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Abstract

The structural optimization can achieve weight and cost
savings by changing the structural characteristics. The
characteristics of a structure are as follows: loads, materials,
geometry, topology, shapes and dimensions of profiles,
connections, fabrication technology, transport, = erection,
maintenance. A modern structure should be safe and
economic. Safety is guaranteed by fulfilling the design
constraints, economy is achieved by minimization of a cost
function. The welded I-beams subject to compression,
bending and to combined action are optimized considering
stability constraints according to Eurocode 3. Comparison is
made between welded and rolled I-beams.

1 Introduction

The optimum design process has three main phases as
follows:

(a) preparation: selection of candidate structural versions
defining the main characteristics to be changed,
formulation of design constraints and cost function,
solution of the constrained function minimization
problem by using efficient mathematical methods,

(c) evaluation of results by designers, comparison of
optimized versions, formulation of design rules,
incorporation in expert systems. These phases show that
the structural optimization has three main parts as
follows: cost function, design constraints, and
mathematical method.

(b)

The structural characteristics of compression columns are as
follows:

--load: static or variable axial compression force,

--geometry: column length, end restraints (pinned, fixed or
free),

--material: steel of different grade (yield strength of 235, 275,
355 MPa), high strength steels, Al-alloys, stainless steel, fiber
reinforced plastics,

--profile: rolled I, hollow sections (circular, square,
rectangular), welded I- or box, cold-formed channel or other
profile, Al-alloy profiles with bulbs, profiles constructed from
two or more sections,

--fabrication: rolling, welding (different welding
technologier), cold-forming, hot finishing of hollow sections.
The Steel Construction Institute (UK) has worked out a
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design guide [1] containing tables of load-carrying capacities
of rolled and hollow sections in the case of axial compression
and bending for two different steel grades (yield strength of
275 and 355 MPa). The aim of the present paper is to
compare the rolled I-sections of axially compressed rods with
optimized welded I-section struts. From the above mentioned
characteristics the following are selected.

--load: axial compressive static force

--geometry: pinned ends, constant cross-section, column
fabricated with prescribed initial imperfections and residual
welding stresses

--material: steel of yield strength 355 MPa

--profile: doubly symmetric welded I-section with two double
fillet welds ‘

--variables: four plate dimensions: & — web height, ,, — web
thickness, b — flange width, tr — flange thickness

--objective function: cost function with material, fabrication
and painting costs

--design constraints: overall and local buckling according to
Eurocode 3 (Part 1.1 1992, Part 1.3 1996), [2,3].
--mathematical methods: Rosenbrock’s hillclimb method with
an additional discretization for rounded plate dimensions:
thicknesses rounded to 1 mm, plate widths rounded to 10 mm

2 Design of compressed I-beam for
overall buckling

Local buckling constraints are formulated according to
Eurocode 3 Part 1.1 [2].. According to Trahair [4], for doubly
symmetric sections, the buckling occurs either by flexure
about the weakest z axis, either by flexure about the strongest
y axis, or by torsion. According to Eurocode 3 Part 1.3 (1996)
the classical critical buckling stresses can be used for
buckling checks, calculating a reduced slenderness

I:,/fylacr.

Explicit design constraints
These constraints express the upper and lower limits of the
design variables. Design variables are web height (k) and
thickness (t,), flange width (b) and thickness (¢).
200 mm < A < 1000 mm.
6mm <t, <30 mm.
200 mm < b < 1000 mm.
6mm <t <40 mm.

Implicit design constraints
Logal buckling constraints
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Figure 1. Model of the compressed beam

Overall buckling constraint (around z axis)
N fy

A ™M1

where -
A=h-t,+2b-tg

is the cross section area of I-beam
fy =3BE MPa the yield stress

¥M1 = 1 1 partial safety factor defined by Eurocode 3
1

Xz = =
¢Z + (Dzz—ﬂz

is the buckling factor,

@y = 05-[1+ 049 (Z;—oz)+EzJ

=- L reduced slenderness,
1z "4E
L the column length,

I . S
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A
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E=21x10 MPais the Young modulus.
Torsional-flexural buckling:
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where
7M1 = L1 is partial safety factor defined by
Eurocode 3,
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is the buckling factor.
Brp = 05~[1+ 034 (Z-o.a)+12]

- |f
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is the reduced slenderness,
Oo =O04TF but
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is the critical torsional stress,

io2 =i ya-ﬂ‘z 2 is the reduced radius of inertia,

y

3. tr ¥
I =h t‘”+2.b.tf. £+_f_
12 2 2

I
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is the critical stress for torsional-flexural buckling,

(18)

G =-§-é= 0807% 10 MPa is the shear modulus.

3 Design of beams for bending

Explicit design constraints
200 mm < 2 < 1500 mm.
6 mm<t, <40 mm.
200 mm < b < 1000 mm.
6 mm <t <40 mm.

Implicit design constraints

Local buckling constraints

for webplate i <1R4 ¢
w
b
for flange —< R8¢
tf
where

e= |55
fy

(19)

(20)
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Figure 2. Beam model for bending

Lateral torsional buckling constraint

Wiy >0 @1
ALT
where
Wo = _M& 22)
f y / M1

is the required section modulus.

For uniformly distributed force p the bending moment is as

2
follows: M, = b BL , (23)
For concentrated force F the bending moment is as
follows: M4 =—% , 24)

fy =3BEMPa is the yield stress,

¥M1 = 1.1 is the partial safety factor according to
Eurocode 3,

21y
Wy = 25
Xel h +tf (25)
is the elastic section modulus,
3 2
‘t h tf
Iy = Y +2b-ty | —+— 26
X L f [ 2" 2 ) (26)
is the moment of inertia about x axis,
1
XLt = —— 27
DT+ \/ P17 -Ar
is lateral-torsional buckling factor,
@, =05 [1 +0.49 {1, -0.2)+)TL;2] 28)
I,=2 b®-tg 29
y — 12 ( )
is the moment of inertia about y axis,
bs . hz . tf 30
o= 24 (30)
is the warping moment of inertia,
lt=05'(h-tw3+2>b'tf8) @3n

is the torsional moment of inertia,
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-— 2
ALt =7"1L VBw (32)
is the reduced slenderness,
hS.¢
Wy = “'+b-tf«h (33)
is the plastic section modulus,
V74 .
By = (34)
is the reduction parameter,
E
M=7m [— (35)
fy
w 2
L4 plz
o
Mt = 2 (36)

I*.G 1,
7®.E-1,

\[E:I-#u

is the slenderness.
For uniformly distributed force: C; =113%

For concentrated force: C; =136E

4 Design of beams for combined bending
and compression :

Explicit design constraints
200mm .< 7 < 1500 mm.
6mm <1, <40 mm.
200 mm < b < 1000 mm.
6mm <t <40 mm.

Implicit design constraints
Local buckling constraints for webplate:

M _N
_ Wy A
= M N 37)
__._+__
Wy A
if w>—l1,then < 42E
t, 0.67+033y
if w <1, then is62-£-(l—t//)-,/—w
tW
Overall buckling and lateral-torsional buckling:
N ki+-M
LT <1 (38)
Xy'A'fy xLT'WX'fy
where
M= is the maximal bending moment,
2
h3.t h tf
Iy = Y 4+Rb oty | —+— 3
X712 f ( 2 2 @9
is the moment of inertia about x axis,
' R-Iy
Weo = 40
X% +tf “0)

is thg section modulus,
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Xy = —— (41)
@, +‘/<15y2 -2,
is the flexural buckling factor,
@, =05 [1 +049-(Z, -02)+ Ayz],
— K y" L
/1y = is the reduced slenderness,
T R’E
where K y=1
I
y
T =4, 42
A (42)
A=h-t,+Rb-ts . 43)
is the cross section area,
. bs '[f
ly=—% “4)
is the moment of inertia about y axis,
-N
k,, = 1——'”57——, (45)
X, A f,
pT =018 4, By -015 (46)
where Syt =14
1
XLT = 47)
2 R
DT +\/ D77
®,r =05 [1+049- (o7 ~02)+ Aur?,
—_ [Wx f
A= —2 48
LT M. (48)
ER-E-Iy I 12-G-1
MCT =C1_—.___.._. _w+__§.—l_
Lz l.y n®-E- [y
is the elastic critical bending moment, where C, =1.36E,
It=05-(h-:w5+2-b~rf5) (49)
is the torsional moment of inertia,
b%-h®.¢, 5
©="2g O

is the warping constant.

5 Cost calculation

The objective function is the cost of the structure. Total cost
consists of material, welding and painting costs.
The cost function is as follows:

K=K, +K,+K, 620

where

K,, — material cost,
K, — welding cost,
K, — painting cost.

Material cost:
According to the Japanese price list (Price list 1999) k), =
91.5 yen/kg = 0.832 $/kg

K,=k, p-AL (52)

where

k., — specific material cost
p - material density,

A — cross-section area,

L - length.
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Figure 3. Model of beam under combined bending and
compression

The fabrication cost contents the assembly, tacking, welding
and additional works and can be calculated according to
Farkas & Jarmai [6], Jarmai & Farkas [7].

The fabrication cost factor can be taken, according to Tizani
et al [8], as kr = 40 $/h = 0.6667 $/min, the constant for
assembly is C, = 1.0 min/kgo's , the difficulty factor
expressing the complexity of the structure is taken as
Or =3, the number of the assembled structural elements is
k=3, L,;=4L is the weld length in mm, ay= 0.4ty is the
weld size, the welding time component is, according to
COSTCOMP [9], Bodt [10}, Farkas & Jdrmai [6} and J4rmai
& Farkas (7] for GMAW-C (gas metal arc welding with CO,)

Coah =0339410°43.

Welding cost ’
K, =k, [2(3;;41)“5 +1.3x0.3394x107 x4u(o.4rw)2]

where (53)
k¢ — specific fabrication cost,
t,, — thickness of webplate.

Painting cost

The painting cost factor is according to Tizani et al.[8] kp =
14.48/m”, where the surface is S = (2 + 4b)L in m>.

K, =k, (8 h+4b)L (54)
where

k, — specific painting cost,

h — height of webplate,

b ~ width of flange.

The specific costs are as follows
kn=0.832 $/kg, k=0.6667 $/min, k,=14.4x10° $/mm>,
p=7.85%10" kg/mm’.

6 Numerical examples

6.1 Optimum design of compressed columns for overall
buckling

The I-sections are loaded by different compression forces N
between 1000 and 16000 kN. The step length between loads
is 1000 kN. The length of the columns L varies between 3 and
15 m. The step length is 1 m. Model of the column is




according to Figure 1. with two pinned supports at the ends

[11].

Explicit constraints
200 mm < A < 1000 mm.
6 mm < ¢, <30 mm.
200 mm <b < 1000 mm.
6 mm <t <40 mm,
Implicit constraints
Local buckling,
Overall buckling around the z axis,
Lateral-torsional buckling.

Optimization is performed using Rosenbrock’s Hillclimb
procedure [6]. Discrete values are according to the ARBED
production data.

Table 1 shows the optimized column sizes for L =3 m length.

First column is N, the compression force, next four columns
are the sizes of the cross-section (4, t,, b, & ), last column is
the cost of the column K/ k, in kg. Table 2 shows the
optimized column sizes for L = 4 m length.

6.2 Optimum design of beams under bending for lateral-
torsional buckling

There are two different kinds of bending: bending caused by
uniformly distributed load and concentrated force. In the case
of concentrated force (F) the lower and upper limits are 1000
and 16000 kN. The step length for the force is 1000 kN_

In the case of uniformly distributed force (p) the lower and
upper limits are calculated from the concentrated force,
divided the minimum force by the maximum length and the
maximum valie of force by the minimum length.

Table 1. Optimized column sizes for L=3 m

N _[kN] h_[mm] tw _[mm] b [mm] t; [mm] K/ kn kg)
1000 200 6 200 9 190.7766
2000 200 6 270 12 265.807
3000 200 6 320 15 341.3516
4000 200 6 340 19 415.1408
5000 200 6 380 21 485.9301
6000 200 7 380 25 560.9492
7000 200 6 400 28 623.5882
8000 200 - 7 400 32 701.3389
9000 210 7 420 34 768.2083
10000 200 7 450 35 831.6299
11000 200 6 470 37 891.0337
12000 200 6 490 39 - 952.71
13000 200 6 520 40 1039.397
14000 200 6 560 40 1111.7
15000 200 6 600 40 1183.911
16000 200 6 640 40 1256.039

Table 2. Optimized column sizes for L =4 m length

N [kN} " h [mm] - t, [mm} b [mm)] tr [mm] K/ k, (kg]
1000 200 6 220 10 277.7621
2000 200 6 270 14 379.5146
3000 210 7 340 15 488.5141
4000 200 6 380 18 576.3604
5000 200 6 420 20 672.0706
6000 200 6 440 23 771.5653
7000 200 6 440 27 868.2568
8000 200 6 460 29 952.8267
9000 200 6 480 31 1041.575
10000 200 6 480 35 1146.229

11000 220 7 510 35 1231.61
12000 200 6 510 39 1321.094
13000 220 7 530 40 1418.065
14000 230 7 580 39 1509.556
15000 230 7 610 40 1612.776
16000 230 7 650 40 1708.463
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Figure 4. Optimum costs of columns with different length in the function of compression force
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The lower limit for the uniformly distributed force is 70
N/mm, the upper limit is 5000 N/mm. Discrete values of the
uniformly distributed force are: 70, 250, 500, 1000 N/mm.
From 1000 N/mm the step length is 500 N/mm. Length of the
beam varies between 3 and 16 meters. Step length is 1 m..
The model can be seen on Figure 2.

Explicit constraints
200mm < k < 1500 mm.
6 mm < ¢, <40 mm.
200 mm < b < 1000 mm.

) 6 mm <t <40 mm.
Implicit constraints
Local buckling,

Lateral-torsional buckling

Table 3 shows the optimized beam sizes under bending due to
concentrated forces. Beam length is L = 3 m. First column is
F, the concentrated force, next four columns are the sizes of
the cross-section (h, £, b, t ), last column is the cost of the
column K/ k,,, in kg.

Table 4 shows the optimized beam sizes for L = 4 m length.
Table 4 contains results up to 13000 kN, because for 5 m
beams length the upper limits of the cross-sectional sizes
could nof satisfy the constraints for larger forces.




Table 3. Optimized beam sizes under bending due to concentrated force for L = 3 m length

F [kN] 7 [mm] f,_[mm] b [mm] % [mm] K/ ky [kg]
1000 470 6 200 37 910.6053
2000 810 7 220 39 1244.048
3000 960 8 260 40 1501.136
4000 1140 10 280 40 1756.982
5000 1200 - 10 330 40 1942.989
6000 1290 11 360 40 2134.678
7000 1340 11 400 40 2285.704
8000 1410 12 430 40 2466.511

9000 1390 12 490 40 2616.589
10000 1400 12 540 40 2763.312
11000 1410 12 590 40 2909.933
12000 1500 13 600 40 3055.578
13000 1500 13 650 40 3193.882

14000 1500 13 700 40 3332.111
15000 1460 12 780 40 3476.093 -
16000 1410 12 960 36 3777.215

Table 4. Optimized beam sizes under bending due to concentrated force for L = 4 m length

F_[kN] h [mmj t, [mm] b [mm]  [mm] K/ km kgl
1000 670 6 240 40 . 1958.982
2000 830 7 360 40 2740.171
3000 1110 9 390 40 3317.269
4000 1300 11 430 40 3865.859
5000 1360 11 520 39 4324.372
6000 1380 12 610 38 4785.437
7000 1430 12 650 40 5118.787
8000 1430 12 740 40 - 5531.738
9000 1480 12 800 40 5874.655
10000 1500 13 870 40 6296.27
11000 1500 13 960 40 6708.524
12000 1500 21 1000 40 7548.049
13000 1500 38 1000 40 9341.489
Table 5 -Optimum sizes of L=3 m beam due to uniformly distributed force
[N/mm] h [mm] t, [mm] b [mm] tr [mm] K/ k,, Tkg]
70 200 6 200 10 491.21
250 360 6 200 19 681.6
500 440 6 200 31 839.3
1000 680 6 200 40 1082.186
1500 780 7 250 40 1315.751
2000 870 8 290 40 "~ 1518.62
2500 980 8 320 40 1683.456
3000 950 8 390 40 1856.443
3500 990 8 430 40 1997.198
4000 1090 9 440 40 2130.476
4500 1420 . 12 420 34 2344.105
5000 1350 11 430 40 2376.98

Optimum sizes due to uniformly distributed force for L=3 m
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and L=6 m beam lengths can be found in Table 5 and 6.




Table 6 Optimum sizes of L = 6 m beam due to uniformly distributed force

p_[N/mm] h_[mm] t, [(mm} b _[mm] t; [mm]} K/ kn [kg]
70 240 6 200 33 1407.683
250 590 6 260 40 2343.407
500 810 7 360 40 3250.734
1000 1110 9 490 40 4522.912
1500 1220 10 630 40 5530.587
2000 1490 13 680 39 6425.999
2500 1460 12 840 40 7223.161
3000 1470 12 990 40 8063.084
3500 1500 37 1000 40 11047.56

Table 7. Optimized beam sizes under bending and compression (N = 1000 kN) due to concentrated force for L = 3 m length

F [kN] h [mm] f, [mm] b [mm] tr {mm] K/ k., [kg]
1000 500 6 220 39 1003.718
2000 700 8 270 40 1337.321
3000 820 9 320 40 1592.013
4000 1100 12 300 40 1851.649
5000 1120 11 360 40 1999.114
6000 1240 12 380 40 2188.745
7000 1270 13 420 40 2364.386
8000 1420 14 420 40 2534.15
9000 1470 14 450 40 -2660.197

10000 1470 14 500 40 2798.74
11000 1400 13 580 40 - 2916.621
12000 1310 12 680 40 3077.392
13000 1320 12 730 40 3223.799
14000 1320 12 780 40 3361.981
15000 1480 14 810 36 3533.458
16000 1260 12 930 40 3727.278

Table 8. Optimized beam sizes under bending and compression (N = 3000 kN) due to concentrated force for L = 4 m length

F [kN] h [mm] 1, [mm] b [mm] ty [mm] K/ k., [kg)
1000 520 8 360 40 1929.935
2000 920 13 360 39 2506.841
3000 1140 15 380 40 2949.638
4000 1450 18 400 34 3448.123
5000 1390 17 440 40 3586.281
6000 1420 17 500 40 3843.866
7000 1480 17 580 37 4117.838
8000 1450 16 630 40 4294 .865
9000 1490 16 690 39 4526.065
10000 1470 16 750 40 4759.701
11000 1500 16 800 40 4979.086
12000 1410 15 920 40 5251.134
13000 1410 15 990 40 5507.95
14000 1500 22 950 40 5942.075
15000 1500 24 1000 40 6274.82
16000 1500 34 1000 40 7112.201
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6.3 Optimum design of beams compressed and
bent simultaneously for ‘overall and lateral-
torsional buckling

The I-beams are under compression and bending. The
compression force (N) is between 1000 and 16000 kN, the
step length is 1000 kN. The bending force (F) is between
1000 and 16000 kN, the step length is 1000 kN. The length of

the beams is between 3 and 15 m. The step length is 1 m.

Table 7 shows the optimized beam sizes under bending and
compression due to concentrated forces. Beam length is L = 3
m. First column is F, the concentrated force, next four
columns are the sizes of the cross-section (A, t,, b, tr ), last
column is the cost of the column K/ k,, in kg. Table 8 shows
the optimized beam sizes for L = 4 m length.

7 ~Comparison of welded and rolled I--

sections

The comparison of rolled and welded I-beams is performed

for compression and bending. Rolled cross section sizes are
selected from the catalogue of ARBED.
The compression force is as follows:

F<A g —2 (56)

™M1
where A is the cross-section of I-beam.
1

e
D+V0? 77
is the factor for overall buckling,
®=05 [1+' 049 (Z-oz)Jz]
L
ig - A’E

/IE =7- __E_.. s
fy
fy =R3EMPais the yield stress,

YM1=11 is the partial safety factor according to Eurocode

3.
L is the length.

57y

(58)

1s the reduced slenderness,

E:

(59
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Figure 6. Optimum cross-section areas of 3 m long welded and rolled compressed I-sections
in the function of concentrated force
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Figure 7. Optimum cross-section areas of 12 m long welded and rolled compressed I-sections
in the function of concenjrated force
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Figure 8. Optimum cross-section areas of 3 m long welded and rolled I-sections under bending
in the function of concentrated force

120000
100000
" 80000 1
60000 - rolled

40000 - /

Almm2’

20000

welded

0 ;
o 1000000

2000000

T T

3000000 4000000
FIN]

5000000

Figure 9. Optimum cross-section areas of 12 m long welded and rolled I-sections under bending
in the function of concentrated force

In the case of beams under bending the force is as follows:

S\erl 'ZLT . fy -4
L-rma

< Wxel ':’LT fy-8
L™y

for concentrated force: F

(60)

for uniformly distributed force: b

8 Conclusions

The optimization technique many times gave local minima.
Using other starting points we can avoid this problem.

For the compressed columns the active constraints at 1000 kN
compression force were the local buckling constraints, the
overall buckling and the lateral-torsional buckling was
inactive. Increasing the compression force local buckling
constraint of flange became passive, because of the increase
of flange thickness. At 4000 kN compression force the
overall buckling became active up to 14000 kN. From 15000
kN the lateral-torsional buckling constraint is active.

In the optimization of beams under bending, for smaller loads
(uniformly distributed, or concentrated) the lateral-torsional
constraint is active, for larger loads the buckling constraints
are active. In the case of beams optimized for combined
bending and compression the overall and lateral-torsional
buckling constraints were active.

In the case of compressed columns the cost difference at 1000
kN and 2000 kN is about 16-20%. Increasing the force the
difference becomes smaller: for 15000 kN and 16000 kN
forces the cost difference is only 5-6%. Increasing the forces
to double the difference in cost is about 25-30% between
3000 kN-6000 kN, and 33-42% between 8000 kN-16000 kN.
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