The abstracts were marked by the Abstract marking Panel selected by the programme Organising Committee
The ESE would like to thank its Corporate Members and the ECE 2018 sponsors

ECE Corporate Members
Premium Corporate Members
Ipsen
Pfizer
Shire Services BVBA

Corporate Members
Laboratoire HRA Pharma
Novartis Pharmaceuticals
Novo Nordisk
Otsuka Pharmaceuticals Europe Ltd
Sandoz International Gmbh
Siemens-Healthineers
Strongbridge Biopharma

Gold Sponsors
Ipsen
Pfizer
Novartis Pharmaceuticals
CONTENTS

20th European Congress of Endocrinology 2018

PRIZE LECTURES AND BIOGRAPHICAL NOTES

The European Journal of Endocrinology Prize Lecture .. EJE1
The Geoffrey Harris Prize Lecture .. GH1
European Hormone Medal Lecture .. EHM1
Clinical Endocrinology Trust Lecture .. CET1

PLENARY LECTURES

Contraception: Past and future ... PL1
Bone regulates the Brain ... PL2
The wonder world of GnRH neurons ... PL3
The Retina as a Window for Exploring the Brain in Diabetes PL4
The link between insulin and fatty liver ... PL5
Does therapy for thyroid dysfunction decrease mortality? PL6
Metabolic control of longevity ... PL7

SYMPOSIA

Predicting events in autoimmune thyroid disease ... S1.1–S1.3
Salt & Sweet .. S2.1–S2.3
Bile Acid & Microbiota (Endorsed by Endocrine Connections) S3.1–S3.3
Environmental effects on endocrine functions ... S4.1–S4.3
The role of sperm epigenome in fertility and inheritance S5.1–S5.3
Precision Medicine for diabetes (Endorsed by the European Journal of Endocrinology) ... S6.1–S6.3
Expanding the spectrum of thyroid hormone use (Endorsed by the European Journal of Endocrinology) .. S7.1–S7.3
Bone fragility – from bench to clinic ... S8.1–S8.3
EAA /ESE Session: Male gonadal function versus general health and vice versa .. S9.1–S9.3
Hot topics in NETs ... S10.1–S10.3
Novel aspects of Craniopharyngioma ... S11.1–S11.3
Why do fractures occur in endocrine disorders, and how should they be handled? .. S12.1–S12.3
The colours of fat ... S13.1–S13.3
Neuroendocrine basis of reproductive disorders .. S14.1–S14.3
EYES: New aspects in the study of neuroendocrine diseases S15.1–S15.6
Changing practice in the management of thyroid neoplasms S16.1–S16.3
Recent advances in Primary Adrenal Macronodular Hyperplasia S17.1–S17.3
Borderline testosterone and metabolic outcomes among sexes: clinical relevance .. S18.1–S18.3
New Aspects of Pituitary Regulation ... S19.1–S19.3
All you need to know about lipodystrophy (Endorsed by Endocrine Connections) .. S20.1–S20.3
The Dance of Adrenal and Gonads (Endorsed by Endocrine Connections) .. S21.1–S21.3
The fatty bone ... S22.1–S22.3
Pre-diabetes .. S23.1–S23.3
Ups and downs of hypothalamo-pituitary hormones S24.1–S24.3
Late Breaking.. S25.1–S25.3
Cortisol: Too much of a Good Thing ... S26.1–S26.3
Emerging treatments in osteoporosis ... S27.1–S27.3
Endocrinology Meets Immunology .. S28.1–S28.3
Thyroid hormone action: regulation and clinical implications S29.1–S29.3
Disorders of Sexual Development (DSD) ... S30.1–S30.3
Special Symposium: Bone & Vitamin D (Endorsed by Endocrine Connections) .. S31.1–S31.3
Guidelines: ESE - ENSAT guidelines on the management of adrenocortical carcinoma in adults ... GL1.1–GL1.6
Endo-ERN: concrete examples of added value for patient care ERN1.1–ERN1.3
NEW SCIENTIFIC APPROACHES

DEBATES

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal venous sampling vs. imaging for primary aldosteronism: beware of the caveats! (Endorsed by the European Journal of Endocrinology)</td>
<td>D1.1–D1.2</td>
</tr>
<tr>
<td>Receptor profiling is useful for predicting pituitary therapy (Endorsed by the European Journal of Endocrinology)</td>
<td>D2.1–D2.2</td>
</tr>
<tr>
<td>Subclinical hypothyroidism is a disease</td>
<td>D3.1–D3.2</td>
</tr>
<tr>
<td>AMH as the Primary Marker for Fertility</td>
<td>D4.1–D4.2</td>
</tr>
<tr>
<td>Pregnant women should be screened for thyroid hormones and antibodies</td>
<td>D5.1–D5.2</td>
</tr>
<tr>
<td>Endocrine disruptors: Regulatory vs. Scientific Perspectives (Endorsed by Endocrine Connections)</td>
<td>D6.1–D6.2</td>
</tr>
</tbody>
</table>

MEET THE EXPERT SESSIONS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>New scientific approaches</td>
<td>MTE1–MTE16</td>
</tr>
<tr>
<td>Nurse sessions</td>
<td>MTBS1–MTBS3</td>
</tr>
</tbody>
</table>

NURSE SESSIONS

<table>
<thead>
<tr>
<th>Session</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1.1–N1.3</td>
<td></td>
</tr>
<tr>
<td>N2.1–N2.4</td>
<td></td>
</tr>
<tr>
<td>N3.1</td>
<td></td>
</tr>
<tr>
<td>N4.1–N4.5</td>
<td></td>
</tr>
</tbody>
</table>

ORAL COMMUNICATIONS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign thyroid diseases</td>
<td>OC1.1–OC1.5</td>
</tr>
<tr>
<td>Look who is controlling your gonads!</td>
<td>OC2.1–OC2.5</td>
</tr>
<tr>
<td>New insights in bone disorders</td>
<td>OC3.1–OC3.5</td>
</tr>
<tr>
<td>Novel insights into prediabetes and type 2 diabetes</td>
<td>OC4.1–OC4.5</td>
</tr>
<tr>
<td>Diving deep into adrenal cortex diseases</td>
<td>OC5.1–OC5.5</td>
</tr>
<tr>
<td>Genetic and environmental determinants of obesity and insulin resistance</td>
<td>OC6.1–OC6.5</td>
</tr>
<tr>
<td>Genomic and clinical aspects of endocrine tumours</td>
<td>OC7.1–OC7.5</td>
</tr>
<tr>
<td>MicroRNAs as biomarkers in endocrine diseases</td>
<td>OC8.1–OC8.5</td>
</tr>
<tr>
<td>Thyroid from basics to clinics</td>
<td>OC9.1–OC9.5</td>
</tr>
<tr>
<td>Cardiovascular aspects of endocrine diseases</td>
<td>OC10.1–OC10.5</td>
</tr>
<tr>
<td>Clinical practice in endocrine tumours: combining conventional and molecular features</td>
<td>OC11.1–OC11.5</td>
</tr>
<tr>
<td>Novel aspects of puberty development and Cushing's disease</td>
<td>OC12.1–OC12.5</td>
</tr>
<tr>
<td>The curious case of growth hormone</td>
<td>OC13.1–OC13.5</td>
</tr>
<tr>
<td>What is new in gestational and type 1 diabetes?</td>
<td>OC14.1–OC14.5</td>
</tr>
</tbody>
</table>

GUIDED POSTERS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acromegaly</td>
<td>GP2–GP12</td>
</tr>
<tr>
<td>Adrenal Case reports</td>
<td>GP13–GP21</td>
</tr>
<tr>
<td>Adrenal clinical</td>
<td>GP22–GP31</td>
</tr>
<tr>
<td>Adrenal cortex</td>
<td>GP32–GP41</td>
</tr>
<tr>
<td>Adrenal medulla and NETs</td>
<td>GP42–GP52</td>
</tr>
<tr>
<td>Bone and Osteoporosis</td>
<td>GP53–GP62</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>GP63–GP70</td>
</tr>
<tr>
<td>Diabetes Complications</td>
<td>GP71–GP81</td>
</tr>
<tr>
<td>Diabetes Epidemiology</td>
<td>GP82–GP92</td>
</tr>
<tr>
<td>Diabetes Therapy</td>
<td>GP93–GP104</td>
</tr>
<tr>
<td>Diabetes Translational</td>
<td>GP105–GP116</td>
</tr>
<tr>
<td>Endocrine Case Reports</td>
<td>GP117–GP126</td>
</tr>
<tr>
<td>Female Reproduction</td>
<td>GP127–GP137</td>
</tr>
<tr>
<td>Neuroendocrinology</td>
<td>GP138–GP148</td>
</tr>
<tr>
<td>Obesity</td>
<td>GP149–GP161</td>
</tr>
<tr>
<td>Paediatrics, Developmental & Female Reproduction</td>
<td>GP162–GP171</td>
</tr>
<tr>
<td>Parathyroid</td>
<td>GP172–GP183</td>
</tr>
<tr>
<td>Pituitary / Growth Hormone & IGF Axis</td>
<td>GP184–GP193</td>
</tr>
<tr>
<td>Pituitary Basic</td>
<td>GP194–GP201</td>
</tr>
</tbody>
</table>
Pituitary Clinical ... GP202–GP213
Reproduction .. GP214–GP223
Thyroid Cancer - Diagnostics & Treatments GP224–GP235
Thyroid Cancer - Translational ... GP236–GP245
Thyroid non cancer ... GP246–GP254
Thyroid non cancer - Autoimmune Thyroid disease/pregnancy GP255–GP264
Thyroid non cancer - Benign Thyroid disease/treatment GP265–GP274

POSTER PRESENTATIONS: ADRENAL AND NEUROENDOCRINE TUMOURS
Adrenal cortex (to include Cushing’s) P1–P70
Adrenal medulla ... P71–P81
Calcium & Vitamin D metabolism ... P82
Cardiovascular Endocrinology and Lipid Metabolism P83–P85
Clinical case reports - Pituitary/Adrenal P86–P106
Clinical case reports - Thyroid/Others P107–P109
Endocrine tumours and neoplasia ... P110–P143
Female Reproduction .. P144
Neuroendocrinology ... P145–P154
Obesity ... P155
Paediatric endocrinology ... P156
Pituitary - Basic ... P157–P159
Steroid metabolism + action ... P160–P161
Thyroid (non cancer) ... P162
Thyroid cancer ... P163

POSTER PRESENTATIONS: CALCIUM AND BONE
Bone & Osteoporosis .. P164–P201
Calcium & Vitamin D metabolism .. P202–P260
Cardiovascular Endocrinology and Lipid Metabolism P261
Clinical case reports - Pituitary/Adrenal P262–P274
Clinical case reports - Thyroid/Others P265–P274
Endocrine Disruptors .. P275
Endocrine Nursing ... P276
Endocrine tumours and neoplasia .. P277–P279
Female Reproduction .. P280

POSTER PRESENTATIONS: DIABETES, OBESITY AND METABOLISM
Adrenal cortex (to include Cushing’s) P281
Bone & Osteoporosis .. P282–P288
Calcium & Vitamin D metabolism .. P289–P291
Cardiovascular Endocrinology and Lipid Metabolism P292–P316
Clinical case reports - Thyroid/Others P317–P328
Developmental endocrinology ... P329–P330
Diabetes (to include epidemiology, pathophysiology) P331–P403
Diabetes complications .. P404–P475
Diabetes therapy ... P476–P518
Endocrine Disruptors .. P519–P523
Endocrine Nursing ... P524
Female Reproduction .. P525
Neuroendocrinology ... P526
Nuclear receptors and Signal transduction P527–P529
Obesity ... P530–P607
Paediatric endocrinology ... P608–P610
Steroid metabolism + action ... P611
Thyroid cancer ... P612
POSTER PRESENTATIONS: ENVIRONMENT, SOCIETY AND GOVERNANCE

Diabetes therapy .. P613
Endocrine Disruptors .. P614–P615
Neuroendocrinology .. P616
Pituitary - Clinical .. P617
Thyroid (non-cancer) .. P618–P620

POSTER PRESENTATIONS: INTERDISCIPLINARY ENDOCRINOLOGY

Adrenal cortex (to include Cushing’s) .. P621–P622
Calcium & Vitamin D metabolism ... P623
Cardiovascular Endocrinology and Lipid Metabolism P624–P629
Clinical case reports - Pituitary/Adrenal P630–P631
Clinical case reports - Thyroid/Others P632–P636
Developmental endocrinology ... P637
Diabetes (to include epidemiology, pathophysiology) P638–P642
Endocrine Disruptors .. P643–P645
Endocrine tumours and neoplasia .. P646–P656
Female Reproduction .. P657–P662
Growth hormone IGF axis - basic ... P663–P665
Neuroendocrinology .. P666–P672
Nuclear receptors and Signal transduction P673–P675
Obesity .. P676
Paediatric endocrinology .. P677–P679
Steroid metabolism + action ... P680–P682
Thyroid (non-cancer) .. P683–P684
Thyroid cancer .. P685

POSTER PRESENTATIONS: PITUITARY AND NEUROENDOCRINOLOGY

Adrenal cortex (to include Cushing’s) .. P686–P689
Clinical case reports - Pituitary/Adrenal P690–P727
Developmental endocrinology ... P728
Endocrine Nursing .. P729
Endocrine tumours and neoplasia .. P730–P736
Female Reproduction .. P737–P738
Growth hormone IGF axis - basic ... P739–P742
Neuroendocrinology .. P743–P770
Paediatric endocrinology .. P771–P775
Pituitary - Basic ... P776–P787
Pituitary - Clinical .. P788–P888

POSTER PRESENTATIONS: REPRODUCTIVE ENDOCRINOLOGY

Adrenal cortex (to include Cushing’s) .. P889
Bone & Osteoporosis .. P890
Cardiovascular Endocrinology and Lipid Metabolism P891–P892
Clinical case reports - Thyroid/Others P893–P898
Developmental endocrinology ... P899–P901
Diabetes (to include epidemiology, pathophysiology) P902
Endocrine Disruptors .. P903–P907
Endocrine Nursing .. P908–P909
Endocrine tumours and neoplasia .. P910
Female Reproduction .. P911–P958
Male Reproduction ... P959–P975
Neuroendocrinology .. P976
Paediatric endocrinology .. P977–P979
Pituitary - Basic ... P980
Aims

• Elucidate the effect of wildtype and polymorphic AHR on GH3 cell proliferation and on AHR-transcriptional response in the presence and absence of TCDD.

• Determine the allele frequency of the most common AHR SNP; the Arg554Lys in PA patients and in a small cohort of the Maltese population.

Method

The two missense mutations were introduced within the AHR-expressing vector and transfected in GH3 cells by magnetofection, followed by the exposure to TCDD. Cell viability of GH3 transfected cells was measured using the MTT assay. Functional analysis of GH3 transfected cells treated with TCDD was carried out using luciferase assay and real-time PCR to detect and quantify the AHR-transcriptional activity. Genotyping of the Arg554Lys was performed on PA patients and neonatal controls using allele specific PCR. The Mann-Whitney test was used to compare two groups and Kruskall-Wallis test was used to compare three groups or more.

Results

In the absence and presence of low TCDD concentrations (1 and 10 nM), over-expression of wildtype AHR (wtAHR) did not affect GH3 cell proliferation. GH3 cells transfected with the AHR mutants did not exhibit any significant differences in their proliferative ability when compared with the wtAHR, both in the presence and absence of TCDD. Luciferase reporter analysis showed that there was a significant difference between the treated and untreated wtAHR (P = 0.016), however this difference was not observed between the treated and untreated AHR mutants. Statistically significant difference in Cyp1a1 gene expression analysis was detected between the treated and untreated wtAHR (P = 0.021), Arg554Lys (P = 0.005) and Val570Ile (P = 0.054). Genotyping of the Arg554Lys in patients with PA gave a minor allele frequency (MAF) of 3% vs 0% in neonatal controls.

Conclusion

Gene expression and quantification analyses of AHR-target genes suggests that these AHR mutants might interfere with AHR target gene expression. Genotyping results suggested that this mutation is quite rare and may be similar to the frequencies of other European populations.

DOI: 10.1530/endoabs.56.P777

P779

Next generation sequencing for characterization of mitochondrial genome in pituitary adenomas

Kinga Németh1, Ottó Darvasi2, István Liko3, Nikolette Szűcs1, Sándor Czirják1, Lilla Reinerger1, Borbála Szabó1, Péter Ígaz1, Attila Patóc1* & Henriett Butz2*

12nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary; 3MTA-SE 'Lendület' Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary; 4National Institute of Clinical Neurosciences, Budapest, Hungary; 51st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; 6Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.

Introduction

Disrupted mitochondrial functions and genetic variations of mitochondrial DNA (mtDNA) have been observed in different tumors. Regarding pituitary adenomas mtDNA was evaluated only in oncocytic type using PCR based methods and it showed high prevalence of Complex I variants. Next generation sequencing (NGS) allows high throughput sequencing and it is useful for accurate identification of heteroplasmy of mitochondrial genome as well.

Aim

We aimed to investigate the entire mitochondrial genome in different adenoma types.

Material and methods

We collected 22 gonadotroph (GO), 11 GH producing (GH) and 11 null-cell (NC) adenoma specimens from samples removed by transphenoidal surgery. From fresh frozen tissues DNA extraction was performed using QIAamp Fast DNA Tissue Kit. For library preparation VariantPro Amplicon Mitochondrion Panel kit was used. The total mtDNA (16569 bp) was sequenced on Illumina MiSeq Instrument. Following complex bioinformatic analysis Revised Cambridge Reference Sequence (rCRS) of the human mitochondrial DNA was used as reference. Heteroplasmy was determined using 3% cutoff.

Results

The whole mitochondrial genome were covered by 630±370 (avg ± S.E.) reads per base. 496 variants were identified in adenomas compared to reference sequence. Overall a low (7.22%) heteroplasmy prevalence was found. Based on mitochondrial sequence variants by hierarchical cluster analysis we could not discriminate different adenoma types. No association between Ki-67 index or recurrent-nonrecurrent status of adenomas and mitochondrial variants were detected. Four variants appeared more often in null-cell adenomas compared to gonadotroph adenomas (chrM_188: 18% vs 0%, chrM_16093: 18% vs 0%, chrM_185: 27% vs 0% and chrM_14798: 36% vs 5%; Padj = 0.01542 and 0.0246, respectively). Of these variants chrM_14798, chrM_4216 and chrM_15452 are non-synonymous polymorphisms leading to amino acid change in MT-CYB (mitochondrially encoded cytochrome b) and in MT-ND1 (mitochondrially encoded NADH dehydrogenase 1) genes. We identified chrM_16189 variant (non-protein coding variant) in 40% (6/15) of nonrecurrent adenomas compared to recurrent ones where this variant was not present (9/11) (P = 0.0209).

Conclusions

Next-generation sequencing is a reliable method for investigating mitochondrial genome and heteroplasmy in pituitary adenomas. In pituitary adenomas the prevalence of heteroplasmy of mitochondrial genome is low suggesting that these alterations may not influence mitochondrial function considerably. Of pituitary
tumours only null cell adenomas possess alterations of mitochondrial genome with potential functional consequences suggesting that during the development of this subtype of pituitary tumours mitochondrial function-associated mechanisms may have role.

DOI: 10.1530/endoabs.56.P779

P780

Pituitary cell activation and recruitment in hypothyroidism

Fernando Oroz, Montserrat García-Lavandera, Sihara Pérez-Romero, Ángela García-Rendueles & Clara V Alvarez

P781

SOM230 exerts anti-proliferative actions by reducing phospho-ERK/1/2 levels in ACTH-secreting pituitary tumour cells

Donatella Treppiedi, Erika Peverelli, Elena Giardino, Rosa Catalano, Federica Mangili, Maura Arosio & Giovanna Mantovani

Endocrine Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.

Currently, the multi-ligand somatostatin (SS) analogue pasireotide (SOM230) is the only pituitary-targeted drug used to treat patients with Cushings disease. SOM230 displays the highest affinity to somatostatin receptor type 5 (SSTR5) and compared to octreotide resulted more effective in reducing ACTH release. Despite its anti-secretory role, SOM230 has been associated with tumor shrinkage in patients subjected to long term treatment, although to date the key factors involved are poor elucidated. The present work aimed to investigate the molecular mechanisms implicated in SOM230-induced cytostatic and cytotoxic effects in ACTH-secreting primary tumour cultures and murine corticophob tumour cells.

First, by western blot we found SSTR5 expressed at comparable levels in 17 different ACTH-secreting pituitary samples, whereas SSTR2 was detectable in 15 out of 17 tissues. SSTR5 and SSTR2 were expressed in ACT-20 cells. Then, we tested the effect of 96h stimulation with 1 μM SOM230 on cell proliferation in 6 different ACTH-secreting tumours by measuring 5-bromo-20-deoxyuridine incorporation during DNA synthesis. We found a significant in vitro suppression of cell growth in half of the analyzed samples (12.1±4.3%, P<0.01). Accordingly, SOM230 significantly inhibited cell growth in a dose-dependent manner in ACT-20 cells (−10.5±7.7% at 10 μM, P<0.05; −3.9±10.9% at 100nM, P<0.05; −26.8±4.9% at 1 μM, P<0.01), whilst octreotide was effective only at 1 μM (−13.3±9.1%, P<0.05). To investigate whether direct antiproliferative actions SOM230-mediated might involve MAPK and cyclins pathways, we evaluated the expression level of phospho-ERK1/2 and CDK in ACTH-secreting primary cultures exposed to 1 μM of SOM230. SOM230 reduced phospho-ERK1/2 levels in 5 of 8 tumours tested (−36.4±20.5%, P<0.01), whereas no significant difference was found in CDK expression levels in 3 tumours. These data were further confirmed in ACT-20 cells, where octreotide did not have any effect. Furthermore, we found that 48h incubation with 1 μM SOM230 was able to induce a significant increase of caspase 3/7 activity in 2 of 4 ACTH-secreting primary cultures (17.2±3.6%, P<0.05). Altogether these data suggest a downstream implication of phospho-ERK1/2 inhibition in ACTH-secreting pituitary tumour cells by SOM230 resulting in cell proliferation suppression and indicating that broader-spectrum SS analogues may play a crucial role in the treatment of tumours where the MAPK pathway is overactivated. Moreover, we describe a pro-apoptotic effect of SOM230. Ongoing experiments are aimed to discriminate the specificity effects played by SSTR5 and SSTR2.

DOI: 10.1530/endoabs.56.P781

P782

Abstract withdrawn.

P783

Corticotroph pituitary adenomas: the functioning vs the silent: a gene expression study comparing differentially expressed genes in the regulation of POMC

Kjersti Ringvoll Normann1,2,3, Arvind Sundaram4, Kristin Astrid Berland Øystese1,2, Tove Løvka1, Alexander Eieland1, Jens Bøllerslev1,2 & Nicoleta Cristina Olărescu1,3

1Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway; 2Faculty of Medicine, University of Oslo, Oslo, Norway; 3Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway; 4Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.

The exact mechanism behind the hypersecretion of ACTH and lack of negative cortisol feedback on POMC regulation in functional corticotroph adenomas (FCA) is unknown. Silent corticotroph adenomas (SCA) express, but do not secrete functional ACTH and have lower POMC expression. Using RT-qPCR and immunohistochemistry, previous studies have identified some POMC-transcription factors, regulators and processing enzymes to be differentially expressed.