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Abstract Recently new methods for measuring and testing dependence have
appeared in the literature. One way to evaluate and compare these measures
with each other and with classical ones is to consider what are reasonable and
natural axioms that should hold for any measure of dependence. We propose
four natural axioms for dependence measures and establish which axioms hold
or fail to hold for several widely applied methods. All of the proposed axioms
are satisfied by distance correlation. We prove that if a dependence measure
is defined for all bounded nonconstant real valued random variables and is
invariant with respect to all one-to-one measurable transformations of the
real line, then the dependence measure cannot be weakly continuous. This
implies that the classical maximal correlation cannot be continuous and thus
its application is problematic. The recently introduced maximal information
coefficient has the same disadvantage. The lack of weak continuity means that
as the sample size increases the empirical values of a dependence measure do
not necessarily converge to the population value.
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1 Introduction: Rényi’s axioms

It is hard to overestimate the importance of dependence measures in statistics
and in science. When we try to find the cause X that is (partly) responsible
for an effect Y then it is a natural first step to find out if X and Y are sta-
tistically dependent. Thus it is not surprising that Pearson’s linear correlation
ρ(X,Y ) is responsible for many important causal discoveries like smoking and
lung cancer. Unfortunately ρ(X,Y ) = 0 does not mean that X and Y are
independent (the converse is true). Thus if we measure the dependence of X
and Y by ρ(X,Y ) and it happens to be 0 then we might suspect that there is
no causal relationship between X and Y even when there is. This is a typical
problem when the relationship between the variables is highly nonlinear, not
even monotonic. A good example is Volokh (2015) where the title of the article
is ‘Zero correlation between state homicide and state gun laws’.

A well-known remedy is to consider maximal correlation, namely supf,g

ρ(f(X), g(Y )) where f, g are Borel-measurable functions. Maximal correlation
is zero if and only if X and Y are independent. But this fact itself does not
make maximal correlation an ideal measure of dependence. In this paper we
explain our concerns and suggest a solution.

Rényi (1959) proposed seven important properties of dependence measures
∆ as axioms. Rényi’s axioms are as follows. Let X and Y be real valued random
variables.

(A) ∆(X,Y ) is defined for all random variables X and Y , neither of them
being constant with probability 1.

(B) ∆(X,Y ) = ∆(Y,X) (symmetry).
(C) 0 ≤ ∆(X,Y ) ≤ 1.
(D) ∆(X,Y ) = 0 if and only if X and Y are independent.
(E) ∆(X,Y ) = 1 if there is a strict dependence between X and Y ; that is,

either X = g(Y ) or Y = f(X), where g(x) and f(x) are Borel measurable
functions.

(F) If the Borel measurable functions f(x) and g(x) map the real axis in a
one-to-one way onto itself, ∆(f(X), g(Y )) = ∆(X,Y ).

(G) If the joint distribution of X and Y is normal, then ∆(X,Y ) = |ρ(X,Y )|
where ρ(X,Y ) is the correlation coefficient of X and Y .

Maximal correlation satisfies all of the above axioms (Rényi, 1959). Rényi’s
axioms collect some of the most important properties of a dependence measure,
but not all of these properties are essential for a good measure of dependence.
On the other hand, not even this list of strong restrictions characterizes max-
imal correlation, as shown by Linfoot’s information-theoretical measure (Lin-
foot, 1957). So one might wonder which of these axioms are critically important
and whether this list contains all critically important properties of dependence
measures as axioms.

Our goal here is to find a “minimalist” system of axioms that we can ex-
pect to be satisfied by all acceptable dependency measures ∆. First of all, we
do not want to define ∆ for all random variables (that are not constant with
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probability 1) because not even Pearson’s correlation is defined for random
variables with infinite variance. Even if we define ∆ for random variables with
finite variances only, the absolute value of Pearson’s correlation ρ does not sat-
isfy (E), (F). We will replace them with a weaker version where 1–1 invariance
is replaced by similarity invariance satisfied by |ρ|. There is another reason
for not assuming 1–1 invariance of ∆. The 1–1 invariance would imply the
existence of many uncorrelated random variables X,Y for which ∆(X,Y ) = 1,
which is counterintuitive. It is not surprising that there exist perfectly depen-
dent random variables with zero Pearson’s correlation. For a related statement
see Kimeldorf and Sampson (1978). The following proposition shows that with
very few exceptions for all random variables X one can find a 1–1 real function
f such that X and f(X) are uncorrelated.

Proposition 1 Let X be a square integrable random variable defined on an
arbitrary probability space. Suppose the distribution of X is not concentrated
on three or less points. Then there exists a measurable injective function f :
R→ R such that X and f(X) are uncorrelated. This f can be chosen piecewise
linear.

Such an f cannot exist if X takes on exactly two values, because in this
case uncorrelatedness is equivalent to independence. When the distribution of
X is supported on exactly 3 points then a necessary and sufficient condition
for f to exist is P (X = EX) = 0.

For an elementary proof see the Appendix.
If this proposition were not enough justification for weakening (E) and (F),

in what follows we will see that such a strong invariance is not compatible with
our new axiom of continuity (axiom (iv) below). This axiom of continuity is not
there among Rényi’s axioms because then the system would be contradictory.
But why is continuity so natural that one should suppose it as an axiom? If
there is a tiny little change/perturbation in the distribution of (X,Y ) and this
tiny little perturbation changes ∆(X,Y ) dramatically, e.g., changes it from 1
to 0 then ∆ has no stability. We cannot rely our statistical inference on such an
unstable ∆ because a minor perturbation, no matter how small it is, can result
in a completely different statistical inference. This can be viewed as a violation
of distributional robustness. If we replace weak convergence by stronger forms
of convergence then of course this would allow more measures of dependence
to be continuous but these measures might violate distributional robustness.
We do not need to disregard all nonrobust measures but we need to be aware
of this deficiency.

Recall that Euclidean geometry is characterized by invariances with re-
spect to the Euclidean group of transformations (translations, rotations, and
reflections). Similarity geometry deals with geometrical objects with the same
shape. We can obtain one object from another by scaling (enlarging or shrink-
ing). Similarity transformations consist of all Euclidean transformations and
all (nonzero) scaling; that is, changing the measurement units. Instead of 1–1
invariance, in our axioms we suppose similarity invariance only. Similarity in-
variance is something we do not want to weaken because changing the scale,
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(that is, changing the measurement unit), should not affect the degree of de-
pendence. Luckily, similarity invariance does not contradict continuity. This is
shown by the example of distance correlation explained below.

The classical correlation ratio does not satisfy (B) so we dropped this ax-
iom, too. We will see that axiom (G) is also unnecessarily restrictive and,
among others, would disqualify distance correlation. For more details see be-
low. See also Lehmann (1966), Schweizer and Wolff (1981), Dedecker and
Prieur (2005), and Reimherr and Nicolae (2013) for more comments on de-
pendence measures.

2 New axioms

Let S be a nonempty set of pairs of nondegenerate random variables X,Y tak-
ing values in Euclidean spaces or in real, separable Hilbert spaces H. (Nonde-
generate means that the random variable is not constant with probability 1.)
Then ∆(X,Y ) : S → [0, 1] is called a dependence measure on S if the following
four axioms hold. In the axioms below we need similarity transformations of
H. Similarity of H is defined as a bijection (1–1 correspondence) from H onto
itself that multiplies all distances by the same positive real number (scale).
Similarities are known to be compositions of a translation, an orthogonal lin-
ear mapping, and a uniform scaling. We assume that if (X,Y ) ∈ S then
(LX,MY ) ∈ S for all similarity transformations L,M of H.

(i) ∆(X,Y ) = 0 if and only if X and Y are independent.
(ii) ∆(X,Y ) is invariant with respect to all similarity transformations of H;

that is, ∆(LX,MY ) = ∆(X,Y ) where L, M are similarity transforma-
tions of H.

(iii) ∆(X,Y ) = 1 if and only if Y = LX with probability 1, where L is a
similarity transformation of H.

(iv) ∆(X,Y ) is continuous; that is, if (Xn, Yn) ∈ S, n = 1, 2, . . . such that for
some positive constant K we have E

(
|Xn|2 + |Yn|2

)
≤ K, n = 1, 2, . . .

and (Xn, Yn) converges weakly (converges in distribution) to (X,Y ) then
∆(Xn, Yn) → ∆(X,Y ). (The condition on the boundedness of second
moments can be replaced by any other condition that guarantees the
convergence of expectations: E(Xn) → E(X) and E(Yn) → E(Y ); such
a condition is the uniform integrability of Xn, Yn which follows from the
boundedness of second moments.)

Remark 1 (a) Functions of independent random variables are independent,
thus property ∆(X,Y ) = 0 is invariant with respect to all 1–1 Borel mea-
surable transformations of H. On the other hand we do not suppose this 1–1
invariance for other values of ∆. As we shall see, such a strong condition would
contradict axiom (iv). In axiom (ii) and (iii) one can try to replace the invari-
ance with respect to similarities by other groups of invariances, particularly,
when the statistical problem in question exhibits symmetries/invariances in
the sense of (Lehmann and Romano, 2005, Chapter 6), see also Eaton (1989).
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It is up to the statistician to choose the right level of invariance. Too much
invariance is not necessarily good. Even if a very strong invariance of ∆ does
not contradict other important axioms it might decrease the power of ∆ in
testing independence. If H = R, the real line, affine transformations coin-
cide with similarities. In higher dimensions, however, affine invariance for all
bounded nonconstant random variables contradicts axiom (iv) as it is proved
in Theorem 1. This makes the choice of similarity invariance in our axioms
even more natural.

(b) Rényi did not assume axiom (iv). Theorem 1 below explains that if he
did then no dependence measure would have satisfied all his axioms.

(c) Why did we suppose that S does not contain random variables that
are constant with probability 1? Because if Y is such a random variable
then it is independent of all random variables X and thus by axiom (i) we
have ∆(X,Y ) = 0. On the other hand, for all X ∈ S axiom (iii) implies
∆(X,X/n) = 1 for n = 1, 2, . . . . But for bounded random variables X the
limit of X/n is 0 and ∆(X, 0) = 0 which contradicts axiom (iv). In axiom
(A) Rényi also assumes that the random variables X and Y are not constant
with probability 1, i.e., their distributions are nondegenerate. This assumption
guarantees that ∆ cannot be discontinuous at degenerate distributions because
∆ is simply not defined there. Thus Rényi did not overlook the importance of
weak continuity of ∆, he just could not assume it because it would have been
inconsistent with his other axioms.

Let us see that our system of new axioms is not contradictory when S is
the set of all nondegenerate random variables with finite expectation. For this
it is sufficient to define a dependence measure that satisfies the four axioms.
Such a measure is distance correlation, which was introduced in Székely et al.
(2007).

First of all recall the definition of the sample distance correlation. Take
all pairwise distances between sample values of one variable, and do the same
for the second variable. Rigid motion invariance is automatically guaranteed if
instead of sample elements we work with their distances. Another advantage
of working with distances is that they are always real numbers even when the
data are vectors of possibly different dimensions. Once we have computed the
distance matrices of both samples, double-center them (so each has column and
row means equal to zero). Then average the entries of the matrix which holds
componentwise products of the two centered distance matrices. This is the
square of the sample distance covariance. If we denote the centered distances
by Aij , i, j = 1, . . . , n and Bij , i, j = 1, . . . , n where n is the sample size, then
the squared sample distance covariance is

1

n2

n∑
i,j=n

Ai,jBi,j .

This definition is very similar to, and almost equally simple as, the defini-
tion of Pearson’s covariance, except that here we have double indices.
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The population squared distance covariance can be reduced to the fol-
lowing form (Székely et al., 2007) if E|X|2 and E|Y |2 are finite. Let (X,Y ),
(X,Y ′), (X ′′, Y ′′) be independent and identically distributed then the distance
covariance is the square root of

dCov2(X,Y ) := E(|X −X ′| |Y − Y ′|) + E(|X −X ′|)E(|Y − Y ′|)
− E(|X −X ′| |Y − Y ′′|)− E(|X −X ′′| |Y − Y ′|).

In the above referred paper we proved that dCov(X,Y ) is a metric, and the
distance variance, dCov(X,X) is zero if and only if X is constant with prob-
ability 1. Once we defined distance covariance and distance variance we can
define distance correlation the same way as we defined correlation with the
help of covariance and variance. If the random variables X,Y have finite ex-
pected values and they are not constant with probability 1 then the definition
of population distance correlation is the following:

R(X,Y ) :=
dCov(X,Y )√

dCov(X,X) dCov(Y, Y )
.

If dCov(X,X) dCov(Y, Y ) = 0 then define R(X,Y ) = 0. Distance correla-
tion equals zero if and only if the variables are independent, whatever be the
underlying distributions and whatever be the dimension of the two variables
(for a transparent explanation see below). This fact and the simplicity of the
statistic make distance correlation an attractive candidate for measuring de-
pendence. For generalizations to metric spaces see Lyons (2013) and Jakobsen
(2017).

In Székely et al. (2007) an alternative formula for dCov2(X,Y ) was given
in terms of characteristic functions fX,Y , fX and fY of (X,Y ), X, and Y re-
spectively. If the random variable X takes values in a p-dimensional Euclidean
space Rp and Y takes values in Rq and both variables have finite expectations
we have

dCov2(X,Y ) :=
1

cpcq

∫
Rp+q

|fX,Y (t, s)− fX(t)fY (s)|2

|t|1+p
p |s|1+q

q

dt ds.

where cp and cq are constants. This formula clearly shows that independence
of X and Y is equivalent to dCov(X,Y ) = 0. It is interesting to note that in
Hoeffding’s dissertation (Hoeffding, 1940) it is proved that for real valued X
and Y with finite variance, Pearson’s covariance

cov(X,Y ) = E(XY )−E(X)E(Y ) =

∫ ∞
−∞

∫ ∞
−∞

[FX,Y (x, y)−FX(x)FY (y)] dx dy,

where F denotes the cumulative distribution functions. Thus we might want
to define a sign or rather a direction of distance covariance and distance cor-
relation as the argument of the complex number

z :=

∫
Rp+q

[fX,Y (t, s)− fX(t)fY (s)]w(t, s) dt ds,



Four Simple Axioms of Dependence Measures 7

where w(t, s) is a suitable weight function. In the most natural case of w(−t,−s) =
w(t, s), this z is always real, so its direction is not more than a sign. Unfor-

tunately in the most natural choice for w when w(s, t) =
(
|t|1+p

p |s|1+q
q

)−1
, it

is not trivial that z exists at all. We plan to return to this problem in an-
other paper. We also note that in Hoeffding (1948) a test of independence was
introduced, based on∫ ∞

−∞

∫ ∞
−∞

[FX,Y (x, y)− FX(x)FY (y)]2 dFX,Y (x, y).

If the expectations of X,Y do not exist, we can generalize distance cor-
relation for random variables with finite α > 0 moments. See Székely et al.
(2007); Székely and Rizzo (2009). It is easy to see that the population distance
correlation, R(X,Y ), satisfies axioms (ii) and (iv). For the proof that R(X,Y )
satisfies (i) and (iii), see Székely et al. (2007).

In the special case when (X,Y ) are jointly distributed as bivariate normal,
distance correlation R is a deterministic function of Pearson correlation ρ =
ρ(X,Y ) (Székely et al., 2007, Theorem 7), namely,

R2(X,Y ) =
ρ arcsin ρ+

√
1− ρ2 − ρ arcsin(ρ/2)−

√
4− ρ2 + 1

1 + π/3−
√

3
.

Note that this is a strictly increasing, convex function of |ρ|, R(X,Y ) ≤
|ρ(X,Y )| with equality when ρ = 0 or ρ = ±1. Thus R(X,Y ) does not satisfy
Rényi’s axiom (G). It is also clear that if ∆ satisfies our four axioms then h(∆)
also satisfies them whenever h is a strictly increasing, continuous function,
h(0) = 0, h(1) = 1, and 0 < h(x) < 1 for 0 < x < 1. In the definition of
partial distance correlation (Székely and Rizzo, 2014) h(x) = x2 is applied. In
this case the distance standard deviations of the random variables X, Y are
measured in the same units as the X distances and Y distances. If we insisted
on axiom (G) we would disqualify distance correlation and also its square and
instead would have accepted a complicated function of distance correlation as
“legitimate”.

An important generalization of distance correlation is Sejdinovic et al.
(2013). This is related to a generalized distance correlation where the dis-
tance is a more general metric than the Euclidean one. These generalizations
under some natural conditions like scale invariance also satisfy our axioms.

With the new system of axioms our goal was not to characterize a single
dependence measure. The new system of axioms is “minimalist” in the sense
that all good dependence measures can be expected to satisfy them. We show
that even this “minimalist” system of axioms can disqualify several classical
measures and also some recently introduced measures of dependence. For ex-
ample, we will see that neither the maximal correlation coefficient nor the
recently introduced maximal information coefficient satisfy axiom (iv). The
same axiom fails to hold for the correlation ratio as shown below.
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3 Important dependence measures

In this section we give a list of important dependent measures and discuss some
of their their connections. Then we discuss if they satisfy our new axioms.

Example 1 (Pearson’s correlation ρ) Let S be the set of bivariate Gaussian
random variables (X,Y ). The absolute value of Pearson’s classical correlation
ρ(X,Y ) satisfies axioms (i) – (iv). On the history of ρ see Pearson (1920) and
Stigler (1989). We know that ρ = 0 if and only if X,Y are independent, and
|ρ| = 1 if and only if there is a linear relationship between X and Y .

For a multivariate version see Escoufier (1973) and Josse and Holmes
(2014). It is well-known that Pearson’s correlation does not satisfy axiom (i)
for general random variables. This problem is partially addressed in the next
example.

Example 2 (Spearman’s ρ and Kendall’s τ) If H is the real line then the
invariance of ∆ with respect to all monotone transformations means that
∆ is independent of the marginal distributions of X,Y . Monotone invari-
ance implies that instead of the joint cdf FX,Y we can focus on the copula
C(u; v) = FX,Y (F−1X (u);F−1Y (v)) where F−1X , F−1Y denote the generalized in-
verse functions of the cdf’s FX and FY of X and Y , respectively. The copula
can also be viewed as the joint distribution of two uniform (0, 1) variables. We
have C(FX(x), FY (y)) = FX,Y (x, y). Two random variables are independent
if and only if C(u, v) = uv.

With the copula function C(u, v) Spearman’s ρ (Spearman, 1904) and
Kendall’s τ (Kendall, 1938) can be defined as follows:

ρS(X,Y ) := 12

∫ 1

0

∫ 1

0

(C(u, v)− uv) du dv,

and

τ(X,Y ) := 4

∫
[0,1]2

C(u, v) dC(u, v)− 1,

respectively. An equivalent definition is

τ := P ((X −X ′)(Y − Y ′) > 0)− P ((X −X ′)(Y − Y ′) < 0),

where (X ′, Y ′) is an iid copy of (X,Y ).
The absolute values, |ρS | and |τ |, satisfy (i) – (iv) for positive quadrant

dependent or for negative quadrant dependent random variables: these proper-
ties mean that C(u, v) ≥ uv or C(u, v) ≤ uv, respectively for all 0 ≤ u, v ≤ 1.
For general random variables X,Y axiom (i) typically does not hold.

Example 3 (Affine and monotone invariant distance correlation) Distance cor-
relation applied to standardized random variables is obviously affine invariant.
It is defined for random vectors X and Y with nonsingular covariance matrices
ΣX and ΣY , resp., as

∆(X,Y ) = R
(
Σ
−1/2
X X, Σ

−1/2
Y Y

)
.
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For interesting consequences see Dueck et al. (2014). This affine invariant
distance correlation is continuous, because so is the standardization on the
set of bounded random variables with nonsingular covariance matrices. This
fact does not contradict Theorem 1 in Section 4 because of the condition of
nonsingularity.

If we apply distance correlation to the copula C(u; v) = FX,Y (F−1X (u);F−1Y (v))
where F−1X , F−1Y denote generalized inverse functions then we get a monotone
invariant version of R. For the sample distance correlation this means that we
compute the distance correlation of the ranks.

Example 4 (Maximal correlation) Maximal correlation is defined as supf,g

ρ(f(X), g(Y )) where f, g are Borel-measurable functions. It was first intro-
duced by Hirschfeld (1935) and Gebelein (1941), and then studied by Rényi
(1959). Recently it has become increasingly popular, see Papadatos and Xi-
fara (2013), Papadatos (2014), López Blázquez and Salamanca Miño (2014),
Huang and Zhu (2016). Maximal correlation satisfies (i), (ii), and (iii), but, as
we shall see in Theorem 1, it cannot satisfy (iv) because maximal correlation
is invariant with respect to all 1–1 Borel functions on the real line.

Example 5 (Correlation ratio) The correlation ratio was introduced by Karl
Pearson as part of analysis of variance. The definition of the correlation ratio is
the following. ∆(X,Y ) := Var(E(X|Y ))/Var(X) provided that Var(X) exists
and is positive. This measure is clearly not symmetric in X, Y . On the other
hand it is easy to show that the symmetric maximal correlation is the same
as the square root of the maximal correlation ratio.

Proposition 2 The maximal correlation of X,Y ,

sup
f,g

ρ(f(X), g(Y )),

where f, g are Borel-measurable functions, is equal to the square root of the
supremum of the correlation ratio, which is the square root of

sup
f
{Var{E(f(X)|Y ) : Var f(X) = 1}.

Thus the supremum of a nonsymmetric measure of dependence became sym-
metric.

Proof For the proof we can suppose without loss of generality that f, g are
such that Var f(X) = Var g(Y ) = 1. Then by the Cauchy-Schwarz inequality

cov(f(X), g(Y )) = E(cov(f(X), g(Y )|Y ) + cov(E(f(X)|Y ), E(g(Y )|Y ))

= 0 + cov(E(f(X)|Y ), g(Y ))

≤
√

VarE(f(X)|Y )
√

Var g(Y )

=
√

VarE(f(X)|Y ).
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Equality holds if g(Y ) = aE(f(X)|Y )+b where a, b are constants, a 6= 0. Thus

maxcorr2(X,Y ) = sup
f,g

ρ2(f(X), g(Y ))

= sup{VarE(f(X)|Y ) : Var f(X) Var g(Y ) = 1}.

The correlation ratio satisfies axiom (ii), but it does not satisfy (i), (iii),
and (iv), see Proposition 3. On a multivariate generalization of the correlation
ratio see Sampson (1984).

Example 6 (Maximal information coefficient) Denote by I(X,Y ) the mutual
information between two discrete random variables X and Y taking finitely
many values (x, y):

I(X,Y ) :=
∑
x,y

p(x, y) log2

p(x, y)

p(x)p(y)
,

where p(x, y) is the probability that (X,Y ) = (x, y), p(x) = P (X = x), and
p(y) = P (Y = y). The population maximal information coefficient (MIC∗) of
a pair (X,Y ) of random variables is defined as

MIC∗(X,Y ) = sup
G

I((X,Y )|G)

log ||G||
,

where

– G is a rectangular grid imposed on the support of (X,Y ),
– (X,Y )|G denotes the discrete distribution induced by (X,Y ) on the cells

of G, and
– ||G|| denotes the minimum of the number of rows and the number of

columns of G.

See Reshef et al. (2016).
MIC∗ is the population value of the maximal information coefficient statis-

tics (MIC) introduced in Reshef et al. (2011). For comments see Speed (2011),
Simon and Tibshirani (2011).

MIC∗ is not invariant with respect to all measurable 1–1 functions of H.
Unfortunately, even axiom (iii) may be violated if the cdf of the random vari-
able X is not continuous. In addition, axiom (iv) is not satified (see Proposition
4).

4 Dependence measures and the new axioms

Our main result is the following.

Theorem 1 Suppose S is a set of pairs of non-constant random variables and
if (X,Y ) ∈ S then (LX,MY ) ∈ S for all affine transformations L, M of H.
If the dependence measure ∆(X,Y ) on S is invariant with respect to all affine
transformations L, M of H where dimH > 1 then axiom (iv) cannot hold.
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If dimH = 1 then affinity is the same as similarity and in this case distance
correlation is affine invariant. On the other hand, if ∆(X,Y ) is invariant with
respect to all 1–1 Borel measurable functions of H then even if dimH = 1,
axiom (iv) cannot hold.

Proof Suppose dimH > 1. We will show that every continuous and affine
invariant dependence measure must be constant, hence violating axiom (i).

Let X, Y , X∗, and Y ∗ be arbitrary H-valued random variables, bounded
and nonconstant. We will show that ∆(X,Y ) = ∆(X∗, Y ∗). We can suppose
that X∗ and Y ∗ do not have constant coordinates at all. Then, by scale in-
variance, for every real number c 6= 0 we have

∆
(
(X1, X2, . . . ), Y

)
= ∆

(
(cX1, X2, . . . ), Y

)
,

and by continuity, this remains true for c = 0. Similarly, we get the same if
X1 is replaced by X∗1 . Thus, X1 can be changed to X∗1 with no effect on ∆.
Gradually, all coordinates of X can be replaced by those of X∗, and then the
same can be done with Y . Consequently, ∆(X,Y ) = ∆(X∗, Y ∗). During these
changes of coordinates we have to avoid making any of the random variables
constant by changing one of their coordinates. This can be achieved if we first
replace the constant coordinates by the corresponding nonconstant ones.

If H = R, the real line, such a result cannot be true because on the real line
affine transformations coincide with similarities. But if we require invariance
with respect to all 1–1 Borel measurable functions, then, as a first step, we can
map our scalar random variables to R2 with the help of a 1–1 Borel measurable
function (Gouvêa, 2011), then the reasoning above can be applied.

Let us note that for real valued random variables monotone invariance
does not contradict continuity, this can be seen from Kimeldorf and Sampson
(1978) or from distance correlation applied to ranks.

The next result is a corollary of Theorem 1, but because of its importance
we state and prove this corollary separately.

Corollary 1 The maximal correlation coefficient does not satisfy axiom (iv).

In fact, it can happen that the maximal correlation coefficient of Xn, Yn is
1 for n = 1, 2, . . . , but in their weak limit (X,Y ) the random variables X and
Y are independent, and by this their maximal correlation is 0.

Proof Suppose that the real valued random variables (Xn, Yn) are such that
Xn = Yn with probability 1/n and with the remaining 1−1/n probabilityXn =
X, Yn = Y , where X and Y are independent. Then the maximal correlation
of Xn, Yn is 1 while in the limit they are independent.

Remark 2 More invariance of ∆ is not necessarily better. For example maxi-
mal correlation satisfies axiom (F), i.e., maximal correlation is invariant with
respect to all 1–1 transformations of the real line onto itself, but then this im-
plies that the empirical maximal correlation is essentially always 1 because if
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X1, X2, . . . , Xn are distinct real numbers then we can always find a 1–1 trans-
formation f of the real line such that Yi = f(Xi), i = 1, 2, . . . , n. On the other
hand, because distance correlation is not invariant for “most” 1–1 transforma-
tions we can apply supf,gR(f(X), g(Y )) where f, g are arbitrary functions for
which R(f(X), g(Y )) exists to detect “hidden dependencies” between X and
Y . This can easily happen when X,Y are high dimensional vectors, most of
their coordinates are independent and thus R(X,Y ) is very small, but e.g. the
first coordinate of X is always the same as the first coordinate of Y . This strong
lower dimensional dependency is masked by the independence of other coor-
dinates. Maximal distance correlation, i.e. supf,gR(f(X), g(Y )), can reveal
this hidden dependency. Even if we maximize the sample distance correlation
with respect to linear functions only (linear combinations of the coordinates)
of (high dimensional) X and Y , we get a powerful dimension reduction tool,
a “distance” counterpart of canonical correlation analysis.

Proposition 3 The correlation ratio satisfies axiom (ii), but it does not sat-
isfy (i), (iii), and (iv).

Proof The correlation ratio does not satify axiom (i). Although it is zero when
X and Y are independent, it can be zero in other cases, too; for example, when
the conditional distribution of X given Y is symmetric. Axiom (ii) clearly
holds, because on the real line similarities coincide with linear transformations.
On the other hand, axiom (iii) does not hold because for the correlation ratio
∆(X,Y ) = 1 if and only if X is almost surely equal to a Borel measurable
function of Y . Indeed, since 1 − ∆(X,Y ) = E[Var(X|Y )]/Var(X), we have
∆(X,Y ) = 1 if and only if Var(X|Y ) = 0; that is, X is a Borel measurable
function os Y with probability 1. Axiom (iv) does not hold either as shown
by the following example. Let Y be a nondegenerate, bounded, integer valued
random variable and X be uniformly distributed on the interval (0, 1) such
that X is independent of Y . Define Yn = Y + 1

nX. Then X = n{Yn}, where
{.} stands for fractional part, hence ∆(X,Yn) = 1. On the other hand, (X,Yn)
tends to (X,Y ) everywhere, not only in distribution, and ∆(X,Y ) = 0.

Proposition 4 The population maximal information coefficient MIC∗ satis-
fies axioms (i) and (ii) but does not satisfy axioms (iii) and (iv). MIC∗ is
invariant with respect to all monotone transformations but not to all measur-
able 1–1 functions, hence Theorem 1 does not apply to MIC∗.

Proof It is clear that MIC∗(X,Y ) = 0 if X and Y are independent. On the
other hand, MIC∗(X,Y ) = 0 means that I((X,Y )|G) = 0 for every grid G,
which implies that the discretized by G versions of X and Y are independent.
Particularly we obtain that the joint distribution of (X,Y ) coincides with a
product measure on rectangles, hence on all bidimensional Borel sets, too.

Since monotone transformations of the coordinates map grids into grids,
MIC∗ is invariant with respect to them. Particularly, it satisfies axiom (ii),
because every affine transformation on R is monotone.

If X is discrete, then MIC∗(X,X) = 1 if and only if there exists a partition
of the real line into at least 2 parts such thatX falls into every partition interval
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with the same probability. For example, suppose that P (X = 0) = p 6= 1/2,
and P (X = 1) = 1− p. Then MIC∗(X,X) = −p log p− (1− p) log(1− p) < 1.
Thus, axiom (iii) is hurt.

Let X take the values 0, 1, 2 with probabilities 1/4, 1/2, 1/4, respectively.
For computing MIC∗(X,X) it is easy to see that there exist altogether three
essentially different grids: 2× 2, 2× 3, and 3× 3. Consequently,

MIC∗(X,X) = max

{ 1
4 log 4 + 3

4 log 4
3

log 2
,

1
4 log 4 + 1

2 log 2 + 1
4 log 4

log 3

}
= 0.946 · · · < 1.

Let f(x) = 3 − x, if 1 ≤ x ≤ 2, and f(x) = x otherwise. This f interchanges
1 and 2, and does not move 0. It is a piecewise continuous 1–1 function,
and MIC∗(f(X), f(X)) = 1, which is obtained by considering the partition
R = (−∞, 3/2) ∪ [3/2,+∞). Thus, MIC∗ is not invariant with respect to
measurable 1–1 transformations.

If one prefers a counterexample with continuous joint distribution, let
(X,Y ) be uniformly distributed over the black squares of a 4 × 4 checker-
board. Then the maximal information coefficient of that distribution is 1/2,
but if we permute the rows and columns of the checkerboard, we can turn it
into a 2 × 2 checkerboard with bigger squares, and the maximal information
coefficient of that distribution is 1. This permutation can be performed using
piecewise linear functions. Details are left to the reader.

Finally, we show that MIC∗ is not weakly continuous, thus axiom (iv) is
not satisfied.

Let X be uniformly distributed on the interval [0, 1], and define Y as the
fractional part of nX. We will show that MIC∗(X,Y ) = 1 for every positive
integer n.

Clearly, Y is also uniformly distributed on [0, 1]. Let k ≥ 2 be arbitrary,
and impose an nk×k equidistant grid on the unit square. Then the distribution
(X,Y )|G is discrete uniform of size nk, with discrete uniform marginals of size
nk and k, respectively. Hence

I((X,Y )|G = log(nk) + log k − log(nk) = log k,

while ||G|| = k. (In information theory, logarithm is meant on base 2, but the
base does not matter here.) Thus,

MIC∗(X,Y ) =
I((X,Y )|G)

log ||G||
= 1.

Now, as n → ∞, the joint distribution of (X,Y ) converges weakly to the
uniform distribution on the unit square, which, having independent marginals,
yields MIC∗ = 0.

In light of Corollary 1 and Proposition 4 it is unlikely that the maximal
correlation or the maximal information coefficient will be the correlation for the
21st century; see Speed (2011). Distance correlation on the other hand turned
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out to be a new powerful tool for detection of associations between data sets,
see the summary of a plenary talk at the Joint Mathematical Meeting in 2017
(Richards, 2017).

5 Conclusion

There are many examples of dependence measures that satisfy our new axioms
(i) – (iv) for different important sets S but if we want S to contain all pairs
of bounded (nonconstant) random variables in an arbitrary Euclidean space
or separable Hilbert space, then of the well-known dependence measures, the
distance correlation seems to be the simplest and most appealing one that
satisfies all axioms (i) – (iv).

6 Appendix

Proof of Proposition 1 Without loss of generality assume that E[X] = 0. Let
Q denote the distribution of X on the Borel sets of R. We have to find a 1–1
function f such that

∫
xf(x) dQ = 0.

By assumption, there exist real numbers t1 < t2 < t3 such that each of the
intervals (−∞, t1], (t1, t2], (t2, t3], (t3,+∞) has positive measure (w.r.t. Q).
Let δ be a suitably small positive number (the meaning of “suitably” will be
made clear later). One can find t0 < t1 and t4 > t3 such that both Q(−∞, t0]
and Q(t4,+∞) are less than δ (possibly 0).

Let the intervals (−∞, t0], (t0.t1], (t1, t2], (t2, t3], (t3, t4], and (t4,+∞) be
denoted by A0, A1, A2, A3, A4, and A5, respectively. Introduce

µi =

∫
Ai

x dQ, σ2
i =

∫
Ai

x2dQ, 0 ≤ i ≤ 5.

Then µ0 + · · ·+ µ5 = 0.
It is not hard to see that there exist real constants a1, a2, a3, a4, all different,

such that

a1(µ0 + µ1) + a2µ2 + a3µ3 + a4(µ4 + µ5) = 0. (1)

Indeed, consider the hyperplane L of all vectors (a1, a2, a3, a4) ∈ R4 satisfying
(1). L cannot coincide with the hyperplane L1,2 = {a1 = a2}, because the
L1,2 is orthogonal to the vector (1,−1, 0, 0), which is not parallel to (µ0 +
µ1, µ2, µ3, µ4 + µ5), since the latter can have at most one 0 coordinate. Thus,
dim(L∩L1,2) = 2. The same holds for Li,j , the hyperplane defined by equality
ai = aj (i 6= j). Since L cannot be covered by six of its lower dimensional
subspaces, the existence of a vector in L with different coordinates follows.

Let K > max1≤i≤4 |ai|. By continuity, if δ is small enough, one can find
constants b1, b2, b3, b4 all different, such that max1≤i≤4 |bi| < K, and

−Kµ0 + b1µ1 + b2µ2 + b3µ3 + b4µ4 +Kµ5 = 0.
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Finally, choose c0, c1, . . . , c5 in such a way that none of them are equal to 0,
c0 and c5 are positive, and

∑5
i=0 ciσ

2
i = 0. This can be done, because there

are at least 3 positive among the quantities σ2
i .

Now, let b0 = −K, b5 = K, and f(x) = bi + εcix if x ∈ Ai, 0 ≤ i ≤ 5.
Then f is injective provided ε is a sufficiently small positive number, and∫

R
xf(x) dQ =

5∑
i=0

(biµi + εciσ
2
i ) = 0,

as needed.
Such an f cannot exist if X can take on exactly two values, because in

that case uncorrelatedness is equivalent to independence.
When the distribution of X is concentrated on exactly 3 points, and X

is supposed to have mean 0, then such an f exists if and only if zero is not
among the possible values of X. (If E[X] = 0 is not supposed, the necessary
and sufficient condition for f to exist is P (X = E[X]) = 0.) Indeed, let x1 <
x2 < x3 be the possible values of X, with probabilities q1, q2, q3, respectively.
Then q1x1 + q2x2 + q3x3 = 0, and x1 < 0 < x3. We are looking for real
numbers f1, f2, f3 such that q1x1f1 + q2x2f2 + q3x3f3 = 0. If x2 = 0, then
it can only achieved with f1 = f3. In the complementary case f1 = −1,
f3 = 1 and f2 = (q1x1 − q3x3)/(q2x2) will do, because f2 = 1 would imply
−q1x1 + q2x2 + q3x3 = 0, hence q1x1 = 0, which is not allowed, and similarly,
f2 = −1 would imply q3x3 = 0.
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