
Dual spaces of multi-parameter martingale Hardy
spaces

Ferenc Weisz ∗

Department of Numerical Analysis, Eötvös L. University
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Abstract

In this paper we introduce the generalized multi-parameter martingale BMO
spaces. The atomic decomposition of the multi-parameter martingale Hardy-
Lorentz space Hs

p,q is given. With the help of this, the dual space of Hs
p,q is

characterized as the generalized BMO space. Finally, as an application, John-
Nirenberg inequality is generalized for multi-parameters.
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1 Introduction

Martingale Hardy-Lorentz spaces HS
p,q and Hs

p,q defined by the quadratic and condi-
tional quadratic variation are considered. The atomic decomposition is a useful char-
acterization of martingale Hardy spaces by the help of which some duality theorems,
interpolation results and martingale inequalities can be proved. The atomic decom-
positions of five different martingale Hardy spaces (amongst others the one of Hs

p)
were given in [10]. More recently, using an idea of Abu-Shammala and Torchinsky
[1], Jiao, Xie and Zhou [7] have extended the atomic decomposition to the martingale
Hardy-Lorentz spaces Hs

p,q (see also Jiao, Peng and Liu [6] and Ho [5]).
Multi-parameter martingales were investigated in several papers, see [10] and the

references therein and they can be well applied in Fourier analysis (see [11]). The
proofs for multi-parameter martingales are usually not simple adaptations of that of
the one-parameter proofs. They need new ideas. The atomic decomposition for multi-
parameter martingale Hardy space Hs

p is more complicated and is due to the author
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[10]. In this paper we generalize the preceding result of Jiao, Xie and Zhou [7] and
characterize the atomic decomposition of the multi-parameter Hs

p,q.
A very classical result in harmonic analysis is that the dual of H1 is BMO (Fefferman

and Stein [2]). For martingale Hardy spaces see Garsia [3], Long [8] and Weisz [10].
In [10] we proved that the dual of Hs

p is BMO2(α) if 0 < p ≤ 1, α = 1/p − 1 and
the dual of Hs

p is Hs
p′ if 1 < p < ∞, 1/p + 1/p′ = 1. The same holds also for multi-

parameter Hardy spaces (see [10]). Note that the situation is very different from the
duals of the Lp spaces if 0 < p < 1, because the dual of Lp is trivial. More recently, in
the one-parameter case, Ho [5] characterized the dual of Hs

p,q as the space BMO2(α)
when 0 < p ≤ 1, 0 < q ≤ p, α = 1/p − 1. Later Jiao, Xie and Zhou [7] and Ren [9]
have generalized this result for all 0 < p ≤ 2, 0 < q ≤ 1. They [7] have introduced
generalized BMO2,q(α) spaces and have proved that the dual of Hs

p,q is BMO2,q(α) if
0 < p ≤ 2, 1 < q <∞, α = 1/p−1. As a consequence, they [7] obtained a generalization
of John-Nirenberg inequality, more exactly, BMO2(α) is equivalent to BMOr(α) and
BMO2,q(α) is equivalent to BMOr,q(α) (1 ≤ r <∞). In this paper we generalize these
results to multi-parameter Hardy-Lorentz spaces and generalized BMO spaces.

2 Martingales and dyadic Hardy spaces

For a set X 6= ∅ let Xd be its Cartesian product X× . . .× X taken with itself d-times.
Let d ≥ 1 be a fixed integer and let us introduce the following partial ordering on Nd.
For n = (n1, . . . , nd), m = (m1, . . . ,md) ∈ Nd set n ≤ m if nj ≤ mj for all j = 1, . . . , d.
We say that n < m if n ≤ m and n 6= m. Moreover, n� m means that the inequalities
nj < mj hold for all j = 1, . . . , d. For n = (n1, . . . , nd) let n− 1 = (n1− 1, . . . , nd− 1).

For two arbitrary sets H,G ⊂ Nd consisting of incomparable number pairs (i.e. if
n,m ∈ H (or G) then neither of the inequalities n ≤ m and m ≤ n hold) we write
H � G (resp. H ≤ G) if for all n ∈ G there exists m ∈ H, such that m � n (resp.
m ≤ n). Denote by inf H the set of the number pairs m ∈ H for which there does not
exist any n ∈ H, n 6= m such that n ≤ m. We shall use the convention inf ∅ =∞.

Let (Ω,A, P ) be a probability space and let F = (Fn, n ∈ Nd) be a non-decreasing
sequence of σ-algebras with respect to the partial ordering on Nd. The expectation
operator and the conditional expectation operator relative to Fn are denoted by E and
En. We suppose that

En(fg) = EnfEng (n ∈ Nd)

for all bounded ∪ni∈N,i 6=kFn-measurable functions f and all ∪ni∈N,i 6=lFn-measurable
functions g (k 6= l).

An integrable sequence f = (fn, n ∈ Nd) is said to be a martingale if fn is Fn
measurable (n ∈ Nd) and Enfm = fn for all n ≤ m. For simplicity, we always suppose
that for a martingale f we have fn = 0 if n1 · · ·nd = 0. The stochastic basis F is said
to be regular if there exists a number R > 0 such that

fn ≤ Rfn1−ε1,...,nd−εd (n ∈ Nd)

holds for all non-negative martingales (fn, n ∈ Nd) and all numbers εj ∈ {0, 1} with
ε1 + · · ·+ εd = 1.
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We briefly write Lp instead of the Lp(Ω,A, P ) space while the norm (or quasinorm)
of this space is defined by ‖f‖p := (E|f |p)1/p (0 < p ≤ ∞). For a measurable function
f , the non-increasing rearrangement is defined by

f̃(t) := inf{ρ : P (|f | > ρ) ≤ t}.
A measurable function is in the Lorentz space Lp,q = Lp,q(Ω,A, P ) (0 < p < ∞, 0 <
q ≤ ∞) if

‖f‖p,q :=

(
q

p

∫ ∞
0

tq/pf̃(t)
q dt

t

)1/q

(0 < q ≤ ∞),

‖f‖p,∞ := sup
t>0

t1/pf̃(t) (q =∞).

It is known (see Grafakos [4]) that

‖f‖p,q =

(
q

∫ ∞
0

tqP (|f | > t)q/p
dt

t

)1/q

(0 < q ≤ ∞),

‖f‖p,∞ = sup
t>0

tP (|f | > t)1/p (q =∞).

We recall that Lp,p = Lp and Lp,q increase as the second exponent q increases, and
decrease as the first exponent p increases.

The quadratic variation and the conditional quadratic variation of a martingale
f = (fn, n ∈ Nd) are defined by

S(f) :=

(∑
n∈Nd

|dnf |2
)1/2

, s(f) :=

(∑
n∈Nd

En−1|dnf |2
)1/2

,

respectively, where the martingale differences are given with

dnf =
∑

εi∈{0,1}

(−1)ε1+···+εd fn1−ε1,...,nd−εd .

For 0 < p, q ≤ ∞ the martingale Hardy-Lorentz spaces HS
p,q and Hs

p,q consist of all
d-parameter martingales for which

‖f‖HS
p,q

:= ‖S(f)‖p,q <∞, ‖f‖Hs
p,q

:= ‖s(f)‖p,q <∞,

respectively. It is known that HS
p,q ∼ Lp,q for 1 < p <∞ and 0 < q ≤ ∞.

In this paper the constants C and Cp may vary from line to line and the constants
Cp are depending only on p.

3 Atomic decomposition of multi-parameter Hardy

spaces

Lemma 1 Let 0 < p < ∞, 0 < q ≤ ∞, (2kηk) ∈ `q, ηk ≥ 0 and f ≥ 0. Suppose that
there exists 0 < δ < 1 < ε <∞ such that for all N ∈ Z, f ≤ gN + hN ,

P (gN > 2N) ≤ C2−Nεp
N∑

k=−∞

2kεpηpk (1)
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and

P (hN > 2N) ≤ C2−Nδp
∞∑
k=N

2kδpηpk. (2)

Then f ∈ Lp,q and
‖f‖p,q ≤ C

∥∥(2kηk)
∥∥
`q
.

Proof. It is enough to prove that∥∥(2kP (f > 2 · 2k)1/p
)∥∥

`q
≤ C

∥∥(2kηk)
∥∥
`q
.

It is easy to see that∥∥(2NP (f > 2 · 2N)1/p
)∥∥

`q
≤ C

∥∥(2NP (gN > 2N)1/p
)∥∥

`q
+ C

∥∥(2NP (hN > 2N)1/p
)∥∥

`q
.

The inequality ∥∥(2NP (hN > 2N)1/p
)∥∥

`q
≤ C

∥∥(2kηk)
∥∥
`q

was proved in [1] and [7]. If q =∞, then

2NP (gN > 2N)1/p ≤ Cp2
N−Nε

(
N∑

k=−∞

2k(ε−1)p2kpηpk

)1/p

≤ Cp
∥∥(2kηk)

∥∥
`∞
,

which proves the result. If 0 < q <∞ and p < q, then apply Hölder’s inequality with
the exponent r = q/p and its conjugate r′ to obtain

2NP (gN > 2N)1/p ≤ Cp2
N−Nε

(
N∑

k=−∞

2kγp2k(ε−γ)pηpk

)1/p

≤ Cp2
N(1−ε)

(
N∑

k=−∞

2kγpr
′

)1/pr′ ( N∑
k=−∞

2k(ε−γ)qηqk

)1/q

≤ Cp2
N(1−ε+γ)

(
N∑

k=−∞

2k(ε−γ)qηqk

)1/q

,

where γ > 0 is arbitrary. If p ≥ q, then we obtain the same inequality as follows:

2NP (gN > 2N)1/p ≤ Cp2
N(1−ε+γ)

(
N∑

k=−∞

2k(ε−γ)pηpk

)1/p

≤ Cp2
N(1−ε+γ)

(
N∑

k=−∞

2k(ε−γ)qηqk

)1/q

.
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Hence

∥∥(2NP (gN > 2N)1/p
)∥∥q

`q
≤ Cp

∑
N∈Z

2N(1−ε+γ)q

N∑
k=−∞

2k(ε−γ)qηqk

≤ Cp
∑
k∈Z

2k(ε−γ)qηqk

∞∑
N=k

2N(1−ε+γ)q

≤ Cp
∑
k∈Z

2kηqk,

whenever we choose γ such that 0 < γ < ε− 1. The lemma is proved.

The atomic decomposition for Hs
p,q is much more complicated in the multi-parameter

setting. In this case, instead of the ∞-norm of the atoms, we have to use the 2-norm.
The next theorem generalizes the atomic decomposition of Hs

p (see Weisz [10]). We [10]
generalized the stopping times for the multi-parameter setting as follows. A function
τ which maps Ω into the set of subspaces of Nd ∪ {∞} is said to be a stopping time
relative to (Fn, n ∈ Nd) if the elements of τ(ω) are incomparable for all ω ∈ Ω and

{n ∈ τ} ∈ Fn (n ∈ Nd).

The set of stopping times will be denoted by T . A function a ∈ L2 is called a p-atom
if there exists a stopping time τ such that

(i) an := Ena = 0 if τ 6� n

(ii) ‖a∗‖2 ≤ P (τ 6=∞)1/2−1/p (0 < p < 2).

Theorem 1 A d-parameter martingale f is in Hs
p,q (0 < p < 2, 0 < q ≤ ∞) if and

only if there exists a sequence (ak, k ∈ Z) of p-atoms with associated stopping times
(τk, k ∈ Z) such that(∑

k∈Z

|µk|q
)1/q

<∞ and
∑
k∈Z

µka
k
n = fn a.e. (n ∈ Nd), (3)

where µk =
√

2 · 2k+1P (τk 6=∞)1/p. Moreover,

‖f‖Hs
p,q
∼ inf

(∑
k∈Z

|µk|q
)1/q

where the infimum is taken over all decompositions of f of the form (3).

Proof. Assume that f ∈ Hs
p,q. Here we have to use finer stopping times than in the

one-parameter case. Let

τk := inf
{
n ∈ Nd : En1{s(f)>2k} > 1/2

}
.
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It is easy to see that

fn =
∑
k∈Z

(f τk+1
n − f τkn ) =

∑
k∈Z

µka
k
n a.e. (n ∈ Nd),

where

akn :=
f
τk+1
n − f τkn

µk
.

For a fixed k, (akn) is a martingale. In [10] we have shown that ak is a p-atom. For the
sake of completeness, we give a short proof here. If τk 6� n, then obviously f

τk+1
n = f τkn ,

thus (i) holds. Since L2 is isometric to Hs
2 , for (ii) we get that

E(f τk+1
n − f τkn )2 ≤ E

(∑
n∈Nd

En−1|dnf |21{τk�n6�τk+1}

)
= (A) + (B),

where
(A) =

∑
n∈Nd

E
(
En−1|dnf |21{τk�n6�τk+1}1{s(f)≤2k+1}

)
and

(B) =
∑
n∈Nd

E
(
En−1|dnf |21{τk�n6�τk+1}1{s(f)>2k+1}

)
.

Clearly,
(A) ≤ 4k+1P (τk 6=∞).

It follows from the definition of τk+1 that if τk+1 6� n, then

En−11{s(f)>2k+1} ≤ 1/2.

Hence

(B) =
∑
n∈Nd

E
(
En−1|dnf |21{τk�n6�τk+1}En−11{s(f)>2k+1}

)
≤ 1

2
E

(∑
n∈Nd

En−1|dnf |21{τk�n6�τk+1}

)
,

which implies
E(f τk+1

n − f τkn )2 ≤ 2 · 4k+1P (τk 6=∞).

Thus
E
(
(akn)2

)
≤ P (τk 6=∞)1−2/p (n ∈ Nd).

Hence there exists a function ak ∈ L2 such that Ena
k = akn (n ∈ Nd) and (ii) holds.

Next we obtain

P (τk 6=∞) = P

(
sup
n∈Nd

En1{s(f)>2k} > 1/2

)
≤ 4E

(
sup
n∈Nd

(En1{s(f)>2k})
2

)
≤ CP (s(f) > 2k) ≤ CP (s(f) > u),
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where 2k−1 ≤ u < 2k. If 0 < q <∞, then

∑
k∈Z

|µk|q ≤ C
∑
k∈Z

∫ 2k

2k−1

(
uP (s(f) > u)1/p

)q du
u
≤ C ‖f‖qHs

p,q
.

If q =∞, then

sup
k∈Z
|µk| ≤ C sup

k∈Z
2kP (s(f) > 2k)1/p ≤ C ‖f‖Hp,∞

.

Conversely, if the martingale f has the above decomposition, then for an arbitrary
integer N let

fn =
∞∑

k=−∞

µka
k
n = gn + hn (n ∈ Nd),

where

gn :=
N−1∑
k=−∞

µka
k
n and hn :=

∞∑
k=N

µka
k
n.

Obviously, s(f) ≤ s(g) + s(h). Since for a fixed m the sets {νk � m 6� νk+1} are
disjoint and

µka
k
n =

∑
m≤n

(dmf)1{νk�m 6�νk+1},

we obtain

P (s(g) > 2N) ≤ 2−2N ‖s(g)‖2
2 = 2−2N

∫
Ω

∣∣∣∣∣
N−1∑
k=−∞

µka
k

∣∣∣∣∣
2

dP

= 2−2N

N−1∑
k=−∞

∫
Ω

∣∣µkak∣∣2 dP = C2−2N

N∑
k=−∞

22kP (τk 6=∞).

Choosing ε = 2/p > 1, we obtain (1). Moreover,

P (s(h) > 2N) ≤ P (s(h) > 0) ≤
∞∑
k=N

P (s(ak) > 0) ≤
∞∑
k=N

P (τk 6=∞),

which proves (2). By Lemma 1 we conclude that

‖s(f)‖p,q ≤ C
∥∥(2kP (τk 6=∞)1/p

)∥∥
`q

= C ‖(µk)‖`q .

The proof of the theorem is complete.

If F is regular, then the previous theorem can be shown for the HS
p,q spaces as well.
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Theorem 2 Suppose that the stochastic basis F is regular. A d-parameter martingale
f is in HS

p,q (0 < p < 2, 0 < q ≤ ∞) if and only if there exists a sequence (ak, k ∈ Z)
of p-atoms with associated stopping times (τk, k ∈ Z) such that(∑

k∈Z

|µk|q
)1/q

<∞ and
∑
k∈Z

µka
k
n = fn a.e. (n ∈ Nd), (4)

where µk =
√

2 · 2k+1P (τk 6=∞)1/p. Moreover,

‖f‖HS
p,q
∼ inf

(∑
k∈Z

|µk|q
)1/q

where the infimum is taken over all decompositions of f of the form (4).

Corollary 1 If F is regular, then Hs
p,q ∼ HS

p,q for all 0 < p < 2, 0 < q ≤ ∞.

Note that this corollary was already proved in [10] with another method.

4 Duality theorems

In [10] we have introduced the BMOr(α) space (there it was denoted by Λr(α)) and
proved that the dual of Hs

p is BMO2(α) with 0 < p ≤ 1, α = 1/p − 1. BMOr(α)
(1 ≤ r <∞, α > −1/r) denotes the space of those functions f ∈ Lr for which

‖f‖BMOr(α) = sup
τ∈T

P (τ 6=∞)−1/r−α ‖f − f τ‖r <∞.

We generalize these spaces as follows. A functions f ∈ Lr is in BMOr,q(α) (1 ≤ r <
∞, α > −1/r, 0 < q <∞) if

‖f‖BMOr,q(α) = sup
τk∈T

∑
k∈Z 2kP (τk 6=∞)1−1/r ‖f − f τk‖r(∑

k∈Z (2kP (τk 6=∞)1+α)q
)1/q

<∞,

where the supremum is taken over all stopping times τk, for which
(
2kP (τk 6=∞)1+α

)
∈

`q. If we take only one stopping time in the supremum of the BMOr,q(α)-norm, then
we get back the BMOr(α)-norm, i.e., ‖f‖BMOr(α) ≤ ‖f‖BMOr,q(α). On the other hand,
if 0 < q ≤ 1, then

‖f‖BMOr,q(α) ≤ sup
τk∈T

∑
k∈Z 2kP (τk 6=∞)1+α ‖f‖BMOr(α)(∑

k∈Z (2kP (τk 6=∞)1+α)q
)1/q

≤ ‖f‖BMOr(α) ,

so in this case BMOr(α) ∼ BMOr,q(α). In case α = 0, we denote the spaces by BMOr

and BMOr,q.
These spaces were first introduced and investigated in the one-parameter case by

Jiao, Xie and Zhou [7] (see also Ho [5]). They proved the one-parameter version of
Theorems 3–6. Since the following theorems can be shown similarly as in the one-
parameter case (see [7]), we omit the proofs.
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Theorem 3 The dual space of Hs
p,q is BMO2(α), (0 < p < 2, 0 < q ≤ 1, α = 1/p− 1).

Theorem 4 The dual space of Hs
p,q is BMO2,q(α), (0 < p < 2, 1 < q < ∞, α =

1/p− 1).

Theorem 5 If F is regular, then the dual space of Hs
p,q is BMOr(α), (0 < p < r′ ≤

2, 0 < q ≤ 1, α = 1/p− 1).

Theorem 6 If F is regular, then the dual space of Hs
p,q is BMOr,q(α), (0 < p < r′ ≤

2, 1 < q <∞, α = 1/p− 1).

Corollary 2 Suppose that F is regular, 2 ≤ r <∞, 1 < q <∞ and α > −1/r. Then
BMO2(α) is equivalent to BMOr(α) and BMO2,q(α) is equivalent to BMOr,q(α).

Note that the first half of Corollary 2 was proved in [10] for α = 0, i.e., BMO2 ∼
BMOr (2 ≤ r <∞).
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