Thus, proper optimization is 

always needed for each regression method we might choose. 

 

Comparison based on SRD values for case study 2 

In Case study 2 the same workflow was performed and the optimization parameters were tested 

with the same conditions. In this part, leave-one-out cross-validation was omitted from modeling 

with ANN due to the very long calculation time (over 24 hours). In this sense, this variant cannot 

be recommended for larger datasets. Based on the predicted values of internal and external 

validations, the models were compared with SRD and ANOVA methods. All the examined factors 

(CV, modeling methods and the use of variable selection) were significant at α = 0.05. Figure 7 

shows the result of ANOVA with the use of the aforementioned factors. 

 

 

Figure 7. Results of factorial ANOVA for Case study 2. Blue continuous line means no variable 

selection (VS no), and the red dashed line corresponds to the variable selected models. Normalized 

SRD values (%) are plotted on the y axis. 



 

For Case study 2, there were bigger differences between the MLR and PCR models based on the 

use of variable selection. Again, SVM gave the best models for each type of CV variants. We can 

conclude that the contiguous block variant of CV was always the worst option and Venetian blinds 

were always among the best ones. (The same patterns can be observed with the use of the average 

as reference in SRD evaluations as well, see Supp. Mat. Fig. 3.) 

The comparison was also performed with only two factors: the CV variants and the modeling 

methods. The trends among the modeling methods and CV variants are clearly summarized in 

Figure 8.  

 

 

Figure 8. Results of factorial ANOVA with two factors for Case study 2. Average SRD values 

(%) are plotted against the different methods. The cross-validation variants are plotted with 

different types of lines and shapes. 

 



MLR and PCR are still not recommended for usual situations, even if PCR is a very robust 

technique in the sense of validation. On the other hand, PCR and MLR have the largest bias (largest 

SRD value), as compared to the other modeling methods. The most recommended one is SVM, 

but the use of the contiguous block CV variant is, again, highly discouraged. It is also clear how 

different results can be produced with the use of contiguous blocks compared to the other types. 

If we compared the models to the average values instead of the experimental, the same patterns 

can be seen, which means that our findings revealed not just the best combinations but the most 

consistent ones as well. With the use of average we could decrease the systematic error, but on the 

other hand it gave a more compressed evaluation. 

 

Conclusion 

Based on the two case studies, the examined parameters had significant effects on model building. 

In both studies support vector machines (SVM) performed the best and multiple linear regression 

(MLR) the worst. Although SVM was not as robust based on the performance parameters as partial 

least squares (PLS) regression or principal component regression (PCR), the sum of (absolute) 

raking difference (SRD) values obviously proved that even if it has quite bigger differences 

between calibration and validation, it can be a promising and well-optimized tool in regression 

model building tasks. The largest bias was reached with the contiguous blocks cross-validation 

(CV) variant and the MLR method. These two options are not recommended: neither alone, nor in 

combination. On the other hand, the use of variable selection is advisable in any case (and is an 

absolute must for MLR). We can conclude that the modeling techniques had a larger influence 

than CV variants in the evaluation of the models.  

In summary, SRD provides a unique and unambiguous ranking of regression models, which helped 

to compare the different optimization protocols as well. Based on the two case studies and the use 

of predicted values, we could observe that the outcome of CV variants is data set dependent, still 

some major conclusions can be drawn: the contiguous blocks variant is an outdated form of CV, 

which can mislead our validation; the other three types are roughly equivalent on average, while 

the best choice from them is method dependent. 
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