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Abstract

We prove that if Ik are disjoint blocks of positive integers and nk are inde-
pendent random variables on some probability space (Ω,F ,P) such that nk is
uniformly distributed on Ik, then

N−1/2
N∑
k=1

(sin 2πnkx− E(sin 2πnkx))

has, with P-probability 1, a mixed Gaussian limit distribution relative to the
probability space ((0, 1),B, λ), where B is the Borel σ-algebra and λ is the
Lebesgue measure. We also investigate the case when nk have continuous uni-
form distribution on disjoint intervals Ik on the positive axis.

1 Introduction

Salem and Zygmund [7] proved that if (nk) is a sequence of positive integers satisfying
the Hadamard gap condition

nk+1/nk ≥ q > 1 (k = 1, 2, . . .) (1.1)

then the sequence sin 2πnkx, k ≥ 1 obeys the central limit theorem, i.e.

N−1/2
N∑
k=1

sin 2πnkx
d−→ N(0, 1/2) (1.2)

with respect the the probability space ((0, 1),B, λ) where B is the Borel σ-algebra and
λ is the Lebesgue measure. The reason for the variance 1/2 of the normal distribution

1) University of Warwick, Systems Biology Centre. Email: a.bazarova@warwick.ac.uk.
2) Alfréd Rényi Institute of Mathematics, Reáltanoda u. 13–15, 1053 Budapest, Hungary. Email:

berkes.istvan@renyi.mta.hu. Research supported by NKFIH Grant K 125569.
3) University of Keele, Research Institute for Primary Care and Health Sciences and Research

Institute for Applied Clinical Sciences. Email: m.raseta@keele.ac.uk.

1



in (1.2) is that
∫ 1

0
sin2 2πnkxdx = 1/2. Here the exponential growth condition (1.1)

can be weakened, but as Erdős [3] showed, there exists a sequence (nk) growing faster
than e

√
k such that the CLT (1.2) fails. On the other hand, using random constructions

one can find slowly growing sequences (nk) satisfying (1.2). Salem and Zygmund [8]
proved that if ξ1, ξ2, . . . are independent random variables on some probability space
(Ω,F ,P) taking the values 0 and 1 with probability 1/2 − 1/2 and (nk) denotes the
set of indices j such that ξj = 1, then with P-probability 1, the CLT (1.2) holds with
respect to ((0, 1),B, λ). For this sequence (nk) we have nk ∼ 2k and by the theorem
of "pure heads" we have nk+1 − nk = O(log k). Berkes [1] showed that if N = ∪∞k=1Ik
where I1, I2, . . . are disjoint intervals of positive integers with sizes |Ik| → ∞, and
n1, n2, . . . are independent random variables on some probability space (Ω,F ,P) such
that nk is uniformly distributed on Ik, then with P-probability 1, sin 2πnkx satisfies
the CLT (1.2). Thus, given any positive sequence ωk →∞, there exists an increasing
sequence (nk) of positive integers such that nk+1−nk = O(ωk) and sin 2πnkx satisfies
(1.2). In [1] the question was raised if the CLT (1.2) can hold for any sequence (nk)

with nk+1−nk = O(1). Bobkov and Götze [2] showed that the answer to this question
is negative, and in particular, if in the construction in [1] we choose |Ik| = d for
k = 1, 2, . . ., then with probability 1, the limit distribution of N−1/2

∑N
k=1 sin 2πnkx

is mixed normal. On the other hand, Fukuyama [4] showed, using another type of
random construction, that for any 0 < σ2 < 1/2 there exists a sequence (nk) of
integers with bounded gaps nk+1 − nk such that (1.2) holds with a limiting normal
distribution with variance σ2. The purpose of the present paper is to return to the
random models in [1], [2] and investigate the case of constant block sizes |Ik| = d,
allowing arbitrary gaps between the blocks. We will prove the following result.

Theorem 1. Let I1, I2, . . . be disjoint blocks of consecutive positive integers with size d
and let n1, n2, . . . be a sequence of independent random variables on a probability space
(Ω,F ,P) such that nk is uniformly distributed over Ik. Let λk(x) = E(sin 2πnkx).
Then P-almost surely

1√
N

N∑
k=1

(sin 2πnkx− λk(x))
d−→ N(0, g) (1.3)

over the probability space ((0, 1),B, λ), where

g(x) =
1

2

(
1− sin2 dπx

d2 sin2 πx

)
(1.4)

and N(0, g) denotes the distribution of √gζ, where ζ is a standard normal random
variable on ((0, 1),B, λ), independent of g.

Here g ≥ 0 and it is easily seen thatN(0, g) has characteristic function
∫ 1

0
e−g(x)t

2/2dx.
Clearly, N(0, g) is a variance mixture of zero mean Gaussian distributions.

Note that
N∑
k=1

λk(x) = E

(
N∑
k=1

sin 2πnkx

)
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is the averaged version of
∑N

k=1 sin 2πnkx, a nonrandom trigonometric sum and The-
orem 1 states that the fluctuations of the random trigonometric sum

∑N
k=1 sin 2πnkx

around its nonrandom average always have a mixed normal limit distribution. Note
that

∣∣∣∑N
k=1 sin 2πnkx

∣∣∣ = O(1) as N → ∞ for any fixed x and thus if ∪∞k=1|Ik| = N,
i.e. there are no gaps between the blocks Ik, then

∑n
k=1 λk(x) = O(1) for any fixed

x. Thus in this case (1.3) holds without the λk(x), yielding the result of Bobkov and
Götze [2]. Letting ∆k denote the number of integers between Ik and Ik+1 (the "gaps"),
we will see that the CLT (1.3) also holds with λk(x) = 0 if ∆k is nondecreasing and
∆k = O(kγ) for some γ < 1/4. If ∆k grows exponentially, then so does the sequence
(Ak), where Ak denotes the smallest integer of Ik. Now

λk(x) =
sin dπx

d sin πx
sin 2π(Ak + d/2− 1/2)x (1.5)

and from the CLT of Salem and Zygmund [7] it follows easily that the limit distribution
of N−1/2

∑N
k=1 λk(x) over ((0, 1),B, λ) is N(0, g∗), where

g∗(x) =
sin2 dπx

2d2 sin2 πx
. (1.6)

By Theorem 1, the limit distribution of N−1/2
∑N

k=1(sin 2πnkx − λk(x)) is N(0, g)

with g in (1.4) and the convolution of these two mixed Gaussian laws is N(0, 1/2),
which is exactly the limit distribution of N−1/2

∑N
k=1 sin 2πnkx by the theorem of

Salem and Zygmund, since (nk) grows exponentially. Thus the pure Gaussian limit
distribution of N−1/2

∑N
k=1 sin 2πnkx is obtained as the convolution of two mixed

Gaussian distributions N(0, g) with g in (1.4) and N(0, g∗) with g∗ in (1.6).
It is worth noting that for any fixed x ∈ (0, 1), sin 2πnkx−λk(x) are independent,

uniformly bounded mean zero random variables on (Ω,F ,P) and

E(sin 2πnkx− λk(x))2 = E(sin2 2πnkx)− λ2k(x)

=
1

d

∑
j∈Ik

sin2 2πjx−

(
1

d

∑
j∈Ik

sin 2πjx

)2

= g(x)

by elementary calculations. Thus by the law of the iterated logarithm we have for
any fixed x ∈ (0, 1) with P-probability 1

lim sup
N→∞

1√
2N log logN

N∑
k=1

(sin 2πnkx− λk(x)) =
√
g(x). (1.7)

By Fubini’s theorem, with P-probability 1 relation (1.7) holds for almost every x ∈
(0, 1) with respect to Lebesgue measure, yielding the LIL corresponding to (1.3). Ac-
tually, the previous argument also shows that for any fixed x ∈ (0, 1) we have (1.3)
over the probability space (Ω,F ,P), with N(0, g) replaced by N(0, g(x)). However,
Fubini’s theorem does not work for distributional results and thus we cannot inter-
change the role of x ∈ (0, 1) and ω ∈ Ω and we will need an elaborate argument in
Section 2 to prove Theorem 1.
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Formula (1.4) shows that for any 0 < x < 1 the function g(x) = gd(x) satisfies
limd→∞ gd(x) = 1/2 and thus for large d the sequence sin 2πnkx−λk(x) nearly satisfies
the ordinary CLT and LIL with limit distribution N(0, 1/2) and limsup = 1/

√
2, just

as lacunary trigonometric series with exponential gaps. Formally, this is not surprising
since for large d the expected gaps E(nk+1 − nk) in our sequence are large. As the
pictures of g for d = 3 and d = 10 below show, however, the near CLT and LIL
actually hold for relatively small values of d such as d = 10. Thus the reason for the
near CLT and LIL is not solely large gaps in the the sequence (nk) but the random
fluctuations of the sequence (nk) as well.

The analogue of Theorem 1 is valid also in the case when n1, n2, . . . have continuous
uniform distribution over the intervals I1, I2, . . .. To formulate the result, define the
probability measure µ on the Borel sets of R by

µ(A) =
1

π

∫
A

(
sinx

x

)2

dx, A ⊂ R.

Theorem 2. Let n1, n2, . . . be a sequence of independent random variables on a
probability space (Ω,F ,P) such that nk has continuous uniform distribution on the
interval [Ak, Ak +B], where Ak+1−Ak ≥ B+ 2, k = 1, 2, . . .. Let λk(x) = E(sinnkx).
Then P-almost surely

1√
N

N∑
k=1

(sinnkx− λk(x))
d−→ F (1.8)

with respect to the probability space (R,B, µ), where the characteristic function of F is

φ(λ) =

+∞∫
−∞

exp

(
−λ

2

4

(
1− 4 sin2(Bx/2)

B2x2

))
dµ(x). (1.9)

2 Proofs

We will give the proof of Theorem 2, where the calculations are slightly simpler. Let

ϕk(x) = sinnkx− E(sinnkx)
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and

TN =
1√
N

N∑
k=1

ϕk(x).

By Ak+1 − Ak ≥ B + 2 and the fact that
+∞∫
−∞

cosαx

(
sinx

x

)2

dx = 0 for |α| > 2 (2.10)

(see e.g. Hartman [5]) it follows that for every fixed ω ∈ Ω the functions ϕk are
orthogonal over L2

µ(R) and thus elementary algebra shows that the L2
µ(R) norm of

|TM − TN3| is at most C/
√
N for N3 ≤ M ≤ (N + 1)3 with an absolute constant C.

Hence to prove (1.8) it suffices to show that TN3
d−→ F P-a.s.

A simple calculation shows that

λk(x) = E(sinnkx) =
1

B

∫ Ak+B

Ak

sin txdt =
1

Bx
(cosAkx− cos(Ak +B)x)

=
2 sin(Bx/2)

Bx
sin (Ak +B/2)x (2.11)

and

E(cos 2nkx) =
1

B

∫ Ak+B

Ak

cos 2txdt =
sinBx

Bx
cos(2Ak +B)x.

Thus

Eϕ2
k(x) = E(sin2 nkx)− λ2k(x) =

1

2
(1− E(cos 2nkx))− λ2k(x)

=
1

2
− sinBx

2Bx
cos(2Ak +B)x− 4 sin2(Bx/2)

B2x2
sin2(Ak +B/2)x

=

(
1

2
− 2 sin2(Bx/2)

B2x2

)
+

(
2 sin2(Bx/2)

B2x2
− sinBx

2Bx
−
)

cos(2Ak +B)x.

From (2.10), Ak+1 − Ak ≥ B + 2 and elementary trigonometric identities it follows
that the functions cos(2Ak +B)x are orthogonal in L2

µ(R) and thus the Rademacher-
Menshov convergence theorem implies that

∑∞
k=1 k

−1 cos(2Ak + B)x converges µ-
almost everywhere. Consequently, the Kronecker lemma implies

lim
N→∞

1

N

N∑
k=1

cos(2Ak +B)x = 0 µ− a.e.

and thus

lim
N→∞

1

N

N∑
k=1

Eϕ2
k(x) =

1

2

(
1− 4 sin2(Bx/2)

B2x2

)
µ− a.e.

Since ϕ2
k(x) − Eϕ2

k(x), k = 1, 2, . . . are independent, uniformly bounded, zero mean
random variables for any fixed x, the strong law of large numbers yields

lim
N→∞

1

N

N∑
k=1

(ϕ2
k(x)− Eϕ2

k(x)) = 0 P− a.s.
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and thus we conclude that for µ-a.e. x we have P-almost surely

lim
N→∞

1

N

N∑
k=1

ϕ2
k(x) =

1

2

(
1− 4 sin2(Bx/2)

B2x2

)
. (2.12)

By Fubini’s theorem, P-almost surely the last relation holds for µ-almost all x ∈ R.
Fix λ ∈ R. Using |ϕk(x)| ≤ 2 and

exp(z) = (1 + z) exp

(
z2

2
+ o(z2)

)
z → 0

we get

exp

(
iλ√
N
ϕk(x)

)
=

(
1 +

iλ√
N
ϕk(x)

)
exp

(
−λ

2ϕ2
k(x)

2N
+ o

(
λ2ϕ2

k(x)

N

))
as N → ∞, uniformly in x and the implicit variable ω ∈ Ω. Thus the characteristic
function

φTN (λ) =

∫ ∞
−∞

exp

(
iλ√
N

N∑
k=1

ϕk(x)

)
dµ(x) =

∫ ∞
−∞

exp

(
iλ√
N

N∑
k=1

ϕk(x, ω)

)
dµ(x)

of TN with respect to the probability space (R,B, µ) can be written as

φTN (λ) =

+∞∫
−∞

N∏
k=1

(
1 +

iλ√
N
ϕk(x)

)

× exp

(
−(1 + o(1))

λ2

2N

N∑
k=1

ϕk
2(x)

)
1

π

(
sinx

x

)2

dx.

For simplicity let

ĝ(x) =
1

2

(
1− 4 sin2(Bx/2)

B2x2

)
.

Using 1 + x ≤ ex and |ϕk(x)| ≤ 2 we get∣∣∣∣∣
N∏
k=1

(
1 +

iλ√
N
ϕk(x)

)∣∣∣∣∣ =
N∏
k=1

(
1 +

λ2

N
ϕk

2(x)

)1/2

≤ exp

(
λ2

2N

N∑
k=1

ϕk
2(x)

)
≤ e2λ

2

(2.13)

and thus the dominated convergence theorem and (2.12) imply P-almost surely

φTN (λ) =

+∞∫
−∞

N∏
k=1

(
1 +

iλ√
N
ϕk(x)

)
exp

(
−λ2ĝ(x)/2

) 1

π

(
sinx

x

)2

dx+ o(1).
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Since the characteristic function φ(λ) of F in (1.8) is given by (1.9), to prove that
TN3

d−→ F P-a.s., it remains to show that letting

ΓN =

+∞∫
−∞

[
N∏
k=1

(
1 +

iλ√
N
ϕk(x)

)
− 1

]
exp

(
−λ2g(x)/2

) 1

π

(
sinx

x

)2

dx,

we have
ΓN3

P-a.s.−−−→ 0.

Clearly

E|ΓN |2 = E
+∞∫
−∞

+∞∫
−∞

[
N∏
k=1

(
1 +

iλ√
N
ϕk(x)

)
− 1

][
N∏
k=1

(
1− iλ√

N
ϕk(y)

)
− 1

]
× exp

(
−λ2g(x)/2

)
exp

(
−λ2g(y)/2

)
dµ(x)dµ(y). (2.14)

Now using the independence of the ϕk and Eϕk(x) = Eϕk(y) = 0 we get

E

[
N∏
k=1

(
1 +

iλ√
N
ϕk(x)

)
− 1

][
N∏
k=1

(
1− iλ√

N
ϕk(y)

)
− 1

]

= E

[
N∏
k=1

(
1 +

iλ√
N
ϕk(x)

)(
1− iλ√

N
ϕk(y)

)]
− 1

= E

[
N∏
k=1

(
1 +

iλ√
N
ϕk(x)− iλ√

N
ϕk(y) +

λ2

N
ϕk(x)ϕk(y)

)]
− 1

=
N∏
k=1

(
1 +

λ2

N
Ψk(x, y)

)
− 1,

where Ψk(x, y) = Eϕk(x)ϕk(y). Thus interchanging the expectation with the double
integral in (2.14) we get

E|ΓN |2 =

+∞∫
−∞

+∞∫
−∞

[
N∏
k=1

(
1 +

λ2

N
Ψk(x, y)

)
− 1

]
×

× exp
(
−λ2g(x)/2− λ2g(y)/2

)
dµ(x)dµ(y)

≤
+∞∫
−∞

+∞∫
−∞

∣∣∣∣∣
N∏
k=1

(
1 +

λ2

N
Ψk(x, y)

)
− 1

∣∣∣∣∣ dµ(x)dµ(y).

Using |Ψk(x, y)| ≤ 4 and | log(1 + x) − x| ≤ Cx2 for all |x| ≤ 1 and some constant
C > 0, one deduces for all sufficiently large N ,∣∣∣∣∣log

N∏
k=1

(
1 +

λ2

N
Ψk(x, y)

)
−

N∑
k=1

λ2

N
Ψk(x, y)

∣∣∣∣∣ ≤ 16Cλ4

N
.
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Thus letting

GN(x, y) :=
N∑
k=1

λ2

N
Ψk(x, y)

we get, using GN(x, y) ≤ 4λ2, that

N∏
k=1

(
1 +

λ2

N
Ψk(x, y)

)
= exp

{
GN(x, y) +O(λ4/N)

}
= 1 +O(|GN(x, y)|) +O(1/N).

Thus

E|ΓN |2 ≤ C1

 1

N
+

+∞∫
−∞

+∞∫
−∞

|GN(x, y)| dµ(x)dµ(y)

 (2.15)

for some constant C1. In view of Ak+1 − Ak ≥ B + 2 and (2.10), for any λ1 ∈
[Ak, Ak + B], λ2 ∈ [Al, Al + B], k 6= l, sinλ1x and sinλ2x are orthogonal in L2

µ(R),
which implies that ϕk and ϕ` are also orthogonal in L2

µ(R). Since Ψk(x, y)Ψl(x, y) =

Eϕk(x)ϕl(x)ϕk(y)ϕl(y), it follows that

+∞∫
−∞

+∞∫
−∞

Ψk(x, y)Ψl(x, y)dµ(x)dµ(y) = 0 for k 6= l

and thus by the Cauchy-Schwarz inequality the last integral in (2.15) is O(N−1/2).
Hence E|ΓN |2 = O(N−1/2) and thus

∑
N∈N

E|ΓN3|2 <∞, implying
∑
N∈N
|ΓN3 |2 <∞ and

ΓN3 → 0 P-a.s., completing the proof of (1.8). The proof of Theorem 1 is essentially
the same, with routine changes which we omit.

In conclusion we prove the claim made after Theorem 1, namely that if the size of
the gaps ∆k between the blocks Ik is nondecreasing and satisfies

∆k = O(kγ), γ < 1/4 (2.16)

then

N−1/2
N∑
k=1

λk(x) −→ 0 a.s.

and thus (1.3) holds with λk(x) = 0. Since we proved our main limit theorem in the
continuous case of Theorem 2, we prove our claim also in the context of Theorem 2
in which case we also assume that the intervals [Ak, Ak + B] have integer endpoints.
In view of (2.11) it suffices to show that

N−1/2
N∑
k=1

eiAkx −→ 0 a.s. (2.17)

and here nothing changes if we replace x by 2πx. In the case of constant ∆k we have
Ak = Dk +D∗ for some constants D > 0 and D∗ and (2.17) is obvious by an explicit
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computation of the sum. Thus we can assume ∆k ↑ ∞, and then also Ak+1−Ak ↑ ∞.
Recalling that the Ak are integers, let us break the sum

∑N
k=1 e

2πiAkx into subsums

ZN,r =
∑

k≤N,Ak+1−Ak=r

e2πiAkx, r = 1, 2, . . . . (2.18)

Clearly ZN,r consists of Mr consecutive terms of
∑N

k=1 e
2πiAkx for some Mr ≥ 0 and

thus in the case Mr ≥ 1 we have for some integer Pr ≥ 0,

|ZN,r| =

∣∣∣∣∣
Mr−1∑
j=0

e2πi(Pr+jr)x

∣∣∣∣∣ =

∣∣∣∣∣
Mr−1∑
j=0

e2πijrx

∣∣∣∣∣ ≤ 1

|e2πirx − 1|
≤ C

〈rx〉
,

except when rx is an integer, where C is an absolute constant and 〈t〉 denotes the
distance of t from the nearest integer. From a well known result in Diophantine
approximation theory (see e.g. Kuipers and Niederreiter [6], Definition 3.3. on p. 121
and Exercise 3.5 on page 130), for every ε > 0 and almost all x in the sense of Lebesgue
measure we have 〈nx〉 ≥ cn−(1+ε) for some constant c = c(x) > 0 and all n ≥ 1. This
shows that ZN,r = O(r1+ε) a.e. and since by (2.16) the largest r actually occurring in
breaking

∑N
k=1 e

2πiAkx into a sum of ZN,r’s is at most C1N
γ, we have∣∣∣∣∣

N∑
k=1

e2πiAkx

∣∣∣∣∣ ≤ C2

∑
r≤C1Nγ

r1+ε = o(
√
N) a.e.

by γ < 1/4, upon choosing ε small enough.
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