The ESE would like to thank its Corporate Members and the ECE 2018 sponsors

ECE Corporate Members

Premium Corporate Members
- Ipsen
- Pfizer
- Shire Services BVBA

Corporate Members
- Laboratoire HRA Pharma
- Novartis Pharmaceuticals
- Novo Nordisk
- Otsuka Pharmaceuticals Europe Ltd
- Sandoz International Gmbh
- Siemens-Healthineers
- Strongbridge Biopharma

Gold Sponsors
- Ipsen
- Pfizer
- Novartis Pharmaceuticals
CONTENTS

20th European Congress of Endocrinology 2018

PRIZE LECTURES AND BIOGRAPHICAL NOTES

The European Journal of Endocrinology Prize Lecture .. EJE1
The Geoffrey Harris Prize Lecture ... GH1
European Hormone Medal Lecture .. EHM1
Clinical Endocrinology Trust Lecture .. CET1

PLENARY LECTURES

Contraception: Past and future .. PL1
Bone regulates the Brain .. PL2
The wonder world of GnRH neurons ... PL3
The Retina as a Window for Exploring the Brain in Diabetes .. PL4
The link between insulin and fatty liver .. PL5
Does therapy for thyroid dysfunction decrease mortality? ... PL6
Metabolic control of longevity ... PL7

SYMPOSIA

Predicting events in autoimmune thyroid disease ... S1.1–S1.3
Salt & Sweet ... S2.1–S2.3
Bile Acid & Microbiota (Endorsed by Endocrine Connections) .. S3.1–S3.3
Environmental effects on endocrine functions ... S4.1–S4.3
The role of sperm epigenome in fertility and inheritance ... S5.1–S5.3
Precision Medicine for diabetes (Endorsed by the European Journal of Endocrinology) ... S6.1–S6.3
Expanding the spectrum of thyroid hormone use (Endorsed by the European Journal of Endocrinology) .. S7.1–S7.3
Bone fragility – from bench to clinic ... S8.1–S8.3
EAA /ESE Session: Male gonadal function versus general health and vice versa S9.1–S9.3
Hot topics in NETs ... S10.1–S10.3
Novel aspects of Craniopharyngioma .. S11.1–S11.3
Why do fractures occur in endocrine disorders, and how should they be handled? S12.1–S12.3
The colours of fat .. S13.1–S13.3
Neuroendocrine basis of reproductive disorders ... S14.1–S14.3
EYES: New aspects in the study of neuroendocrine diseases ... S15.1–S15.6
Changing practice in the management of thyroid neoplasms .. S16.1–S16.3
Recent advances in Primary Adrenal Macronodular Hyperplasia S17.1–S17.3
Borderline testosterone and metabolic outcomes among sexes: clinical relevance S18.1–S18.3
New Aspects of Pituitary Regulation ... S19.1–S19.3
All you need to know about lipodystrophy (Endorsed by Endocrine Connections) S20.1–S20.3
The Dance of Adrenal and Gonads (Endorsed by Endocrine Connections) S21.1–S21.3
The fatty bone ... S22.1–S22.3
Pre-diabetes .. S23.1–S23.3
Ups and downs of hypothalmo-pituitary hormones ... S24.1–S24.3
Late Breaking .. S25.1–S25.3
Cortisol: Too much of a Good Thing .. S26.1–S26.3
Emerging treatments in osteoporosis .. S27.1–S27.3
Endocrinology Meets Immunology .. S28.1–S28.3
Thyroid hormone action: regulation and clinical implications .. S29.1–S29.3
Disorders of Sexual Development (DSD) .. S30.1–S30.3
Special Symposium: Bone & Vitamin D (Endorsed by Endocrine Connections) S31.1–S31.3
Guidelines: ESE - ENSAT guidelines on the management of adrenocortical carcinoma in adults ... GL1.1–GL1.6
Endo-ERN: concrete examples of added value for patient care ... ERN1.1–ERN1.3
NEW SCIENTIFIC APPROACHES ... NSA1–NSA6

DEBATES
Adrenal venous sampling vs. imaging for primary aldosteronism: beware of the caveats!
(Endorsed by the European Journal of Endocrinology) .. D1.1–D1.2
Receptor profiling is useful for predicting pituitary therapy (Endorsed by the European Journal of Endocrinology) D2.1–D2.2
Subclinical hypothyroidism is a disease ... D3.1–D3.2
AMH as the Primary Marker for Fertility ... D4.1–D4.2
Pregnant women should be screened for thyroid hormones and antibodies .. D5.1–D5.2
Endocrine disruptors: Regulatory vs. Scientific Perspectives (Endorsed by Endocrine Connections) D6.1–D6.2

MEET THE EXPERT SESSIONS .. MTE1–MTE16
.. MTBS1–MTBS3

NURSE SESSIONS .. N1.1–N1.3
.. N2.1–N2.4
.. N3.1
.. N4.1–N4.5

ORAL COMMUNICATIONS
Benign thyroid diseases ... OC1.1–OC1.5
Look who is controlling your gonads! ... OC2.1–OC2.5
New insights in bone disorders ... OC3.1–OC3.5
Novel insights into prediabetes and type 2 diabetes OC4.1–OC4.5
Diving deep into adrenal cortex diseases .. OC5.1–OC5.5
Genetic and environmental determinants of obesity and insulin resistance OC6.1–OC6.5
Genomic and clinical aspects of endocrine tumours OC7.1–OC7.5
MicroRNAs as biomarkers in endocrine diseases OC8.1–OC8.5
Thyroid from basics to clinics .. OC9.1–OC9.5
Cardiovascular aspects of endocrine diseases ... OC10.1–OC10.5
Clinical practice in endocrine tumours: combining conventional and molecular features OC11.1–OC11.5
Novel aspects of puberty development and Cushing’s disease OC12.1–OC12.5
The curious case of growth hormone ... OC13.1–OC13.5
What is new in gestational and type 1 diabetes? OC14.1–OC14.5

GUIDED POSTERS
Acromegaly ... GP2–GP12
Adrenal Case reports ... GP13–GP21
Adrenal clinical .. GP22–GP31
Adrenal cortex ... GP32–GP41
Adrenal medulla and NETs .. GP42–GP52
Bone and Osteoporosis ... GP53–GP62
Cardiovascular .. GP63–GP70
Diabetes Complications .. GP71–GP81
Diabetes Epidemiology ... GP82–GP92
Diabetes Therapy ... GP93–GP104
Diabetes Translational ... GP105–GP116
Endocrine Case Reports ... GP117–GP126
Female Reproduction .. GP127–GP137
Neuroendocrinology .. GP138–GP148
Obesity .. GP149–GP161
Paediatrics, Developmental & Female Reproduction GP162–GP171
Parathyroid ... GP172–GP183
Pituitary / Growth Hormone & IGF Axis ... GP184–GP193
Pituitary Basic .. GP194–GP201
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pituitary Clinical</td>
<td>GP202–GP213</td>
</tr>
<tr>
<td>Reproduction</td>
<td>GP214–GP223</td>
</tr>
<tr>
<td>Thyroid Cancer - Diagnostics & Treatments</td>
<td>GP224–GP235</td>
</tr>
<tr>
<td>Thyroid Cancer - Translational</td>
<td>GP236–GP245</td>
</tr>
<tr>
<td>Thyroid non cancer</td>
<td>GP246–GP254</td>
</tr>
<tr>
<td>Thyroid non cancer - Autoimmune Thyroid disease/pregnancy</td>
<td>GP255–GP264</td>
</tr>
<tr>
<td>Thyroid non cancer - Benign Thyroid disease/treatment</td>
<td>GP265–GP274</td>
</tr>
</tbody>
</table>

POSTER PRESENTATIONS: ADRENAL AND NEUROENDOCRINE TUMOURS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal cortex (to include Cushing's)</td>
<td>P1–P70</td>
</tr>
<tr>
<td>Adrenal medulla</td>
<td>P71–P81</td>
</tr>
<tr>
<td>Calcium & Vitamin D metabolism</td>
<td>P82</td>
</tr>
<tr>
<td>Cardiovascular Endocrinology and Lipid Metabolism</td>
<td>P83–P85</td>
</tr>
<tr>
<td>Clinical case reports - Pituitary/Adrenal</td>
<td>P86–P106</td>
</tr>
<tr>
<td>Clinical case reports - Thyroid/Others</td>
<td>P107–P109</td>
</tr>
<tr>
<td>Endocrine tumours and neoplasia</td>
<td>P110–P143</td>
</tr>
<tr>
<td>Female Reproduction</td>
<td>P144–P145</td>
</tr>
<tr>
<td>Neuroendocrinology</td>
<td>P154–P155</td>
</tr>
<tr>
<td>Obesity</td>
<td>P155–P156</td>
</tr>
<tr>
<td>Paediatric endocrinology</td>
<td>P156–P159</td>
</tr>
<tr>
<td>Pituitary - Basic</td>
<td>P157–P159</td>
</tr>
<tr>
<td>Steroid metabolism + action</td>
<td>P160–P161</td>
</tr>
<tr>
<td>Thyroid (non cancer)</td>
<td>P162–P163</td>
</tr>
<tr>
<td>Thyroid cancer</td>
<td>P163–P164</td>
</tr>
</tbody>
</table>

POSTER PRESENTATIONS: CALCIUM AND BONE

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone & Osteoporosis</td>
<td>P164–P201</td>
</tr>
<tr>
<td>Calcium & Vitamin D metabolism</td>
<td>P202–P260</td>
</tr>
<tr>
<td>Cardiovascular Endocrinology and Lipid Metabolism</td>
<td>P261–P262</td>
</tr>
<tr>
<td>Clinical case reports - Pituitary/Adrenal</td>
<td>P263–P274</td>
</tr>
<tr>
<td>Endocrine Disruptors</td>
<td>P275–P276</td>
</tr>
<tr>
<td>Endocrine Nursing</td>
<td>P277–P279</td>
</tr>
<tr>
<td>Endocrine tumours and neoplasia</td>
<td>P280–P281</td>
</tr>
<tr>
<td>Female Reproduction</td>
<td>P281–P288</td>
</tr>
</tbody>
</table>

POSTER PRESENTATIONS: DIABETES, OBESITY AND METABOLISM

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal cortex (to include Cushing's)</td>
<td>P281–P288</td>
</tr>
<tr>
<td>Bone & Osteoporosis</td>
<td>P289–P291</td>
</tr>
<tr>
<td>Calcium & Vitamin D metabolism</td>
<td>P292–P316</td>
</tr>
<tr>
<td>Cardiovascular Endocrinology and Lipid Metabolism</td>
<td>P317–P328</td>
</tr>
<tr>
<td>Clinical case reports - Thyroid/Others</td>
<td>P329–P330</td>
</tr>
<tr>
<td>Developmental endocrinology</td>
<td>P331–P403</td>
</tr>
<tr>
<td>Diabetes (to include epidemiology, pathophysiology)</td>
<td>P404–P475</td>
</tr>
<tr>
<td>Diabetes complications</td>
<td>P476–P518</td>
</tr>
<tr>
<td>Endocrine Disruptors</td>
<td>P519–P523</td>
</tr>
<tr>
<td>Endocrine Nursing</td>
<td>P524–P525</td>
</tr>
<tr>
<td>Female Reproduction</td>
<td>P525–P526</td>
</tr>
<tr>
<td>Neuroendocrinology</td>
<td>P527–P529</td>
</tr>
<tr>
<td>Nuclear receptors and Signal transduction</td>
<td>P530–P607</td>
</tr>
<tr>
<td>Obesity</td>
<td>P608–P610</td>
</tr>
<tr>
<td>Paediatric endocrinology</td>
<td>P611–P612</td>
</tr>
<tr>
<td>Steroid metabolism + action</td>
<td>P611–P612</td>
</tr>
<tr>
<td>Thyroid cancer</td>
<td>P612–P612</td>
</tr>
</tbody>
</table>
POSTER PRESENTATIONS: ENVIRONMENT, SOCIETY AND GOVERNANCE

Diabetes therapy .. P613
Endocrine Disruptors ... P614–P615
Neuroendocrinology .. P616
Pituitary - Clinical .. P617
Thyroid (non-cancer) ... P618–P620

POSTER PRESENTATIONS: INTERDISCIPLINARY ENDOCRINOLOGY

Adrenal cortex (to include Cushing’s) .. P621–P622
Calcium & Vitamin D metabolism .. P623
Cardiovascular Endocrinology and Lipid Metabolism P624–P629
Clinical case reports - Pituitary/Adrenal P630–P631
Clinical case reports - Thyroid/Others P632–P636
Developmental endocrinology ... P637
Diabetes (to include epidemiology, pathophysiology) P638–P642
Endocrine Disruptors ... P643–P645
Endocrine tumours and neoplasia .. P646–P656
Female Reproduction ... P657–P662
Growth hormone IGF axis - basic P663–P665
Neuroendocrinology .. P666–P675
Nuclear receptors and Signal transduction P673–P675
Obesity ... P676
Paediatric endocrinology .. P677–P679
Steroid metabolism + action .. P680–P682
Thyroid (non-cancer) .. P683–P684
Thyroid cancer .. P685

POSTER PRESENTATIONS: PITUITARY AND NEUROENDOCRINOLOGY

Adrenal cortex (to include Cushing’s) .. P686–P689
Clinical case reports - Pituitary/Adrenal P690–P727
Developmental endocrinology ... P728
Endocrine Nursing .. P729
Endocrine tumours and neoplasia .. P730–P736
Female Reproduction ... P737–P738
Growth hormone IGF axis - basic P739–P742
Neuroendocrinology .. P743–P770
Paediatric endocrinology ... P771–P775
Pituitary - Basic ... P776–P787
Pituitary - Clinical .. P788–P888

POSTER PRESENTATIONS: REPRODUCTIVE ENDOCRINOLOGY

Adrenal cortex (to include Cushing’s) .. P889
Bone & Osteoporosis ... P890
Cardiovascular Endocrinology and Lipid Metabolism P891–P892
Clinical case reports - Thyroid/Others P893–P898
Developmental endocrinology ... P899–P901
Diabetes (to include epidemiology, pathophysiology) P902
Endocrine Disruptors ... P903–P907
Endocrine Nursing .. P908–P909
Endocrine tumours and neoplasia .. P910
Female Reproduction ... P911–P958
Male Reproduction .. P959–P975
Neuroendocrinology .. P976
Paediatric endocrinology ... P977–P979
Pituitary - Basic ... P980
Steroid metabolism + action .. P981–P983
Thyroid (non-cancer) .. P984

POSTER PRESENTATIONS: THYROID
Clinical case reports - Thyroid/Others P985–P1005
Developmental endocrinology ... P1006
Endocrine disruptors ... P1007–P1008
Endocrine tumours and neoplasia ... P1009–P1010
Nuclear receptors and signal transduction P1011
Paediatric endocrinology ... P1012
Thyroid (non-cancer) ... P1013–P1117
Thyroid cancer ... P1118–P1205

ePOSTER PRESENTATIONS
Adrenal and Neuroendocrine Tumours EP1–EP28
Calcium and Bone .. EP29–EP34
Diabetes, Obesity and Metabolism ... EP35–EP90
Environment, Society and Governance EP91
Pituitary and Neuroendocrinology ... EP100–EP135
Reproductive Endocrinology ... EP136–EP154
Thyroid ... EP155–EP191

INDEX OF AUTHORS
P125
Heterogeneous genetic background of Hungarian patients with pheochromocytoma/paraganglioma requires gene panel testing
Balázs Sarkadi, 1 Sára Zakaria, 1 István Likó, 2 Vince Kornél Grolmusz, 2, 3 Henriett Buz, 2, 3 Miklós Tóth, 1 Nikolette Szücs, 1 Péter Igaz 1, 4 & Attila Patócs 1, 2, 3
1 2nd Department of Medicine, Semmelweis University, Budapest, Hungary; 2 Endület Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary; 3 Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary; 4 Molecular Medicine Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary.

Introduction
Pheochromocytomas and paragangliomas (Pheo/PGL) are rare neuroendocrine tumors arising from the adrenal medulla or the sympathetic paraganglia, respectively. Germline mutations are present in ~40% of the patients. To date, at least 16 genes have been demonstrated to be involved in the genetic background of Pheo/PGL. Prioritization in order of genes tested can be applied, but if the probability of a disease-associated germline mutation exceeds 10% the testing of all susceptibility genes is recommended. Using next generation sequencing (NGS) based methods for genetic testing of Pheo/PGL associated genes progressively becomes part of the routine diagnostics.

Objective
To assess the genetic background of Hungarian patients with Pheo/PGL and to develop a NGS based gene panel assay for analysis of Pheo/PGL susceptibility genes.

Methods
We examined 131 patients with the diagnosis of Pheo/PGL diagnosed and nursed at the 2nd Department of Medicine, Semmelweis University. The prevalence of the germline mutations of Pheo/PGL genes was determined using conventional methods. Genotype-phenotype correlations were evaluated. A gene panel covering 15 genes (RET, VHL, NF1, EPAS1, MAX, SDHB, SDHA, SDHA2, SDHC, SDHD, FH, MAX, TMEM127, MEN1) was developed and analytical sensitivity was evaluated on 36 patients with known genetic background.

Library preparation was performed using SeqCapEZ capture platform with our probe design. Illumina MiSeq instrument was used for sequencing. Sequencing data were analysed with GATK workflow. Variant annotation was performed with SNPeffect.

Results
Germline mutations of Pheo/PGL genes were present in at 34% of the patients: 10 (7.6%) SDHB, 9 (6.9%) RET, 5 (3.8%) VHL, TMEM127, MDH2, 4 (3.5%) NF1, 3 (2.3%) SDHD, 2 (1.5%) SDHC and KIF1B. 5 of 10 SDHB mutation carriers developed malignant disease. Homozygous form of a MDH2 variant was associated with malignancy. Among the 10 patients with bilateral adrenal Pheo 4 RET, 2 TMEM127 and 1 VHL mutations were identified. The coverage of genes in our panel was higher than 150 reads in all regions and all known mutations were correctly identified.

Discussion
Our findings regarding the prevalence of germline mutations in the development of Pheo/PGL are in accordance with the literature. No founder mutation occurred in our population as we could detect mutations in 9 genes, underlining the need of our panel was higher than 150 reads in all regions and all known mutations were correctly identified.

P126
Gastroenteropancreatic neuroendocrine tumors are predictive for a positive MEN1 germline mutation test: evidence from Hungarian MEN1 cohort
Annamária Kövesdi 1, 2, Katalin Balogh 1, Miklós Tóth 1, Nikolette Szücs 1, Beatrix Sármán 2, Péter Pusztai 2, Péter Reismann 2, Anikó Somogyi 2, Katalin Borok 1, Annamária Erdel 1, Veronika Deák 1, Zsuzsanna Valkusz 1, Péter Igaz 1, 4 & Attila Patócs 1, 2, 3 & Vince Kornél Grolmusz 2, 3
1 2nd Department of Medicine, Semmelweis University, Budapest, Hungary; 2 Endület Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary; 3 Department of Pathology, Semmelweis University, Budapest, Hungary; 4 Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.

Objective
Multiple endocrine neoplasia type 1 (MEN1) is a rare heritable tumor syndrome caused by germline mutations of MEN1 gene affecting mainly the parathyroid, pituitary and pancreas. Phenotype varies widely, even in first-degree relatives. Recently it has been shown that functionally active gastroenteropancreatic neuroendocrine tumors (GEP-NETs), initially frequently diagnosed as sporadic cases, lead to MEN1 diagnosis. Non-functioning tumors are increasingly recognized due to advanced imaging modalities such as endoscopic ultrasound and thus became the most common GEP-NET in MEN1 patients. Contrary to sporadic GEP-NETs, MEN1-associated cases are diagnosed 10 years earlier and their penetrance is as high as 80-90%, reaching nearly that of the parathyroid adenomas. Mutation analysis enables early tumor detection, thus the possibility to prevent serious, even life-threatening morbidities associated with malignant GEP-NET. Our aim was to identify phenotype features predictive for a positive MEN1 genetic test, and by comparing mutation-positive and mutation-negative patients to evaluate the role of MEN1 mutations in phenotype modulation.

Design and methods
Of the 104 probands who fulfilled the criteria of MEN1 mutation analysis, 36 patients with GEP-NET were enrolled in this study. Mutation screening of the MEN1 gene by Sanger sequencing was performed at our national reference laboratory. Clinical data were studied together with laboratory, imaging and histological results. Multiple ligation probe amplification analysis of MEN1 gene and Sanger sequencing of CDKNIB were carried out in clinically suspicious but MEN1-negative cases.

Results
Of 36 GEP-NET patients mutation analysis demonstrated disease-causing mutation in 19 patients. GEP-NET developed significantly earlier in mutation-positive patients; more than half of them appeared under 30 years of age. The prevalence of GEP-NET was also significantly higher at initial presentation in mutation carriers compared to mutation negative patients. The prevalence of GEP-NET under 30 years best predicted a positive MEN1 genetic test. Its prevalence remained significantly higher among mutation carriers during the follow-up. In addition, probands with high-impact mutations (frameshift, nonsense, large deletions), predicted to affect menin function significantly, developed GEP-NETs more frequently compared to low-impact (inframe and missense) mutation carriers.

Conclusions
GEP-NETs appear significantly earlier and more frequently in MEN1-positive patients and best predicted a positive genetic test. MEN1 patients with high-impact mutations were more likely to develop GEP-NETs, revealing a possibly important prognostic consequence regarding genetic counseling.

DO: 10.1530/endoabs.56.P126

P127
Adrenocortical cancer – the effectiveness of mitotane therapy depending on the time of therapy and the therapeutic dose
Kamil Stepiński, Beata Jurecka-Lubieniecka, Barbara Michalik, Sylwia Szpak-Ulecik, Przemysław Soczowski & Barbara Jarząb
Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland.

Introduction
Mitotane-o-p’DOD belongs to insecticides (DDT pesticide contamination), it is the only drug registered by the FDA in treatment in adrenocortical carcinoma (ACC). Treatment effect is controlled by mitotane concentration in the blood. Aim
The aim of the study is to evaluate the effectiveness of mitotane treatment in patients with adrenocortical cancer.

Material and methods
We retrospectively reviewed data on ACC patients (n = 204) treated with o’P’DOD (n = 117) between 2002 and 2017. Finally, a total number of 55 patients was included in the study. In these patients, we analysed a graph of mitotane concentrations during the course of therapy. Therapeutic window of mitotane was set according to the characteristics of the medicinal product (FDA) at 14-20 mg/l.

Patients were divided into two groups. For the study group, the inclusion criterion was to maintain the concentration window of mitotane in the plasma least at 50% of the treatment time. The study group included 17 people (31% of patients). The comparative group group consisted of those who did not reach the therapeutic window, 38 patients (69%). We observed patients from both groups in time one year intervals after the inclusion of mitotane therapy. In the evaluation of the effectiveness of the therapy, we based on the comparison of subsequent CT and MR results according to RECIST criteria. Average duration of treatment was up to 40 months in the first group of patients Average duration of treatment was up to 28 months in the second group of patients.