
A Little Less Interaction, A Little More Action:
A Modular Framework for Network Troubleshooting

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2017 • VOLUME IX • NUMBER 3 1

A Little Less Interaction, A Little More Action:
A Modular Framework for Network

Troubleshooting
István Pelle, Felicián Németh and András Gulyás

1

A Little Less Interaction, A Little More Action:
A Modular Framework for Network

Troubleshooting
István Pelle, Felicián Németh, András Gulyás

Abstract—Requirements of an ideal network troubleshooting
system dictate that it should monitor the whole network at once,
feed results to a knowledge-based decision making system and
suggest actions to operators or correct the failure, all these
automatically. Reality is quite the contrary, though: operators
separated in their cubicles try to track down complex networking
failures in their own way, which is generally a long sequence of
manually edited parallel shell commands calling rudimentary
tools. This process requires operators to be “masters of com-
plexity” (which they often are) and continuous interaction. In
this paper we aim at narrowing this huge gap between vision
and reality by introducing a modular framework capable of
(i) formalizing troubleshooting processes as the concatenation
of executable functions [called troubleshooting graphs (TSGs)],
(ii) executing these graphs via an interpreter, (iii) evaluating and
navigating between the outputs of the functions and (iv) sharing
troubleshooting know-hows in a formalized manner.

Index Terms—Computer networks, troubleshooting, decision
support.

I. INTRODUCTION

TROUBLESHOOTING a communication network was
never an easy problem. Finding causes of errors and

failures, tracking down misconfigurations in the increasingly
complex interconnection networks of heterogeneous network-
ing devices is quite a challenge. What is more, the prevalence
of increasingly complex software components, due to the
upcoming software defined networks (SDNs), adds distributed
software debugging as an additional issue to deal with. To
cope with this increasing complexity, the networking research
community suggests the use of knowledge-based decision
support together with the standard network monitoring and
diagnostic tools, and the conversion of troubleshooting into
a highly automated process. Reality seems to reside very far
away from this vision. Real operators tend to use the most
basic diagnostic tools for monitoring the network, and rely on
their own brilliance and programming skills when digging out
the root causes of errors in an ad-hoc manner from the reports
of these tools. Even if this approach works well in practice, it

I. Pelle and F. Németh are with Budapest University of Technology and
Economics, Hungary, with HSNLab, Dept. of Telecommunications and Media
Informatics. e-mail: {pelle, nemethf}@tmit.bme.hu

A. Gulyás is with Budapest University of Technology and Economics,
Hungary, with HSNLab, Dept. of Telecommunications and Media Informatics
and with MTA-BME Information Systems Research Group and was supported
by the János Bolyai Fellowship of the Hungarian Academy of Sciences. e-
mail: gulyas@tmit.bme.hu

The research leading to these results was partly supported by Ericsson
and has received funding from the European Union Seventh Framework
Programme under grant agreement No 619609.

requires extremely skilled operators who can keep in mind all
the details of the network under scrutiny and their continuous
interaction usually is wasted on rummaging in the logs of the
tools used by them.

As we see, the reason for this huge gap between the
ideas and reality is threefold. First, there is no usable, imple-
mentation oriented formal description of the troubleshooting
processes. Second, there is no platform capable of execut-
ing formally defined troubleshooting processes while giving
prompt and systematic access to the outputs of the used
tools. Finally, there is no existing platform that could in-
tegrate existing troubleshooting tools and decision support
methodologies in a flexible manner. In lack of formalism and
integrated execution platform, operators cannot share and re-
use each other’s troubleshooting know-hows in a structured
way, thus knowledge is not accumulated but remains sporadic
as operators treat every specific failure in their own ad-hoc
way.

Based on these observations, our contribution will be three-
fold. First, we propose a formalization of troubleshooting
processes in the form of troubleshooting graphs (TSGs)—
complete with a description language to define them—, which
let operators specify the steps of tracking down network
failures in a structural manner. Once created, TSGs can
make their solutions ready-to-share and re-usable. Second, we
propose a modular execution framework capable of running
TSGs and offering on demand fast semantic navigation among
the outputs of the tools used in the troubleshooting process.
Finally, we present a complete prototype system capable of
defining, executing and analyzing TSGs.

The rest of our paper is structured as follows: in Section II
we give a brief overview on the related work in both literature
and practice. Section III lists the principles of our proposed
modular troubleshooting framework, followed by the illustra-
tion of its operation over an SDN example in Section IV and
an example for traditional networks in Section V. Section VI
presents the fundamentals of our prototype, Epoxide, which
is complemented with a complex illustrative case study in
Section VII. Finally, we conclude the paper and give directions
for future works in Section VIII.

II. STATE OF THE ART IN NETWORK TROUBLESHOOTING

From the great volume of related literature we highlight
here the two main constituents of troubleshooting systems. The
first is clearly the area of network monitoring and diagnostic

A Little Less Interaction, A Little More Action:
A Modular Framework for Network Troubleshooting

SEPTEMBER 2017 • VOLUME IX • NUMBER 32

INFOCOMMUNICATIONS JOURNAL

2

tools, of which main purpose is to seek for symptoms of
specific failures. The palette is very broad here, ranging from
the most basic tools (like ping, traceroute, tcpdump, netstat,
nmap [1] or GNU Debugger (GDB)), through monitoring
protocols (such as SNMP and RMON [1]), configuration
analyzers (e.g. Splat [2]), performance measurement tools
(e.g. iperf [1]) and packet analyzers (like Wireshark), to
the more complex ones, such as NetFlow, HSA [3], [4] and
ATPG [5]. On top of these, SDN specific tools have added a
whole new segment targeting the investigation of specific parts
of the architecture. Tools such as Anteater [6], OFRewind [7],
NetSight [8], VeriFlow [9], NICE [10], SOFT [11], FORT-
NOX [12] and OFTEN [13] all fill a niche in SDN trou-
bleshooting.

One level up, the output symptoms of these tools can be
aggregated and fed into different automatic reasoning solu-
tions. The first representatives of these were created as early
as the second half of the 1980s [14] targeting the discovery
of failures in telecommunication networks. Early on, rule-
based methods were used to resolve issues by using if–then
statements [15]. Later case-based reasoning [16] and model-
based [17] methods were developed. The former utilized a col-
lection of previous cases as a basis for failure analysis, while
the latter used models of structural and functional behavior
to reason about network issues. Fault-symptom graphs [18]
and dependency or causality graphs [19], [20] introduced
the concept of tracking failures using graphs that created
connections between symptoms, detection and root causes.
This concept led to the application of Bayesian networks [21],
[22] where belief—in the most probable failure root cause—
propagation is based on a probabilistic model.

A. What We See in Current Practice

Despite the readily available set of advanced troubleshoot-
ing tools and decision support mechanisms, operators seem
to use the most rudimentary tools (like ping, traceroute,
tcpdump etc.) while they completely rely on their minds
as a knowledge-base. For testing this, we conducted an in-
house survey querying which type of problems local admin-
istrators run into most frequently and what network trou-
bleshooting tools they use most commonly. The results, we
found were completely in accordance with those outlined
in [23]. Most problems were caused by connectivity issues
that arose from a variety of reasons ranging from hardware
failures to configuration changes that became necessary due
to security issues. Used troubleshooting tools show similarities
also: mostly simple task specific tools are utilized, in certain
cases combining them in a script to explore typical failures.
Network information is usually stored in simple spreadsheets
and proprietary monitoring or troubleshooting tools are used
only when they have a low cost—or are preferably free. We
found that automatic tools are less frequently used and manual
troubleshooting dominates problem solving.

To get a deeper sense of the process, imagine the following
scenario: an operator wants to monitor certain traffic flows
in an SDN network and analyze whether these flows comply
with certain criteria. By applying manual troubleshooting

using multiple shells, our fictional operator has to connect
to different devices—SDN switches and hosts—run software
tools to extract traffic data and then filter these to obtain
the flows. This process relies on the application of repetitive
tasks—login and invocation of specific tools—and analyzing
textual data. This process poses four main problems. (i) When
historical data is needed, the tools cannot be closed, thus they
quickly overpopulate the working environment. (ii) While the
process is extremely flexible—as operators use tools of their
choosing in the way and logic they see fit—, processing the
data quickly becomes overwhelming and inefficient without
computerized help. (iii) There is no clear way that the pro-
cess—the steps to be taken—can be recorded and later reused
in a flexible enough manner. (iv) The process is unorganized,
thus operators’ time is spent mostly on filtering and finding
the correlation between the different outputs and keeping in
mind the mapping between different shells and devices.

III. DESIGN PRINCIPLES OF A MODULAR FRAMEWORK
FOR NETWORK TROUBLESHOOTING

Instead of proposing a new troubleshooting tool or another
decision support mechanism, we suggest here a framework1

capable of combining existing (and future) special-purpose
tools and reasoning methodologies in a modular fashion. Our
concept builds on the observation that operators combine
different troubleshooting tools to find out the root cause of
a network issue. In the following sections, we go through
the main notions that we use to describe such troubleshooting
processes and the fundamentals of our framework capable of
executing troubleshooting graphs (TSGs).

A. Nodes: Wrappers Around Troubleshooting Tools

First we define an abstraction that incorporates the basic
elements of a troubleshooting process: nodes are wrappers
around troubleshooting tools or smaller, processing functions.
These are considered as black boxes hiding their internal
operation from the outside (see Fig. 1). Operators have three
types of interfaces for communicating with nodes. On inputs
they execute operations (e.g. a text stream to process or
clock ticks). Configuration arguments relay static parameters.
Finally, outputs relay the exact output of the wrapped tool or
provide extra processing before generating results.

Three stages make up the life cycle of a node. Nodes
enter their initialization stage only once, where environment
setup is performed, including resource allocation and initial
configuration. At the execution stage, nodes read the data
arriving on their inputs and query the wrapped process or
function. Analysis or modification on the wrapped tool’s
output is also performed here. The node is constantly in this
stage when it has been initialized but not yet been terminated.
Finally, the node reaches the termination stage when it is being
stopped. This stage is responsible for clearing up allocated
resources and terminating wrapped processes.

1Our initial research and implementation of a subset of current framework
functionality is discussed in [24].

A Little Less Interaction, A Little More Action:
A Modular Framework for Network Troubleshooting

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2017 • VOLUME IX • NUMBER 3 3

3

Input #0

Input #1
...

Input #n

Output #0

Output #1
...

Output #o

Config #1 Config #2
. . .

Config #m

Wrapped tool

Fig. 1: A conceptual node.

B. Edges: Accessible Data Transfer

We use edges to describe the connections between nodes.
Besides specifying the nodes to connect, the main feature
required from edges is to provide accessibility for node out-
puts: information over the edges is observable and modifiable
on demand by operators. When access is given to edges,
operators can analyze troubleshooting processes on the lowest
levels. By making historical data available on edges, back-
tracking network condition changes becomes feasible during
runtime. Modifiable edges provide the additional benefit of
direct operator interaction with nodes, which is helpful for
instant testing purposes. This method also helps channeling—
otherwise unobtainable—data into our system from the net-
work environment.

C. The Troubleshooting Graph

By leveraging the power of wrapper nodes and accessible
edges, troubleshooting processes can be formalized as TSGs:
series of tools and transformations.

Besides the simple concatenation of nodes, creating
branches is possible through special purpose decision nodes.
These nodes are processing nodes capable of analyzing in-
coming data and matching them against a specific criteria set.
Such nodes can provide generalized decision making apparatus
that can combine results arriving from different nodes and
implement arbitrary decision functions to analyze and evaluate
them.

For a text-based representation of TSGs, we define a simple
Click-inspired [25] description language. Such language fits
perfectly to our concept as we look at nodes as black boxes that
have inputs, outputs and configuration arguments, which the
language supports by default. Port-based explicit node linking
is also a feature that we make good use of. An exemplary TSG
and its definition using the language is given in Section IV.

D. Execution Framework for TSGs

In order to bring the TSG concept closer to implemen-
tation, we designed our execution framework around three
cornerstones. (i) Interpretation: since a TSG is only a formal
description, the framework provides a parser to interpret the
graph. (ii) Execution: the TSG concept describes how to
connect tools to each other but it does not deal with the
problem of when and how a node’s life cycle is managed
and how a node is notified when its inputs are updated.

(iii) Navigation options: the benefit of handling interconnected
troubleshooting tools as a graph is that it creates a natural order
in the troubleshooting process. In order to better manage the
complex information set contained in the graph, the framework
provides different apparatuses to aid observing the execution
state and navigating through the graph.

E. Recommendation System and Knowledge Sharing

The framework provides a recommendation system that
is able to suggest new nodes for operators, based on their
current setup, by searching for similarities in a TSG repository.
Operators can upload their existing TSGs to this repository
hereby promoting knowledge sharing.

IV. AN SDN EXAMPLE USING TSGS

In order to solve our running example from Section II-A,
instead of manually gathering information about the flows,
operators can create a TSG—such as the one shown in Fig. 2—
that automates the process for them.2 They can leverage a
unified interface for accessing different OpenFlow capable
entities by using nodes to interact with different controller
platforms and Open vSwitch (OVS) switches. These nodes are
able to collect dapatapath identifiers (DPIDs) and flow statis-
tics information. Additionally, we created processing nodes for
filtering flow statistics on a flow space3 basis.

In line 1 of the example of Fig. 2, we define nodes
querying DPIDs from the controller4 on a timely basis by
writing expressions that are always terminated by semicolons.
Nodes can be defined by assigning an instance name to a
wrapper node using the :: operator and linked with edges to
other nodes using the -> linking operator. For simplicity, the
instance name can be omitted if the node is not referenced
in the code later on (see the Dpids node). Configuration
arguments follow the node instance assignment in parentheses.
Let’s stop now to have a closer look at the Dpids node. On
its single output, the node relays the DPIDs of the switches
connected to a certain SDN controller, each time it receives
an enabling signal on its single input. The single configuration
argument specifies the location of this controller. In the ini-
tialization stage, the node sets up connection to the controller.
At execution time, it accesses the controller’s specific API to
query the DPID information, while at the termination stage,
the ongoing processes are stopped and the connection to the
controller is closed.

Linking operators always have the list of node outputs on
their left side and the list of inputs on their right side—as
in line 7 of the example. Multiple edges can also be created
between two nodes in a single expression this way. Outputs
and inputs are always referred to with their zero-based indices.
In case only the 0th input or output appears in a linking
expression, one can omit its index, as depicted in line 1. In

2With an appropriate node repository, only the connections need to be
correctly specified among nodes.

3Those flow table entries make up a flow space that match given source
and destination point pairs.

4Nodes accessing POX, Floodlight and OpenDaylight controllers are cur-
rently available.

A Little Less Interaction, A Little More Action:
A Modular Framework for Network Troubleshooting

SEPTEMBER 2017 • VOLUME IX • NUMBER 34

INFOCOMMUNICATIONS JOURNAL

4

O0

Clock
I0 O0

Dpids
I0 O0

O1
...

Function

I0 O0

Flow-stat

I0 O0

Flow-stat

I0 O0

Flow-space-filter

I0 O0

Flow-space-filter

...

I0 O0

O1

O2

Decision

I0 O0

O1

O2

Decision

I0
I1
I2
I3
I4
I5

Notification

I0
I1
I2
I3
I4
I5

Decision-summary

I0

I1
...

Table-view

1 Clock(1) -> Dpids(<controller location>)
2 -> f :: Function(...)
3 -> Flow-stat(...)
4 -> filter1 :: Flow-space-filter(...)
5 -> d1 :: Decision(...)[1]
6 -> n :: Notification(...);
7 d1[2] -> [0]summary :: Decision-summary();
8 filter1 -> table :: Table-view()
9 --> view :: View();

10 f[1] -> Flow-stat(...)
11 -> filter2 :: Flow-space-filter(...)
12 -> d2 :: Decision(...)[1] -> [1]n;
13 d2[2] -> [1]summary --> [1]view;
14 filter2 -> [1]table;
15 ...

Fig. 2: An SDN example: graphical representation of a TSG
querying flow statistics (top), its formal definition (middle) and
the output of the Table-view node displaying the results
(bottom). For brevity, the formal definition is shortened.

our language—unlike in Click—one can connect outputs to
configuration arguments as well, which enables the flexible
dynamic configuration of nodes. This uses the same syntax as
the output–input linking.

After querying the list of DPIDs, the Function node—
that can wrap any preexisting function—splits it and passes the
data to further nodes that query flow statistics—by wrapping
the ovs-ofctl tool—from their assigned switches. With
the addition of flow space filtering nodes, the operator can
select only the flows under scrutiny and display the results
in a table format, as depicted by the bottom part of Fig. 2.
By appending Decision nodes to the filtering nodes, the
operator can make an automatic comparison of the current
state of the switches to a predefined criteria set—that might
come from a formal definition of the network policy or
the controller itself. This could reveal synchronization issues
between the devices or misdirection of the traffic caused by

Listing 1: Formal description of the TSG.
1 ping :: Ping(localhost, <address of the server>);
2 ifconfig :: Ifconfig(localhost);
3 arp :: Arp(localhost, nil, -n);
4 ping-decision :: Decision(...);
5 ifc-decision :: Decision(...);
6 arp-decision :: Decision(...);
7 ping -> ping-decision;
8 ifconfig -> ifc-decision;
9 arp -> arp-decision;

10 ping-decision[1] -> ifconfig;
11 ifc-decision -> Function(ifconfig-get-interfaces,
12 ’input-0)[0, 0]
13 -> [0, -2]arp;
14 ping-decision[2] -> ds :: Decision-summary();
15 ifc-decision[2] -> [1]ds;
16 arp-decision[2] -> [2]ds;

a software failure. The results are then displayed in a table
format using a Decision-summary node—that interprets
decisions by signaling “error” codes with visual aids—and
a Notification node that provides desktop notifications
whenever a test fails. By connecting Gdb nodes—wrapping
the GNU Debugger—with the Decision nodes, the oper-
ator could remotely connect to software switches or to the
controller for an in-depth analysis of the problem.5 (Decision
nodes are only briefly discussed here, see Section VI-B for
more details.)

V. AN EXAMPLE FOR TRADITIONAL NETWORKS

In order to locate errors in a traditional network, a set
of currently used free tools can be applied. In a scenario
where we want to detect different errors, we can chain these
tools together, using TSGs, in such a way that Listing 1
shows. For brevity, we show only the instructions used for
creating a TSG that performs a connection test and if that is
unsuccessful, checks the local machine’s network configura-
tion. This exemplary TSG is not complete (e.g. routes and
firewall rules are not checked6). We use extended wrapper
nodes for the tools, so—on top of their basic functionality—
we assume that Host, Ifconfig and Arp nodes provide
means to exclude specified interfaces from their outputs, the
Traceroute node is able to relay the last hop until which
the traffic is traceable and the Route and Iptables nodes
are capable of displaying only those rules that apply to certain
IP addresses7. Decision nodes in the TSG evaluate the
correctness of given inputs, while the Decision-summary
node creates a human readable interface for them.

In order to perform a connection test between the current
host and a server, we use a wrapper node for the ping tool
in line 1. Lines 2–3 create tests for checking the local host’s
configuration using the ifconfig and arp tools. In order
to automatically evaluate these, we defined three Decision

5A live action demo on a similar, albeit simpler, case can be watched at [26]:
https://www.youtube.com/watch?v=HsiGFR0QirE

6Instructions for creating nodes for those tests, however, would be written
using the same philosophy shown here.

7These assumptions are not unrealistic since wrapper nodes can extend the
wrapped tool’s functionality in such convenient ways.

A Little Less Interaction, A Little More Action:
A Modular Framework for Network Troubleshooting

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2017 • VOLUME IX • NUMBER 3 5

5

Fig. 3: Summarizing a troubleshooting scenario.

nodes. ping-decision checks whether the ping was suc-
cessful. ifc-decision uses a custom function to validate
the interface configuration returned by the ifconfig node.
The arp-decision node performs a simple check to test
whether there are entries in the Address Resolution Protocol
(ARP) cache. These Decision nodes are then connected with
their respective wrapper nodes in lines 7–9. In order to check
the local host’s configuration only when the connection test
was unsuccessful, we need to connect the ifconfig node to
the negative output of the ping-decision node—line 10
implements that. If there are interfaces on the host that are
correctly configured, we need to check whether the host can
register the layer 2 addresses from its network. We defined a
Function node in line 11 in order to retrieve the interface
names from the output of the ifc-decision and fed these
to the Arp node. Finally, we defined a Decision-summary
node in lines 14–16 to display information collected from
every Decision node in a summarizing table.

We executed the extended version of this TSG in a home
networking environment, where a Linux host was connected
to the residential gateway via WiFi connection. A possible
output of the Decision-summary node is shown in Fig. 3.
The node gives the results of the individual decisions in
the TSG as well as an overall evaluation of the current
troubleshooting scenario: connection with the remote server
cannot be established but the configuration of the current host
seems to be fine. The most basic assumption at this point can
be that the problem is caused by either the residential gateway
or it is located at the Internet Service Provider’s side.

These simple examples attest that by using TSGs, we can
achieve a state of automation where operators can recognize
failure modes at a glance by looking at the error codes,
or can further delve into details by navigating through the
outputs of nodes. Using the navigation options provided by the
framework, the operator can walk through the troubleshooting
process in an orderly fashion. Results are going to be displayed
according to the workflow, laid out when setting up the process
of locating the issue.

By offering proper formalization, TSGs—or their
subgraphs—can be reused in similar scenarios with
slight adjustments to the node configuration arguments.
Besides re-usability, TSGs can act as a technique to collect
troubleshooting know-hows. Once a network problem is
uncovered using a TSG, it automatically becomes a guideline
for discovering future similar issues. By collecting a library of
these, operators can greatly decrease problem solution times

and the efficiency of knowledge transfer to new operators
can also increase. If TSGs are not only collected within a
closed environment—i.e. within a company—but are shared
with a greater audience, they can prove to be beneficial for
the whole networking community. If a wide TSG library is
paired with problem descriptions and solutions, new nodes
and test cases can be recommended to an operator, based on
previous cases described by TSGs in the library.

VI. PROTOTYPE

For proofing the concept of our framework, we created
a prototype implementation, named Epoxide, using GNU
Emacs as a platform. Emacs is an extensible, customizable
text editor, its central concept, the buffer, is responsible for
holding file contents, subprocess outputs, providing configu-
ration interfaces, etc. By its extensible nature, Emacs offered
a particularly good platform to build Epoxide upon. Emacs
supports, via its advanced text manipulation and documenta-
tion functions, writing TSG definitions that we store in .tsg
configuration files. We implemented our execution framework
and wrapper nodes using Emacs’s own Lisp dialect, Emacs
Lisp. Nodes and their outputs are assigned to Emacs buffers
for observability. Node interface and connection information
is stored in buffer local variables. We note that while Emacs
proved to be a good fit for our notions, the concept described
in Section III can be implemented on other platforms as well.

A. Framework Functions

Epoxide provides two methods to create TSGs. The first
option is building the graph by interpreting its definition
written in our description language. Opening a .tsg file in
Emacs automatically loads Epoxide and interprets the TSG
stored in it. Using this method, graphs can be saved and
later reused and shared. Since we added self-documenting
capabilities to nodes and leveraged functionality provided by
Emacs’s ElDoc package, the framework offers hints on node
interfaces during TSG definition. Syntax highlighting helps to
differentiate semantic units at this stage and when Emacs’s
Auto Complete package is installed, it can provide intelligent
code completion for setting up nodes. At first, the parser
collects the nodes, their configuration arguments and the links
between the nodes. The framework assigns unique names to
node objects and outputs and maps these to buffers where
nodes can write directly during their execution stage. This
method can also be used to modify TSGs by way of editing
the .tsg file and reevaluating it. A downside is that buffer
contents prior to the modification get lost.

As a second option, we provide a method for incrementally
building TSGs at run time using a drag and drop method.
This method has the benefit that operators can monitor the
output of the used tools and adjust their methodology to the
results they have acquired until that point (which is fully in line
with current practice). The parser creates the objects for the
nodes and interconnections, and commits these to the .tsg
file. Run-time modification of the graph—node reconfiguration
and relinking—is provided by this functionality as well via an
Emacs widget based interface. These two methods can be used

Ethernet with Time Sensitive Networking Tools
for Industrial Networks

SEPTEMBER 2017 • VOLUME IX • NUMBER 36

INFOCOMMUNICATIONS JOURNAL

6

Output changed Query
connected nodes

Scheduler

Execute node

Fig. 4: Scheduling of node execution.

in conjunction and offer flexibility while retaining the benefit
of being able to store troubleshooting scenarios.

Once TSG execution is started, the framework takes care of
node events, as depicted in Fig. 4. A scheduler is created—
using the timerfunctions package—that handles a queue for
registering node output changes. Each time an output has
changed, the framework queries which nodes have that as their
input. These destination nodes are then inserted to the end of
the queue. Parallel to this, a simple scheduling mechanism is
running that always takes the first item from the beginning of
the queue and sends a signal to that node to enter into the
execution stage. When the call returns, the scheduler moves
to the next node in line and so on.

Basic navigability among the created buffers is provided
by Emacs key bindings. Epoxide supplies the apparatus to
move from one node buffer to its output buffers or to the
next node’s buffer (in forward or backward direction). To
traverse a TSG, a visualization can be used also, supported
by the Emacs COGRE package. When the Graphviz external
software is installed, the displayed graph can be drawn using
an automatic layout for better visual clarity. Semantic grouping
of the created buffers is provided using the Ibuffer package:
a dynamic list is displayed that aggregates buffers based on
their types and roles in the current context. Custom grouping of
buffers is also available via a special node class, a View, that
can collect nodes or their outputs and display them together.

The current implementation of Epoxide provides a module
for collecting TSG related data and supplying node recommen-
dations. We created the instrumentation for basic case-based
reasoning where currently available TSGs are considered as
descriptions of previous troubleshooting cases. These TSGs
are indexed and their data—together with information from the
current TSG—is passed to a recommender. The recommender
then can suggest nodes based on these pieces of data. We
created an interface in the framework to which recommenders,
developed by third parties, can connect as well. By now, we
have implemented the most basic recommender that suggests
the most popular nodes and displays them using Emacs’s Ido
package. Most popular nodes are computed by counting every
node in all previously written TSGs and ordering them in
the descending order of their cumulative count. Nodes that
are already used in the current TSG, are excluded from the
suggestion list.

B. Branching Nodes

When creating the apparatus that enables conditional
branching in Epoxide, the most basic expectation was to
(i) provide functionality to analyze and evaluate the output
of any node and, based on the result, (ii) create branches

Tool 1

. . .

Tool n

Verify input 0

. . .

Verify input n
C

om
bine

or
select

Positive output

Negative output

Status output

Decision node

Fig. 5: Schematics of a Decision node.

in a TSG, the same way a decision would in a flow chart.
Additionally, we wanted to have the ability to (iii) select
among different inputs or to use a combination of them. This
criterion was inspired by how nodes work in a Bayesian
network: they receive the results of lower level nodes and
calculate their outputs based on that. To satisfy these criteria,
we implemented a single Decision node. Since nodes can
be added to Epoxide in a modular fashion, this is only
one possible implementation that satisfies our initial criteria.
Operators are free to add their own version. A Decision-
summary node was developed in conjunction, for summarizing
the outputs of such nodes.

Fig. 5 shows the schematics of our Decision node. The node
can attach to any wrapper node8 and incoming data is first
verified (as per (i)): compliance with a certain criteria set is
determined. The node can use any function for verification that
has at least one argument (the input) and can return false, when
verification failed, or any string otherwise. When verification
of the inputs is finished, further processing can be done using
a second stage function, in accordance with (iii). An operator
can use a function to select an input with, for example, the or
function: the first of the inputs that passed verification is going
to be the result of this stage. Other functions can implement
more complex processing, like in the aforementioned Bayesian
network example where the result would be a probability
value. Such second stage functions should return a string in
case of a positive decision or false otherwise. We defined
two node outputs to relay these return values (as per (ii)).
The first displays information in the positive case, the second
in the negative. We implemented an additional output for
interoperating with Decision-summary nodes.

C. Implementing Nodes

The modular architecture of Epoxide makes it possible for
anyone to implement new nodes. A node developer—who
implements a node—has to create separate node definition files
that contain Emacs Lisp code to provide self-documentation
for nodes and implement the three life cycle stages via func-
tions. For proper interaction with nodes, the node definition
files and these functions should comply with a fixed naming
scheme. Node self-documentation functions should provide
information about node interfaces and could also implement
validation functions to check the compliance of arguments
with certain criteria. The functions implementing the sepa-
rate node life cycle stages are called by the framework on
specific occasions. The initialization function is evoked after
the buffers belonging to the node are set up. The execution

8The node is also prepared to handle the asynchronism and the different
output formats of the wrapper nodes.

A Little Less Interaction, A Little More Action:
A Modular Framework for Network Troubleshooting

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2017 • VOLUME IX • NUMBER 3 7

7

function is called every time a change occurs on any of the
node’s inputs. Finally, the termination function is invoked
before the framework closes the buffers associated with the
node. These functions can draw on common node functions
provided by the framework. Epoxide implements functions for
setting up node buffers with basic data, reading inputs and
configuration arguments, writing outputs and handling remote
access using Emacs’s Transparent Remote Access, Multiple
Protocols (TRAMP) package.

VII. A CASE STUDY: TROUBLESHOOTING IN SERVICE
FUNCTION CHAINING

One of the main goals of the UNIFY project9 was to
design a Service Function Chaining control plane architecture
and implement a proof-of-concept prototype. Additionally,
the project also introduces the concept of Service-Provider
DevOps to combine the developer and operational workflows
in carrier grade environments. DevOps results in faster deploy-
ment cycle of novel networking services. Instead of designing
complex services as a whole, these services are assembled
from atomic network functions. However, fast deployment
cycles require faster testing phases and troubleshooting in the
operational environment. Even when a new service is created
by re-using components of previous ones, it is still going to
be different enough from earlier scenarios to implicate new
troubleshooting challenges. In these cases, previous knowledge
is not always directly applicable. By providing an integrated
platform for running troubleshooting tools and an apparatus
to automatize their execution, our tool makes the formation
of new troubleshooting scenarios easier, thus enabling quicker
service deployment.

Epoxide has a central role in the multipurpose demonstra-
tor showcasing major results of the project [27]. Using its
dedicated and general purpose wrapper nodes, it orchestrates
multiple components in a semi-automatic troubleshooting sce-
nario. Epoxide needs to reveal a configuration error resulting in
erroneous imbalance of the traffic loads of OpenFlow switches
instantiated as network functions. The novel components,
which Epoxide interacts with, include a flexible messaging
bus (Double Decker), a tool that calculates aggregated per-
formance metrics derived from data queried from hierarchical
time series databases [Recursive Query Engine (RQE)], and
a test packet generator for pinpointing errors in OpenFlow
switches (AutoTPG).10 The use of Epoxide significantly short-
ens the time spent on analyzing network state, compared to a
manual troubleshooting scenario.

Fig. 6 highlights the main system components and the se-
quence of interactions. First, a monitoring component detects
the resource imbalance (this takes a couple of seconds) that
automatically triggers the execution of the troubleshooting
process in Epoxide which executes a TSG tailored for this
scenario (step 1). In step 2, Epoxide asks the Recursive Query
Engine to verify the prevalence of the error. After query-
ing historical measurement data—that takes 1-2 seconds in

9https://www.fp7-unify.eu
10Detailed description of these tools and the demonstrator can be found

in [27].

Epoxide

RQE

AutoTPG

Time Series
Database

Network
Functions

Traffic
Monitoring
Component

Messaging bus (Double Decker)

REST API

REST API

1

2

5

3

4

6

9

7

8

10

Fig. 6: Simplified view of the UNIFY demo architecture and
sequence of interactions.

steps 3–4—RQE notifies Epoxide at step 5. In step 6, Epoxide
starts and configures AutoTPG and asks it to test switches
one by one. AutoTPG tests the correctness of the switches in
steps 7–8 (this test runs in the order of minutes) and returns
the result to Epoxide in step 9. Finally, Epoxide queries the
flow-entries of the erroneous switch (step 10), and presents
those in tabular form to the user to help further investigating
the problem manually. Since Epoxide is responsible for calling
other tools and performing simple analysis on their outputs, it
adds very little reaction time overhead. The complete runtime
of the scenario mostly comprises of the runtime of the used
tools, mainly that of the AutoTPG.

The demo TSG contains a wrapper node for the mes-
saging bus, but communicates with the other tools via
Rest-api nodes that use JSON-formatted inputs and emit
JSON-formatted outputs. We introduced formatting and JSON
filtering nodes in order to assemble and parse these JSON
requests and responses. Another general purpose node was
also developed that is able to call any command line tool.
We had good use of this node when running ssh commands
to query and modify the configuration of a remote network
function.

Epoxide exhibits properties that make it an ideal testing and
troubleshooting tool for Service Function Chaining. First, the
TSG language is an enabler of fast hypotheses testing and
small feedback cycles because it allows connecting existing
special purpose troubleshooting tools at an abstract level.
Second, the test generation process can be further shortened
by simply re-using parts of existing .tsg definitions. Finally,
complex decision logics can be based on service-specific mon-
itoring and troubleshooting tools by writing simple wrapper
nodes around these tools.

VIII. CONCLUSION AND FUTURE WORK

While our modular framework proposed here is capable of
flexibly combining various troubleshooting tools for tracking
down networking issues, and the TSG concept enables the ac-
cumulation and sharing of troubleshooting related knowledge,
the current prototype implementation should be extended in
many aspects. Of course, a large library of wrapper nodes
should be added to incorporate more and more troubleshooting
tools. Besides this natural option, we outline here some future
directions, the framework could benefit from.

Although present implementation supports the addition of
new node recommenders, the currently implemented one pro-

A Little Less Interaction, A Little More Action:
A Modular Framework for Network Troubleshooting

SEPTEMBER 2017 • VOLUME IX • NUMBER 38

INFOCOMMUNICATIONS JOURNAL

8

vides only a basic functionality. We consider this a basis to
implement better recommenders. Suggestions could be made
more relevant by taking the environment of the nodes into
consideration and suggesting node configurations as well. The
process could further be supported by using a community-
based repository of TSGs where TSGs can be analyzed and
used for supplying better suggestions.

With the help of an appropriate failure propagation model
and formal description of the network policy, we believe,
TSGs containing network tests and basic evaluations can be
generated with little operator intervention or totally unsuper-
vised. By adding the possibility to create hierarchical TSGs,
Epoxide could create more complex tests that are selected and
configured automatically depending on results acquired from
the network at real time.

REFERENCES

[1] Sloan, J. D., Network Troubleshooting Tools. O’Reilly, 8 2001.
[2] Abrahamson, C., Blodgett, M., Kunen, A., Mueller, N., and Parter, D.,

“Splat: A Network Switch/Port Configuration Management Tool,” in
Proceedings of the 17th Conference on Systems Administration (LISA
2003), 2003.

[3] Kazemian, P., Chan, M., Zeng, H., Varghese, G., McKeown, N., and
Whyte, S., “Real Time Network Policy Checking Using Header Space
Analysis,” in NSDI, 2013, pp. 99–111.

[4] Kazemian, P., Varghese, G., and McKeown, N., “Header Space Analysis:
Static Checking for Networks,” in NSDI, 2012, pp. 113–126.

[5] Zeng, H., Kazemian, P., Varghese, G., and McKeown, N., “Automatic
test packet generation,” in Proceedings of the 8th international confer-
ence on Emerging networking experiments and technologies. ACM,
2012, pp. 241–252.

[6] Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P. B., and
King, S. T., “Debugging the Data Plane with Anteater,” in Proceedings
of the ACM SIGCOMM 2011 Conference, ser. SIGCOMM ’11. New
York, NY, USA: ACM, 2011, pp. 290–301. [Online]. Available:
http://doi.acm.org/10.1145/2018436.2018470

[7] Wundsam, A., Levin, D., Seetharaman, S., Feldmann, A. et al.,
“OFRewind: Enabling Record and Replay Troubleshooting for Net-
works,” in USENIX Annual Technical Conference, 2011.

[8] Handigol, N., Heller, B., Jeyakumar, V., Mazieres, D., and McKeown,
N., “I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in Proc. USENIX NSDI, 2014.

[9] Khurshid, A., Zhou, W., Caesar, M., and Godfrey, P., “Veriflow: verify-
ing network-wide invariants in real time,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 4, pp. 467–472, 2012.

[10] Canini, M., Venzano, D., Peresini, P., Kostic, D., Rexford, J. et al., “A
NICE Way to Test OpenFlow Applications,” in NSDI, vol. 12, 2012, pp.
127–140.

[11] Kuzniar, M., Peresini, P., Canini, M., Venzano, D., and Kostic, D., “A
soft way for openflow switch interoperability testing,” in Proceedings of
the 8th international conference on Emerging networking experiments
and technologies. ACM, 2012, pp. 265–276.

[12] Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., and Gu, G.,
“A security enforcement kernel for openflow networks,” in Proceedings
of the first workshop on Hot topics in software defined networks. ACM,
2012, pp. 121–126.

[13] Kuzniar, M., Canini, M., and Kostic, D., “OFTEN testing OpenFlow
networks,” in Software Defined Networking (EWSDN), 2012 European
Workshop on. IEEE, 2012, pp. 54–60.

[14] Mathonet, R., Van Cotthem, H., and Vanryckeghem, L., “DANTES An
Expert System for Real-Time Network Troubleshooting,” in Proceedings
of the 10th International Joint Conference on Artificial Intelligence,
1987, pp. 527–530.

[15] Hitson, B. L., “Knowledge-Based Monitoring and Control: An Approach
to Understanding the Behavior TCP/IP Network Protocols,” in Sym-
posium proceedings on Communications architectures and protocols,
vol. 18, 1988.

[16] Lewis, L., “A Case-Based Reasoning Approach to the Management of
Faults in Communications Networks,” in Twelfth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, 1993.

[17] Jakobson, G. and Weissman, M., “Real-time telecommunication network
management: extending event correlation with temporal constraints,”
in Proceedings of the fourth international symposium on Integrated
network management IV, 1995, pp. 290–301.

[18] Reali, G. and Monacelli, L., “Definition and performance evaluation of
a fault localization technique for an NGN IMS network,” in IEEE Trans-
actions on Network and Service Management, 2009, p. 6(2):122136.

[19] Lu, J., Dousson, C., Radier, B., and Krief, F., “Towards an Auto-
nomic Network Architecture for Self-healing in Telecommunications
Networks,” in Mechanisms for Autonomous Management of Networks
and Services, vol. 6155, 2010, pp. 110–113.

[20] ——, “A Self-diagnosis Algorithm Based on Causal Graphs,” in The
Seventh International Conference on Autonomic and Autonomous Sys-
tems, 2011.

[21] Charniak, E., “Bayesian networks without tears: making Bayesian net-
works more accessible to the probabilistically unsophisticated,” in AI
Magazine, vol. 12, 1991, pp. 50–63.

[22] Khanafer, R., “Automated diagnosis for UMTS networks using Bayesian
network approach,” in IEEE Transactions on Vehicular Technology,
2008, p. 57:24512461.

[23] Zeng, H., Kazemian, P., Varghese, G., and McKeown, N., “A Survey on
Network Troubleshooting,” 2014.

[24] Pelle, I., Lévai, T., Németh, F., and Gulyás, A., “One tool to rule
them all: A modular troubleshooting framework for SDN (and other)
networks,” in Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, 2015.

[25] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F., “The
Click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263–297, 2000.

[26] Lévai, T., Pelle, I., Németh, F., and Gulyás, A., “Epoxide: A modular
prototype for sdn troubleshooting,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, 2015,
pp. 359–360.

[27] Marchetto, G. and Sisto, R. (editors), “Deliverable D4.3: Updated con-
cept and evaluation results for SP-DevOps,” in eprint arXiv:1610.02387,
2016.

István Pelle received M.Sc. degree in Computer
Engineering at Budapest University of Technology
and Economics, Budapest, Hungary in 2015. Cur-
rently he is pursuing the Ph.D. degree with Budapest
University of Technology and Economics. His re-
search interests include software defined networks
and network troubleshooting.

Felicián Németh received his M.Sc. degree in Com-
puter Science from BME in 2000. He is a research
fellow at the Department of Telecommunications
and Media Informatics of the same university. He
was a member of national research projects and the
EFIPSANS, OPENLAB, UNIFY FP7 EU projects.
His current research interests focus on Software
Defined Networking, congestion control methods
and autonomic computing.

András Gulyás received M.Sc. and Ph.D. degree in
Informatics at Budapest University of Technology
and Economics, Budapest, Hungary in 2002 and
2008 respectively. Currently he is a research fellow
at the Department of Telecommunications and Me-
dia Informatics. His research interests are complex
and self-organizing networks and software defined
networking.

István Pelle received M.Sc. degree in Computer
Engineering at Budapest University of Technology
and Economics, Budapest, Hungary in 2015. Cur-
rently he is pursuing the Ph.D. degree with Buda-
pest University of Technology and Economics. His
research interests include software defined networks
and network troubleshooting.

Felicián Németh received his M.Sc. degree in Com-
puter Science from BME in 2000. He is a research
fellow at the Department of Telecommunications
and Media Informatics of the same university. He
was a member of national research projects and the
EFIPSANS, OPENLAB, UNIFY FP7 EU projects.
His current research interests focus on Software
Defined Networking, congestion control methods
and autonomic computing.

András Gulyás received M.Sc. and Ph.D. degree in
Informatics at Budapest University of Technology and
Economics, Budapest, Hungary in 2002 and 2008
respectively. Currently he is a research fellow at
the Department of Telecommunications and Media
Informatics. His research interests are complex
and self-organizing networks and software defined
networking.

8

vides only a basic functionality. We consider this a basis to
implement better recommenders. Suggestions could be made
more relevant by taking the environment of the nodes into
consideration and suggesting node configurations as well. The
process could further be supported by using a community-
based repository of TSGs where TSGs can be analyzed and
used for supplying better suggestions.

With the help of an appropriate failure propagation model
and formal description of the network policy, we believe,
TSGs containing network tests and basic evaluations can be
generated with little operator intervention or totally unsuper-
vised. By adding the possibility to create hierarchical TSGs,
Epoxide could create more complex tests that are selected and
configured automatically depending on results acquired from
the network at real time.

REFERENCES

[1] Sloan, J. D., Network Troubleshooting Tools. O’Reilly, 8 2001.
[2] Abrahamson, C., Blodgett, M., Kunen, A., Mueller, N., and Parter, D.,

“Splat: A Network Switch/Port Configuration Management Tool,” in
Proceedings of the 17th Conference on Systems Administration (LISA
2003), 2003.

[3] Kazemian, P., Chan, M., Zeng, H., Varghese, G., McKeown, N., and
Whyte, S., “Real Time Network Policy Checking Using Header Space
Analysis,” in NSDI, 2013, pp. 99–111.

[4] Kazemian, P., Varghese, G., and McKeown, N., “Header Space Analysis:
Static Checking for Networks,” in NSDI, 2012, pp. 113–126.

[5] Zeng, H., Kazemian, P., Varghese, G., and McKeown, N., “Automatic
test packet generation,” in Proceedings of the 8th international confer-
ence on Emerging networking experiments and technologies. ACM,
2012, pp. 241–252.

[6] Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P. B., and
King, S. T., “Debugging the Data Plane with Anteater,” in Proceedings
of the ACM SIGCOMM 2011 Conference, ser. SIGCOMM ’11. New
York, NY, USA: ACM, 2011, pp. 290–301. [Online]. Available:
http://doi.acm.org/10.1145/2018436.2018470

[7] Wundsam, A., Levin, D., Seetharaman, S., Feldmann, A. et al.,
“OFRewind: Enabling Record and Replay Troubleshooting for Net-
works,” in USENIX Annual Technical Conference, 2011.

[8] Handigol, N., Heller, B., Jeyakumar, V., Mazieres, D., and McKeown,
N., “I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in Proc. USENIX NSDI, 2014.

[9] Khurshid, A., Zhou, W., Caesar, M., and Godfrey, P., “Veriflow: verify-
ing network-wide invariants in real time,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 4, pp. 467–472, 2012.

[10] Canini, M., Venzano, D., Peresini, P., Kostic, D., Rexford, J. et al., “A
NICE Way to Test OpenFlow Applications,” in NSDI, vol. 12, 2012, pp.
127–140.

[11] Kuzniar, M., Peresini, P., Canini, M., Venzano, D., and Kostic, D., “A
soft way for openflow switch interoperability testing,” in Proceedings of
the 8th international conference on Emerging networking experiments
and technologies. ACM, 2012, pp. 265–276.

[12] Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., and Gu, G.,
“A security enforcement kernel for openflow networks,” in Proceedings
of the first workshop on Hot topics in software defined networks. ACM,
2012, pp. 121–126.

[13] Kuzniar, M., Canini, M., and Kostic, D., “OFTEN testing OpenFlow
networks,” in Software Defined Networking (EWSDN), 2012 European
Workshop on. IEEE, 2012, pp. 54–60.

[14] Mathonet, R., Van Cotthem, H., and Vanryckeghem, L., “DANTES An
Expert System for Real-Time Network Troubleshooting,” in Proceedings
of the 10th International Joint Conference on Artificial Intelligence,
1987, pp. 527–530.

[15] Hitson, B. L., “Knowledge-Based Monitoring and Control: An Approach
to Understanding the Behavior TCP/IP Network Protocols,” in Sym-
posium proceedings on Communications architectures and protocols,
vol. 18, 1988.

[16] Lewis, L., “A Case-Based Reasoning Approach to the Management of
Faults in Communications Networks,” in Twelfth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, 1993.

[17] Jakobson, G. and Weissman, M., “Real-time telecommunication network
management: extending event correlation with temporal constraints,”
in Proceedings of the fourth international symposium on Integrated
network management IV, 1995, pp. 290–301.

[18] Reali, G. and Monacelli, L., “Definition and performance evaluation of
a fault localization technique for an NGN IMS network,” in IEEE Trans-
actions on Network and Service Management, 2009, p. 6(2):122136.

[19] Lu, J., Dousson, C., Radier, B., and Krief, F., “Towards an Auto-
nomic Network Architecture for Self-healing in Telecommunications
Networks,” in Mechanisms for Autonomous Management of Networks
and Services, vol. 6155, 2010, pp. 110–113.

[20] ——, “A Self-diagnosis Algorithm Based on Causal Graphs,” in The
Seventh International Conference on Autonomic and Autonomous Sys-
tems, 2011.

[21] Charniak, E., “Bayesian networks without tears: making Bayesian net-
works more accessible to the probabilistically unsophisticated,” in AI
Magazine, vol. 12, 1991, pp. 50–63.

[22] Khanafer, R., “Automated diagnosis for UMTS networks using Bayesian
network approach,” in IEEE Transactions on Vehicular Technology,
2008, p. 57:24512461.

[23] Zeng, H., Kazemian, P., Varghese, G., and McKeown, N., “A Survey on
Network Troubleshooting,” 2014.

[24] Pelle, I., Lévai, T., Németh, F., and Gulyás, A., “One tool to rule
them all: A modular troubleshooting framework for SDN (and other)
networks,” in Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, 2015.

[25] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F., “The
Click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263–297, 2000.

[26] Lévai, T., Pelle, I., Németh, F., and Gulyás, A., “Epoxide: A modular
prototype for sdn troubleshooting,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, 2015,
pp. 359–360.

[27] Marchetto, G. and Sisto, R. (editors), “Deliverable D4.3: Updated con-
cept and evaluation results for SP-DevOps,” in eprint arXiv:1610.02387,
2016.

István Pelle received M.Sc. degree in Computer
Engineering at Budapest University of Technology
and Economics, Budapest, Hungary in 2015. Cur-
rently he is pursuing the Ph.D. degree with Budapest
University of Technology and Economics. His re-
search interests include software defined networks
and network troubleshooting.

Felicián Németh received his M.Sc. degree in Com-
puter Science from BME in 2000. He is a research
fellow at the Department of Telecommunications
and Media Informatics of the same university. He
was a member of national research projects and the
EFIPSANS, OPENLAB, UNIFY FP7 EU projects.
His current research interests focus on Software
Defined Networking, congestion control methods
and autonomic computing.

András Gulyás received M.Sc. and Ph.D. degree in
Informatics at Budapest University of Technology
and Economics, Budapest, Hungary in 2002 and
2008 respectively. Currently he is a research fellow
at the Department of Telecommunications and Me-
dia Informatics. His research interests are complex
and self-organizing networks and software defined
networking.

