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Abstract 33 

Question: Is it possible to determine which combination of cluster number and taxon 34 

abundance transformation would produce the most effective classification of vegetation data? 35 

What is the effect of changing cluster number and taxon abundance weighting (applied 36 

simultaneously) on the stability and biological interpretation of vegetation classifications? 37 

Locality: Europe, Western Australia, simulated data 38 

Methods: Real data sets representing Hungarian submontane grasslands, European wetlands, 39 

and Western Australian kwongan vegetation, as well as simulated data sets were used. The 40 

data sets were classified using the partitioning around medoids method. We generated 41 

classification solutions by gradually changing the transformation exponent applied to the 42 

species projected covers and the number of clusters. The effectiveness of each classification 43 

was assessed by a stability index. This index is based on bootstrap resampling of the original 44 

data set with subsequent elimination of duplicates. The vegetation types delimited by the most 45 

stable classification were compared with other classifications obtained at local maxima of the 46 

stability values. The effect of changing the transformation power exponent on the number of 47 

clusters, indexed according to their stability, was evaluated. 48 
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Results: The optimal number of clusters varied with the power exponent in all cases, both 49 

with real and simulated data sets. With the real data sets, optimal cluster numbers obtained 50 

with different data transformations recovered interpretable biological patterns. Using the 51 

simulated data, the optima of stability values identified the simulated number of clusters 52 

correctly in most cases.  53 

Conclusions: With changing the settings of data transformation and the number of clusters, 54 

classifications of different stability can be produced. Highly stable classifications can be 55 

obtained from different settings for cluster number and data transformation. Despite similarly 56 

high stability, such classifications may reveal contrasting biological patterns, thus suggesting 57 

different interpretations. We suggest testing a wide range of available combinations to find 58 

the parameters resulting in the most effective classifications. 59 

 60 

Keywords 61 

Clustering; Cluster validation; Community similarity; Cover scale; Data type; Multivariate 62 

data analysis; Numerical classification; Stability of classification 63 

 64 

Abreviations 65 

MSL = mean standardized lambda; PAM = partitioning around medoids; PCoA = principal 66 

coordinate analysis 67 

 68 

Nomenclature 69 

The names of high-rank European syntaxa follow Mucina et al. (2016). 70 

 71 

Introduction 72 



4 
 

Numerical methods are applied in vegetation classification studies to reduce the 73 

dimensionality of the data in seeking patterns, to increase objectivity in the analyses, and thus 74 

to enhance the reproducibility of results. Still, classification protocols often rely on subjective 75 

decisions that can significantly influence the results (De Cáceres et al. 2015). Subjective 76 

choices can hardly be avoided, yet they should be well-informed and logical to make the 77 

analytical procedures reliable and repeatable. In numerical classifications, according to 78 

Lengyel & Podani (2015), the choice of the number of clusters and the weight attributed to 79 

abundant species relative to scarce species (hence the data transformation), are among the 80 

most influential decisions that have to be considered carefully. If the aim of the classification 81 

is to delimit a pre-set number of vegetation types within the data set, then the choice of the 82 

resulting clusters should be guided by practical considerations. In certain cases there is 83 

reasonable external information available for selecting a transformation function as well. For 84 

instance, if the abundance estimations are deemed inaccurate, only presence/absence data 85 

should be used. Equally, if the purpose of the study is to analyse vegetation types 86 

characterised by dominant species, it is more logical to apply a transformation giving high 87 

emphasis to differences in species abundance. However, if the aim of the classification is to 88 

explore variation by separating and differentiating vegetation types, classifications using a 89 

suite of contrasting parameters should be produced. These should be evaluated a posteriori in 90 

order to identify the optimal parameter values yielding in the ‘best’ (according to the set 91 

criteria) classification. 92 

The optimal number of clusters can be sought for by calculating cluster effectiveness (or 93 

validity) index for classifications with increasing number of clusters. Thus, the optimal 94 

number of clusters is the one where the effectiveness index reaches maximum or minimum, 95 

depending on scaling. This procedure is widely known and regularly applied in classification 96 

studies (e.g. Botta-Dukát et al. 2005; Tichý et al. 2010, 2011). However, we are aware of only 97 

a few examples when authors evaluated different data transformations for finding the optimal 98 

weighting of abundances that would reveal biological patters most effectively or would lead 99 

to the most stable results. Jensen (1978) evaluated the effect of several data transformations 100 

on classifications and ordinations of a lake vegetation data, and concluded that ‘extreme 101 

transformations’ (i.e. those giving high weight either to high abundance values or, in reverse, 102 

to presence/absence data) can yield significantly different results. This finding was 103 

corroborated by Campbell (1978) and van der Maarel (1979). Wilson (2012) compared the 104 

stability of ordination analyses performed on various vegetation samples using different 105 
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transformations of abundance and concluded that the ‘optimal’ transformations depend on 106 

context, such as geographical extent, environmental heterogeneity, disturbance status of the 107 

study area, and quality of abundance estimations. Although, any ‘optimal’ parameterization 108 

supposed to produce a robust classification is specific for the actual data set, the low interest 109 

of researchers in finding them, or at least in assessing the performance of methods they apply, 110 

is surprising, given that vastly different results can be achieved by application of different 111 

abundance scales in multivariate analyses – a fact well known for long time (Austin & Greig-112 

Smith 1968; Noy-Meir et al. 1975; van der Maarel 1979). 113 

In this paper, we introduce a procedure for choosing the combination of two factors, namely 114 

(1) the number of clusters and (2) varying scale of transformation power, assisting in 115 

identification of the most effective classification outcome. Like other approaches aimed at 116 

determination of the optimal number of clusters (e.g. Aho et al. 2008), a general guideline for 117 

finding the optimal transformation would be to find the function that leads to the most stable 118 

of several possible classifications produced by differently parameterized transformation 119 

functions. We show that changing one of these two factors has an impact on the optimal 120 

values of the other, which influences the biological interpretation of the classification result, 121 

and therefore we promote their joint optimization. We test this approach using real and 122 

simulated data sets. 123 

 124 

Materials and methods 125 

Grasslands data set 126 

The Grasslands data set consists of phytosociological plots collected in the colline and 127 

montane belts of northern Hungary. This data set represents different types of mesic, 128 

unproductive to moderately productive, grazed, mown, and recently abandoned grasslands on 129 

neutral to acidic soils. Several types can be recognized by their dominant species, e.g. 130 

Agrostis capillaris, Arrhenatherum elatius, Danthonia decumbens, Festuca rubra and Nardus 131 

stricta. However, these types are not floristically distinctly separated, and stands with 132 

different dominant species can be similar in the overall species composition. 133 

Wetlands data set 134 
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The Wetlands data set was extracted from the WetVegEurope database (Landucci et al. 2015). 135 

It contains plots from Austria, Czech Republic, Germany, Hungary, Poland, Slovakia, and the 136 

Netherlands. In these plots the diagnostic species of the class Phragmito-Magnocaricetea 137 

(according to Mucina et al. 2016) should have dominance of at least 25% of the total cover. 138 

Only plots having at least five species and plot sizes between 15 and 50 m2 were included. 139 

The data set was subject to geographical stratification and to heterogeneity-constrained 140 

random resampling (Lengyel et al. 2011) as modified by Wiser & De Cáceres (2013) in order 141 

to avoid pseudo-replications and maximally diversify the dataset. In this data set, several 142 

types can be distinguished on basis of dominant species, however many of these communities 143 

share similar species pool. Therefore, classifications are expected to vary with changing 144 

power of the data transformation. 145 

Kwongan data set 146 

The Kwongan data set is composed of 375 plots of natural shrubland (heath-like) vegetation 147 

of the Geraldton Sandplains (surrounds of the Eneabba township), Western Australia. This 148 

unique, endemic-rich vegetation is supported by sandy soils extremely depleted in phosphorus 149 

(and also nitrogen) – a product of prolonged tectonic quiescence of the Western Australian 150 

landscapes spanning hundreds of millions of years, resulting in lack of soil rejuvenation and 151 

progressive nutrient leaching, combined with relatively stable and predictable climatic 152 

seasonality, and predictable natural fire disturbance (Lambers 2014). This data set exemplifies 153 

an unusual, yet real situation: both alpha and beta diversity are high, resulting in high regional 154 

species pool (gamma diversity). Species dominance (in terms of biomass and projected cover) 155 

in this vegetation is supressed. We expect that the classification outcomes would be quite 156 

resistant to changes of the magnitude of the data transformation.  157 

Characteristics of the three data sets are summarized in Table 1. A more in-depth analysis of 158 

the Grasslands data set is presented, while we focused on the relationship between the 159 

examined methodological decisions and classification stability in the Wetlands and the 160 

Kwongan data sets. 161 

Simulated data 162 

Simulated data matrices consist of N plots (in the rows) and S species (in the columns). Plots 163 

belong to K clusters of equal size, thus the number of plots is N/K = n in each cluster, and n is 164 
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a pre-defined integer. Ten species occur in each cluster and each species occurs in two 165 

clusters, thus S = 10 × K/2. Each species has constant abundance across plots within a cluster, 166 

while the abundances may differ among clusters. The abundances of species within one of the 167 

two clusters where they occur, are drawn from a Poisson-lognormal distribution (Bulmer 168 

1974) where the mean and the standard deviation (SD) of the lognormal distribution are (2; 1) 169 

on log scale. For the other cluster, the order of abundances is reversed, thus if a species was 170 

the most abundant in one of the clusters where it occurs, then this species will be the least 171 

abundant in the other one (considering only species occurring in this cluster). These matrices, 172 

therefore, consist of plots of K clusters according to raw abundances of species, but K/2 173 

clusters according to presence/absence data because pairs of clusters share the same species 174 

occurring with different abundances. We expect the optimal number of clusters to be K/2 with 175 

low exponents, while with high exponents optimal solution should comprise K clusters. 176 

Notably, abundance-based clusters are nested within clusters based on presence/absence data. 177 

Within each cluster, plots are identical, thus the clustered structure is initially perfect. An 178 

exemplary matrix is shown in Appendix S1. Then, noise was added to this initial matrix 179 

following the method of Gotelli (2000) used for ‘noise test’, but applied to abundances instead 180 

of presence/absence data. This procedure applies a swapping algorithm to introduce noise. In 181 

a single swap, the rows and columns of the original matrix are permuted, and a 2 × 2 182 

submatrix with positive values in the diagonal is chosen randomly. Then the two diagonal 183 

cells are decreased by 1, while abundances in the two off-diagonal cells are increased by 1 184 

individual, thus the sum and the marginal totals of the submatrix do not change. Finally, the 185 

original order of rows and columns is restored. A single swap would affect a sparse matrix 186 

more than one with high fill. Also, large matrices are more ‘resistant’ to the same number of 187 

swaps than small ones. Therefore, noise is added to the matrices in discrete levels, one level 188 

consisting of as many swaps as the number of non-zero elements in the matrix. Our 189 

preliminary analyses suggested that in this way a comparable amount of stochasticity can be 190 

added to matrices of different size and fill. 191 

Five simulation series were performed, each of them with five different set-ups. In these 192 

series, one or two parameters were changed systematically in order to generate simulated 193 

matrices that would differ in: i) noise level; ii) size of clusters with number of clusters fixed; 194 

iii) number of clusters with cluster sizes fixed; iv) number and size of clusters with total 195 

number of plots fixed; v) dominance of species. The dominance was changed by modifying 196 

the SD of the lognormal distribution used as input for the Poisson process of species 197 
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abundances. When SD is high, there is one or a few highly dominant species within a plot and 198 

many very scarce species, while with lower SD species abundances should be balanced. 199 

Classification method 200 

For classifying the data sets, we used the partitioning around medoids method (PAM; 201 

Kaufman & Rousseeuw 1990) using Marczewski-Steinhaus index as the measure of 202 

dissimilarity (Appendix S2). For the Grasslands and Kwongan data set covers of species were 203 

directly estimated on percentage scale in the field, while for the Wetlands data set, 204 

abundances were mostly recorded on Braun-Blanquet or finer ordinal scales. These ordinal 205 

categories were replaced by their midpoint percentages. Cover percentages were power 206 

transformed using the function x´ = xa, where x is the original cover value on percentage 207 

scale, a is the power exponent, and x´ is the transformed cover value. The power exponent 208 

was gradually changed from 0 to 1, with 21 steps by 0.05 in between in case of real data, and 209 

with steps of 0.1 in case of simulations where simpler patterns were expected. Low values of 210 

the exponent reduce the effect of differences between species abundances, thus giving more 211 

weight to rare species, while values near 1 give more weight to abundant species. The lowest 212 

number of clusters examined was 2. The highest number of examined clusters was 10 for the 213 

Grasslands data, 40 for the Wetlands and for the Kwongan data, and it varied in simulations 214 

according to the pre-defined number of clusters and sample size. The maximal number of 215 

clusters was arbitrarily determined to balance between computation time and the number of 216 

practically distinguishable vegetation types. 217 

Evaluation of classifications 218 

Several approaches for evaluating classifications exist, and each of them involves numerous 219 

indices (e.g. Milligan & Cooper 1985; Vendramin et al. 2010). These approaches include 220 

correlating the original distances between objects and their representations in the 221 

classification (e.g. Rohlf 1974), measuring compactness, connectedness, and separation of 222 

clusters (e.g. Popma et al. 1983), assessing the robustness of the results to changes in 223 

methodological decisions and choice of variables (e.g. Chiang & Mirkin 2010), repetitiveness 224 

(e.g. McIntyre & Blashfield 1980), stability (e.g. Hennig 2007), interpretability (e.g. Tichý et 225 

al. 2010), and predictive power (e.g. Lyons et al. 2016) of the classification, and degree of 226 

divergence from a random classification (e.g. Hunter & McCoy 2004). 227 
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A family of classification effectiveness (or validity) measures called geometric indices (Aho 228 

et al. 2008) rely on dissimilarities between plots which involve a decision on the weighting of 229 

species abundances. For example, if an effectiveness index uses resemblances calculated by 230 

the Jaccard index (Podani 2000) using presence/absence data, then the classifications 231 

produced on the basis of binary occurrences of species are likely to seem to be ‘better’ than 232 

classifications based on cover percentages. However, not only geometric indices need 233 

decisions on data transformation. The non-geometric OptimClass indices (Tichý et al. 2010), 234 

which use the number of characteristic species of clusters as the measure of effectiveness, can 235 

be calculated from both presence/absence and cover percentage data. As the form of cover 236 

transformation is known to strongly affect the fidelity values of species (Willner et al. 2009), 237 

it is expected that classifications based on presence/absence data would have more character 238 

species, if only binary occurrences are considered for fidelity calculations, while 239 

classifications using cover data would seem less effective. 240 

For an unbiased comparison of effectiveness among classifications based on different data 241 

transformations and cluster numbers, it is necessary to compare all classifications to a 242 

standardized reference. The stability index, introduced by Tichý et al. (2011), meets this 243 

criterion. It compares the classification of plots in the original data set with classifications of 244 

its subsets selected by bootstrap resampling with subsequent elimination of duplicates (Tichý 245 

et al. 2011). The similarity between the cluster assignments of resampled plots in the original 246 

classification and in the classification of the subset is calculated using the mean standardized 247 

lambda (hereafter called MSL), the standardized version of Goodman & Kruskal’s lambda 248 

index (Goodman & Kruskal 1954; Appendix S2). In our analysis, we used 50 without-249 

replacement bootstrap samples for each classification produced by different cluster numbers 250 

and data transformations. MSL was plotted on a so-called heat map, in which the colour of 251 

the respective segment of the space defined by two explanatory variables (i.e. the power 252 

exponent and cluster number) refers to the magnitude of the dependent variable (i.e. MSL). 253 

The marginal distribution of the heat map can also be examined for determining those 254 

parameter values which are likely to provide the most effective classification ourcomes, or the 255 

lowest or highest variation in classification stability. If one of the parameters, e.g. the 256 

exponent, is fixed to an actual value, the mean of the MSL values obtained with changing the 257 

other parameter, that is the number of clusters, gives how stable the classifications obtained 258 

with the actual exponent are on average. By using the SD instead of the mean, the variation of 259 
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stability can be expressed, too. Therefore, the SD is a measure of how important the decision 260 

is about one of the two parameters if the other one is fixed to an actual value. The use of 261 

marginal distributions is showed only for the Grasslands data set. 262 

The most stable classification of a real data set (i.e. the classification with settings resulting in 263 

the absolute maximum of MSL and the darkest segment on the heat map) was evaluated by 264 

creating a synoptic table containing frequency, average percentage cover, and fidelity of 265 

species. The fidelity of species to clusters was calculated using the phi coefficient on 0 to 100 266 

scale (Chytrý et al. 2002). Species with phi value over 20 were considered ‘characteristic’, 267 

and only species with Fisher exact test p<0.001 were considered. Classifications at the 268 

optimal cluster level obtained by different exponents, with special attention to the commonly 269 

used values (a = 0, 0.5 or 1) and local peaks in stability, were compared on basis of the group 270 

memberships of plots using cross-tabulations, as well as by contrasting their biological 271 

interpretation with the help of characteristic species.  272 

Data analyses were performed in the R software environment (version 3.1.2, www.r-273 

project.org) using the vegan (Oksanen et al., http://cran.r-project.org/package=vegan), cluster 274 

(Maechler et al., http://cran.r-project.org/package=cluster), rapport (Blagotić & Daróczi, 275 

http://cran.r-project.org/package=rapport), and fields (Nychka et al., http://cran.r-276 

project.org/package=fields) packages. R scripts for data simulation, swapping and the 277 

optimization procedure are available in the Appendix S3. We used Juice (Tichý 2002) for data 278 

management and construction of synoptic tables. 279 

 280 

Results 281 

Grasslands data set 282 

The heat map (Fig. 1) showed that the MSL values varied considerably across cluster number 283 

and power exponent. With presence/absence data (a = 0), stability was the highest at the five-284 

cluster solution. From a = 0.05 to a = 0.25, the three-cluster level was the most stable, 285 

including a = 0.15 where the second highest stability value was obtained (MSL = 0.804). 286 

Between a = 0.3 and a = 0.4, the stability peaked at two clusters, then from a = 0.45 the four-287 

cluster solution was optimal until a = 0.90, while for the higher exponent values again three 288 
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clusters were shown to be the best. The absolute maximum value was found with a = 0.55 and 289 

the four-cluster solution, where the stability of the classification was MSL = 0.824. Exponents 290 

between a = 0.25 and 0.50 resulted in the highest stability values on average, and the SD of 291 

stability was also the lowest in this interval (Fig. 2). Nevertheless, a second local optimum 292 

was found at a = 0.8, although the SD was much bigger here. Across the cluster levels, the 293 

three- and four-cluster solutions were the most stable on average, while stability values did 294 

not vary much, except for 2 clusters where SD was the highest. 295 

We used the most stable classification (i.e. four clusters and exponent 0.55; hereafter called 296 

‘Partition A’) as the baseline for the interpretation of all clusters and classifications (Appendix 297 

S4). This classification was identical with what was obtained by a = 0.50, that is, square-root 298 

transformation. Clusters A1, A2, A3, and A4 are the elements of the Partition A. Cluster A1 299 

represents grasslands of the alliance Violion caninae, but some species of the mesic meadows 300 

of the order Arrhenatheretalia are also frequent. Cluster A2 contains plots of the 301 

Arrhenatherion. This type was recently described as the Diantho-Arrhenatheretum 302 

association by Lengyel et al. (2016); it represents nutrient-poor, acidic grasslands overgrown 303 

by taller grasses (e.g. Helictotrichon pubescens, Arrhenatherum elatius) after abandonment or 304 

changing management to mowing. Cluster A3 comprises unproductive meadows and pastures 305 

dominated by Agrostis capillatis, Festuca rubra, and Galium verum. These stands are similar 306 

in species composition to the Anthoxantho-Agrostietum, known also from Slovakia and the 307 

Czech Republic. Cluster A3 is also intermediate between Arrhenatheretalia and Violion 308 

caninae. Cluster A4 contains grasslands dominated by Nardus stricta, in which species of 309 

waterlogged soils are also present. This type is traditionally also called ‘Hygro-Nardetum’ 310 

(e.g. Borhidi et al. 2012).  311 

In the presence/absence case (a = 0), five clusters were differentiated. Hereafter, this 312 

classification is called ‘Partition B’. Cluster B1 included many plots of Cluster A1 and A3, 313 

thus representing mesic meadows with some species of the Violion caninae, and matching the 314 

species composition of Anthoxantho-Agrostietum. Cluster B2 and B3 contained mostly plots 315 

previously classified to A2, thus differentiating between two subtypes of Diantho-316 

Arrhenatheretum: one with more hygrophilous, and one with more forest-steppe species, 317 

respectively. Cluster B4 represents the ‘Hygro-Nardetum’ type, thus is similar to Cluster A4. 318 

Cluster B5 contains only two plots similar to the Anthoxantho-Agrostietum. 319 
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With a = 0.15 and three clusters a local peak was detected, to be referred to as Partition C. 320 

Cluster C1 contains many plots representing the types mediating between the 321 

Arrhenatheretalia and Violion caninae, formerly classified to Clusters A1 and A3. Cluster C2 322 

represents the Diantho-Arrhenatheretum, and it is very similar to Cluster A2. Cluster C3 323 

represents the ‘Hygro-Nardetum’ and matches with Cluster A4. 324 

With a = 1 (= no data transformation), three clusters provided the most stable resolution. This 325 

classification was called Partition D. Cluster D1 represents grasslands on nutrient-poor soils, 326 

including the ‘Hygro-Nardetum’ and other types related to the Violion caninae and containing 327 

Nardus stricta. It contains plots of Cluster A1 and A4. Cluster D2 represents mesic hay 328 

meadows with Arrhenatherum elatius, and it shares many plots with Cluster A2. Cluster D3 329 

represents unproductive meadows and pastures with the dominance of Agrostis capillaris, 330 

Briza media and Festuca rubra. Most of its plots were assigned to Cluster A3 and C2. 331 

Therefore, the Partitions C and D similarly separated the Diantho-Arrhenatheretum from 332 

other types, but differed in how they delimited two other clusters in the rest of the data set. 333 

The cross-tabulation of Partition A against Partitions B, C and D, as well as Partition C 334 

against Partition D are shown in Appendix S5. 335 

Wetlands data set 336 

The optimal number of clusters ranged between 3 and 7 when the exponent ranged between 0 337 

and 0.20 (Fig. 3). With higher exponents, the optimal cluster levels increased, too; from a = 338 

0.35 the most stable classifications were found at levels of more than 30 clusters. In the binary 339 

case (a = 0), the optimal cluster level was 6, with the square-root transformation (a = 0.5) it 340 

was 30, with no transformation (a = 1) it was 39. The most stable classification was the one 341 

with a = 0.80 and 40 clusters where MSL was 0.933. At this level clusters were distinguished 342 

according to dominant species that were both constant and character species in many cases. 343 

Using other high exponents (e.g. a = 0.50 or a = 1) resulted in very similar classifications, 344 

thus only the comparison of solutions with a = 0 (hereafter called ‘Partition W’) and a = 0.80 345 

(‘Partition Z’) are presented using synoptic tables (Appendix S6 and S7, respectively). Since 346 

many phytosociological associations and alliances of wetland vegetation are defined by 347 

dominant species, classifications with high exponents (Partition Z) showed a good 348 

correspondence with low-rank syntaxa. With low exponents, the most stable classifications 349 

revealed markedly different patterns that were difficult to interpret, yet these local optima 350 



13 
 

possessed much lower stability. With a = 0 (Partition W) differences in species pools offered 351 

some, although not fully satisfactory explanation for the distinction of clusters. Cluster W1 352 

contained many plots of tall-sedge vegetation with short submerged periods and eutrophic 353 

soils (supporting mostly Magnocaricion gracilis vegetation). Cluster W2 included mostly 354 

plots of tall-sedge vegetation on sites with poorer nutrient supply (mostly Magnocaricion 355 

gracilis and Magnocaricion elatae). Cluster W3 is characterised, to a large part, by reed 356 

vegetation belonging to the Phragmition and Phalaridion. Clusters W4 and W5 contained 357 

many plots sampled in wetlands  characterised by fluctuating shallow waters (mostly 358 

Eleocharito-Sagittario, Phramition, Glycerio-Sparganion), however no clear ecological 359 

difference could be recognized between them. Cluster W6 included plots from nutrient-poor 360 

mire vegetation often classified as the Scheuchzerio-Caricetea. Obviously, Partition W 361 

showed very low congruence with the syntaxonomical system and Parition Z (Appendix S8). 362 

Classifications with a = 0 and a = 0.80 do not differ only in the resolution. As it is shown in 363 

Appendix S8, clusters of the latter are not nested within the former, instead, it is very common 364 

that plots classified to the same cluster at a = 0.80 are assigned to different clusters at a = 0. 365 

Kwongan data set 366 

MSL values varied much at low levels of cluster numbers (up to 6 clusters) and showed much 367 

less (and also less predictable) variability at cluster levels above 6 (Fig. 4). The highest MSL 368 

values occurred at the cluster levels 2 and 4. The highest classification stability was detected 369 

at the 4-cluster level (for exponents spanning 0.0 and 0.75) or the 2-cluster level (for 370 

exponents spanning 0.8 and 1.0). The most stable classification was obtained with a = 0.95, 371 

cluster number = 2, with stability MSL = 0.843. 372 

At a = 0, four clusters were distinguished (Partition K; Appendix S9). Cluster K1 represented 373 

a community with typical species Hakea candolleana and Allocasuarina humilis found on 374 

free-draining soils. Cluster K2 was identified as Xylomelum angustifolium-Banskia menziesii 375 

community thriving on sandy soils on dune swells. Cluster K3 included plots from 376 

Ecdeiocolea monostachya-Scholtzia laxiflora community occurring on sandy soils with 377 

slightly elevated clay content in inter-dune depressions, while Cluster K4 represented Banksia 378 

shuttleworthiana-Cristonia biloba confined to regolith composed of  depositional lateritic 379 

scree and sand. Therefore, these clusters represented an edaphic gradient spanning Cluster K2 380 

(deep sandy soils from the sand dune swells) and Cluster K3 (depressions showing elevated 381 
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clay content), with Clusters K1 and K4 occupying intermediate position along the gradient. At 382 

a = 0.95, the 2-cluster solution was the most stable one (Partition L; Appendix S10). The 383 

cross-tabulation tables (Appendix S11) showed that all plots of the Cluster K3 were assigned 384 

to the Cluster L1 - the only cluster whose plots were assigned to the same cluster in Partitions 385 

K and L. The Cluster K1 was concentrated in Cluster L1, while most plots of the Clusters K2 386 

and K4 belonged to L2. Partitions K and L similarly recovered the gradient between 387 

vegetation types supported by soils having elevated clay content (represented by Clusters K1 388 

& K3, as well as L1) and sandy soils (as Clusters K2 & K4, and L2) on the basis of 389 

characteristic species of the clusters. The relative position of the clusters in a PCoA ordination 390 

also supports the notion that the main compositional patterns are similarly revealed by 391 

different abundance weighting (Appendix S12). 392 

Simulations 393 

At the noise level 1, where abundances were strongly down-weighted (a = 0 or a = 0.1), the 394 

stability was highest at the pre-defined number of four species-pool based clusters (Fig. 5). 395 

From a = 0.2 to a = 0.7, two peaks were found, namely at the 4- and 8-cluster levels, the latter 396 

being of higher stability, and with one intermediate peak at a = 0.3 and seven clusters. Where 397 

abundance differences were not or only slightly reduced (a > 0.7), only the 8-cluster peak was 398 

obvious. From the noise level 2 and higher, the stability peaked at the 8-cluster level. As more 399 

levels of noise were added, classifications with low exponent were becoming less and less 400 

stable. 401 

Two optimal cluster levels were found where the number of plots in each cluster was 5 (Fig. 402 

6). From a = 0 to a = 0.4, the 4-cluster peak (corresponding the species-pool-based number of 403 

clusters) was higher, but from a = 0.5 to a = 1 the 8-cluster solution (i.e. the abundance based 404 

optimum) was the most stable one. The pattern of stability was similar, although, less distinct, 405 

with clusters of 10 and 25 plots. However, with 50 plots per cluster, the locations of the 406 

optima were more irregular, with several peaks between four and eight clusters. With 100 407 

plots per cluster, the optima were detected at four clusters for most of the exponent values, 408 

except for a = 0.3 and a = 0.4. 409 

When the number of clusters increased from four with constant cluster sizes, the typical 410 

pattern of lower optima at low exponents and higher optima at high exponents were found in 411 

most cases, yet with some exceptions (Fig. 7). Where the species-pool based cluster number 412 
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was two and the abundance-based cluster number was four, three clusters were the most stable 413 

with low exponent and four with high exponent. With higher number of true clusters, the most 414 

stable classification identified the pre-defined cluster numbers correctly: 8, 12, 16, and 24 415 

clusters with higher exponents, and 4, 6, 8, and 12 clusters with lowers exponents, 416 

respectively. The point of inflection, when the observed optima shifted from the species-pool-417 

based level to the abundance-based level, was variable. Yet a broad interval with at least two 418 

local peaks of stability was detectable in all heat maps at intermediate exponent values. 419 

Cluster numbers between the species-pool-based and the abundance-based optima also came 420 

out as optimal in some cases, especially with exponents near the inflection value. 421 

A very similar pattern was found when the number of clusters and cluster sizes were changed 422 

with constant sample size (Appendix S13). The species-pool-based and the abundance-based 423 

cluster numbers were recovered correctly as local or global peaks. Between them, 424 

intermediate levels also gained high stability values, but they were identified as optimal only 425 

in a few cases. 426 

With SD = 0.1 the optimal cluster level was four clusters irrespective of the exponent value 427 

(Appendix S13). Using a > 0.5 classifications of 7 and 8 groups showed local peaks. With 428 

increasing SD, the stability of classifications with eight clusters and high exponent also 429 

increased. With SD = 4, the 8-cluster solutions appeared the most stable, except for when a = 430 

0, that is, in the binary case. 431 

Discussion 432 

Evaluation of the real data  433 

The choice of data transformation and cluster number influences the delimitation of 434 

vegetation types, as concluded in several other studies (e.g. Jensen 1978; Lengyel & Podani 435 

2015). Certain types (e.g. Diantho-Arrhenatheretum in the Grasslands data set)  are relatively 436 

robust  to changes in the examined parameters, while others (e.g. transitional types between 437 

Arrhenatheretalia and Violion caninae) are more sensitive. When it comes to making an 438 

unambiguous distinction between vegetation types for practical (such as management) 439 

purposes or syntaxonomical revision, it is crucial to consider that different weighting of 440 

abundant species may have implications for the delimitation of vegetation units, and thus for 441 

the future applicability of the classification. 442 
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The Wetlands data set showed that the optimal cluster level can markedly differ if different 443 

data transformations are used. While presence/absence data yielded six stable clusters that 444 

represented types with more or less different species pools, accounting for differences in 445 

abundances raised the optimal levels over 30, where each cluster is separated according to the 446 

dominant species. The fact that the high number of stable clusters obtained using high 447 

exponent were not nested within the few stable clusters based on presence/absence data, is a 448 

clear indication that different data transformations can reveal different types of biological 449 

patterns. With low exponents, classifications were best explained by patterns generated by 450 

habitat-specific species-pools, while with high exponents, community types differing in fine-451 

scale environmental variation, temporal variability and site history were revealed. It is of 452 

interest, that in our study, 40 clusters was the finest classification level examined due to a 453 

compromise between practical and scientific reasons, but in reality the optimal number of 454 

clusters in the Wetlands data set could have been even higher. 455 

The Kwongan data provided a special insight into the interaction of data transformation and 456 

cluster number. Changing the exponent changed the optimal number of clusters as well, and 457 

the resulting stable classifications were moderately congruent. However, even these, 458 

seemingly less similar classifications revealed the most important ecological pattern on the 459 

basis of faithful species ― the soil gradient, although fine patterns of transitional subtypes 460 

between the extremes were not detected equally well. The Kwongan data set, due to its high 461 

beta diversity and balanced within-plot abundance distribution, was less sensitive to changes 462 

in data transformation and cluster number in terms of biological interpretation, even though 463 

the assignment of plots showed some variation. 464 

Lessons from the simulations 465 

In the simulations, we generated data structure with contrasting patterns with respect to 466 

occurrence information. If abundance information were emphasized, the true number of 467 

clusters (vegetation types) was twice as high as in cases where only presence/absence data 468 

were considered, hence we differentiated a ‘species-pool-based’ and an ‘abundance-based’ 469 

number of clusters. In reality, however, also an opposite can be observed, where a few species 470 

can be dominant in habitats with different species pools. In such a case the number of 471 

abundance-based clusters could be lower than those based on species-pools, as it was seen 472 

with the Kwongan data set. 473 
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We expected that weak data transformations (the exponent being close to 1) which preserve 474 

the differences in original abundance patterns, would yield a higher cluster number, while 475 

strong transformations (the exponent approaching 0) which significantly reduce abundance 476 

differences would find the half of this number of clusters optimal. Our results confirmed this 477 

expectation. 478 

We introduced stochasticity to artificial data using a similar method as that by Gotelli (2000) 479 

called ‘noise test’. This type of noise made classifications with stronger transformations less 480 

stable than those involving weak transformations. This result can be understood by recalling 481 

how we generated species abundances and noise. The species abundances had been drawn 482 

from a Poisson-lognormal distribution, which resulted in many scarce and few abundant 483 

species. Considering that the artificial matrices are designed in a way that their matrix fill is 484 

low, swapping individuals can moderately reduce the abundance of species in a plot, or it can 485 

slightly increase less abundant species, or make absent species present with low abundance. 486 

However, it is unlikely to make an abundant species absent in a plot, or to make an absent 487 

species very abundant. As a result, the applied noise affected binary information more than 488 

the proportions of abundances which determine classifications involving weak data 489 

transformations. We believe that this type of noise simulates a common form of stochasticity 490 

in nature that is caused by random death of individuals followed by random colonization. 491 

The simulations have revealed several tendencies in classification stability as related to cluster 492 

number, data transformation, and sample properties. With increasing size of clusters, the 493 

number of abundance-based clusters was underestimated, while the number of clusters based 494 

on species pools was detected correctly. Despite this observation with both fixed and 495 

changing total sample size, we cannot offer a clear explanation for this finding. 496 

Based on the tests with modified pre-defined number of clusters with fixed cluster sizes, the 497 

stability as optimality criterion seems to track the changes correctly in most cases. However, 498 

when the number of clusters based on presence/absence data was two, the most stable 499 

classifications were obtained at the three-cluster level with strong transformation. (With weak 500 

transformations, the abundance-based number of clusters was correctly found at the level of 501 

four clusters.) Moreover, in a few cases, optima were indicated between the species-pool-502 

based and the abundance-based levels. When the total sample size was fixed, but number and 503 

size of clusters changed, stability performed similarly well. Some inconsistency was found at 504 

four abundance-based clusters, where the most stable level was found at two clusters for all 505 
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but one value of the exponent. Surprisingly, the exception was the binary case (a = 0) where 506 

all classifications were generally less stable and the optimum was at the pre-defined number 507 

of clusters based on abundance, i.e. four clusters. This contradicts our expectation and we 508 

have no clear explanation for this. Despite the above mentioned spurious exceptions, the 509 

stability seemed rather robust and accurate across a wide range of cluster numbers with PAM. 510 

In real situations, mapping a goodness of classification measure as a function of data 511 

transformation and cluster number would help avoiding less effective parameter 512 

combinations. 513 

Testing the effect of community dominance on stability by changing the logarithm of SD of 514 

species abundances revealed that at the lowest dominance (i.e. low SD), the number of 515 

clusters based on species pool was optimal regardless of data transformation. As dominance 516 

increased, abundance-based cluster number became more stable and was identified as optimal. 517 

This is in line with the common experience that in monodominant vegetation types (e.g. 518 

aquatic and marsh vegetation) classifications based on abundance data are more effective and 519 

can markedly differ from presence/absence-based classifications, while when the species 520 

abundances are more balanced, accounting for abundance differences does not give 521 

significantly different or more effective classification than what is obtained by species 522 

composition. 523 

Concluding remarks 524 

Classification stability depends both on cluster number and data transformation. The trend of 525 

stability along increasing power exponent varies across cluster numbers, and vice versa, the 526 

number of clusters resulting in the most stable classifications depends on data transformation. 527 

Slight changes in any of these two factors may change the stability of a classification, hence 528 

different biological conclusions can be reached. At the same time, similarly effective 529 

classifications can be produced using different combinations of parameters. Finding such 530 

local optima contributes to the thorough understanding of biological patterns in the sample. 531 

Stability, as proposed by Tichý et al. (2011), is a standardized measure of classification 532 

effectiveness because every single classification is compared to classifications of its without-533 

replacement bootstrap subsamples obtained with exactly the same methods. We have chosen 534 

this index in our study because of this advantage. However, there are many other measures of 535 

effectiveness, but we have chosen not to evaluate them experimentally in this paper. For 536 
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answering specific research questions, other indices may be more appropriate than stability. In 537 

such cases the workflow of testing the effect of data transformation and cluster number on 538 

classification effectiveness, and the visualization of results should be the same as we 539 

presented, only the measure of effectiveness should be replaced by an alternative. Moreover, 540 

it is also possible to perform the optimization analysis using several different effectiveness 541 

measures, and then combine the results in order to identify the classification which is the most 542 

effective on average across the applied indices. 543 

Apart from the cluster number and the power exponent, we see no obstacles to test the effect 544 

of other types of methodological decisions using our approach. For example, an effectiveness 545 

measure might be calculated for classifications obtained by different values for the β 546 

parameter of the flexible clustering method by Lance & Williams (1967), and the β value 547 

providing the most stable classification might be determined. Moreover, our optimization 548 

approach can easily be adapted to ordinations, too. If the cluster effectiveness index applied 549 

here is substituted by a measure of stability of ordinations (as done by Wilson 2012), the 550 

effect of data transformation on the stability of ordinations can be evaluated systematically. 551 

The extension of the optimization procedure presented here beyond data transformation and 552 

cluster number is a future direction of our research. 553 
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Tables 685 
 686 
Table 1. Characteristics of the real vegetation data sets 687 

Grasslands Wetlands Kwongan 

Vegetation type mesic grasslands 
reeds and sedge 

beds 
sclerophyllous 

scrub 

Geographical location 
Northern 
Hungary 

Central and 
Western Europe 

Geraldton 
Sandplains, 

Western Australia 

Nr. of plots 55 2725 379 
Plot size (m2) 25 15 to 50 100 
Number of species       
total 269 844 645 
mean per plot 37.78 12.52 49.33 
minimum per plot 18 5 20 
maximum per plot 54 43 85 
Mean diversity of order 1* 12.22 4.8 37 
Mean evenness per plot** 0.32 0.38 0.75 
Mean SD of species covers 8.77 20.60 1.79 

Mean 25–75% quantiles of 
species covers 

0.51–2.52 2.05–6.60 1.00–1.15 

*according to Hill (1973)       
 **mean of diversity of order 1 divided by diversity of order 0, the latter being species 688 
richness 689 
  690 
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Figures691 

 692 

Fig. 1. Analysis of the Grasslands data set showing the heat map of classification stability 693 

obtained using different parameters for number of clusters and power exponent. Darkness of 694 

the segments correlate with the value of the mean standardized Goodman & Kruskal’s lambda 695 

(MSL), where the darkest segments marking the combinations of parameters leading to the 696 

most stable classifications. White circles with black dots indicate the optimal number of 697 

clusters for a given exponent. 698 
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 700 

Fig. 2. Mean and standard deviation as error bars of the marginal of the heat map of the 701 

Grasslands data set. 702 

703 



28 
 

 704 

Fig. 3. Analysis of the Wetlands data set showing the heat map of classification stability 705 

obtained using different parameters for number of clusters and power exponent. For the 706 

meaning of shading and other symbols see Fig. 1. 707 
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 709 

Fig. 4. Analysis of the Kwongan data set showing the heat map of the classification stability 710 

obtained using different parameters for number of clusters and power exponent. For the 711 

meaning of shading and other symbols see Fig. 1. 712 
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 716 

Fig. 5. Simulated data with different noise levels showing the heat maps of classification 717 

stability obtained with different parameters for number of clusters and power exponent. For 718 

the meaning of shading and other symbols see Fig. 1. The abundance-based numbers of 719 

clusters is eight, and the species-pool-based number of clusters is four. 720 
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 722 

Fig. 6. Simulated data with different cluster sizes and fixed number of clusters showing the 723 

heat maps of the classification stability obtained with different parameters for number of 724 

clusters and power exponent. For the meaning of shading and other symbols see Fig. 1. The 725 

abundance-based numbers of clusters is eight, and the species-pool-based number of clusters 726 

is four. 727 
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d ) Size of clusters = 50
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 729 

Fig. 7. Simulated data with different numbers and fixed size of clusters showing the heat maps 730 

of classification stability obtained with different parameters for number of clusters and power 731 

exponents. For the meaning of shading and other symbols see Fig. 1. 732 
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a ) Number of clusters = 4
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b ) Number of clusters = 8
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c ) Number of clusters = 12
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d ) Number of clusters = 16
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e ) Number of clusters = 24


