

Editors: Sorin VLASE, György SZEIDL, Michael DEDIU

TRANSILVANIA UNIVERSITY OF BRASOV ROMANIAN ACADEMY OF TECHNICAL SCIENCES

The 5th International Conference Computational Mechanics and Virtual Engineering

"COMEC 2013"

Under Thermique Ecoulement Mécanique Matériaux Mise en Forme Production Patronage

24-25 October 2013, Brasov, Romania

Contents COMEC 2013 Volume 1

1.	A. Coseru, J. Capelle, G. Pluvinage, ON THE USE OF CHARPY	
	TRANSITION TEMPERATURE AS REFERENCE TEMPERATURE FOR	
	THE CHOICE OF A PIPE STEEL	1
2.	Aurora Potirniche, COMPUTATIONAL DYNAMICS OF ELASTOMERIC-	
	BASED ISOLATION SYSTEMS FOR RIGID STRUCTURES 1	11
3.	C. Danasel, MULTIOBJECTIVE AND MULTIDISCIPLINARY	
	STRUCTURAL OPTIMIZATION OF A CONCEPT PART 1	17
4.	C. Drugă, M. Mihai, EX-IN VITRO TESTING OF TOTAL KNEE	
	REPLACEMENTS – FIRST PART	21
5.	C. Drugă, EX-IN VITRO TESTING OF TOTAL KNEE REPLACEMENTS –	
	SECOND PART	25
6.	Camelia Cerbu, MECHANICAL TESTING OF THE COMPOSITE	
	MATERIALS BASED ON POLYPROPYLENE AND ITS APPLICATION	
	IN AUTOMOTIVE PARTS	29
7.	Camelia Gheldiu, Mihaela Dumitrache, THE DISCRETIZATION OF THE	
	LIMIT OF A BOUNDARY VALUE DIFFUSION PROBLEM IN A	
	PERFORATED DOMAIN	33
8.	Cornel Bit, ON FATIGUE CRACKS MECHANICAL BEHAVIOUR	39
9.	Cristina Chilibaru-Oprițescu1, Amalia Țîrdea, Corneliu Bob, THE	
	CHECKING OF THE SEMI-PRECAST R.C. FLOORS	43
10.	Ctirad Novotný, Karel Doubrava, SOME PROBLEMS OF FEM	
	MODELLING OF SANDWICH STRUCTURES	47
11.	D. Stoica, NONLINEAR DYNAMIC ANALYSIS FOR "OD" REPETITIVE	
	BLOCK OF FLATS DESIGN PROJECTS 5	53
12.	D. Stoica, SEISMIC VULNERABILITY, RETROFITTING SOLUTIONS	
	and monitoring FOR EXISTING BUILDINGS	51
13.	D.A. Micu, M.D. Iozsa, Gh. Frățilă, A ROLLOVER TEST OF BUS BODY	
	SECTIONS USING ANSYS	59
14.	Daniel Condurache, Adrian Burlacu, A DUAL VECTORS BASED	
	FORMALISM FOR PARAMETRIZATION OF RIGID BODY	
	DISPLACEMENT AND MOTION	75
15.	Daniela Şova, Bogdan Bedelean, Monica A. P. Purcaru, EFFECTS OF	
	SIMULATED WOOD DRYING SCHEDULES ON DRYING TIME AND	
	ENERGY CONSUMPTION AT AN EXPERIMENTAL KILN	32
16.	Diana Cazangiu, Ileana Rosca, Yves Lemmens, THE APPLYING OF AN	
	AUTOMATIC CONFIGURATION TOOL FOR THE INVESTIGATION OF	
	THE UAV ELECTRICAL NETWORK	38
17.	Diana Cazangiu, Ileana Rosca, THE CURRENT TRENDS IN STRUCTURAL	
	HEALTH MONITORING IN AEROSPACE APPLICATIONS	94
18.	Dumitru D. Nicoara, OPTIMUM DESIGN OF SPINDLE-BEARING	
	SYSTEMS	9 9
19.	Enescu Ioan, ROUGH SURFACE CONTACT - APPLICATION TO	
	BEARINGS	05
20.	Filip Vladimir Edu, Carol Csatlos, THE METHODS OF RESEARCH FOR	
	MECHANICAL SORTING AND SIZING SYSTEMS 10	08

AEROSPACE WELDED STRUCTURES	
	112
G. DIMA, I. BAICU, NOTES ON EVOLUTION OF AIRCRAFT STRUCTURES LATTICED BEAM JOINTS	119
Gabriel Popescu, ON THE OPTIMIZATION OF THREE-DIMENSIONAL	
LINE CONTACTS INCLUDING SKEW AND MISALIGNMENT ANGLES	
FOR CAM-FOLLOWER TYPE CONTACTS	126
Gigel Florin Capatana, COMPLEX CONTINUOUS-LUMPED MODEL FOR	
SIMULATION OF VIBRATORY COMPACTION PROCESS	132
György Szeidl, László Kiss, VIBRATIONS OF HETEROGENEOUS	
CURVED BEAMS SUBJECTED TO A RADIAL FORCE AT HE CROWN	
POINT	138
Horațiu Teodorescu-Draghicescu, Sorin Vlase, STRESSES IN VARIOUS	
COMPOSITE LAMINATES FOR GENERAL SET OF APPLIED IN-PLANE	
LOADS	148
I. MIIOSAN, OPTIMIZATION OF SPECIFIC FACTORS TO PRODUCE	1.5.4
SPECIAL ALLOYS	154
Ildiko Tulbure, BIOFILTER MODELLING FOR ENVIRONMENTAL	1.50
PROTECTION	159
INDUSTRIAL RODOTS WITH MODE (AVES	165
INDUSTRIAL RUDUTS WITH MURE 0 AAES	103
Veturia Chiroju ON THE SONIC COMPOSITES WITH DEFECTS	171
Jázsaf Farkas Károly Jármai MINIMUM COST DESIGN OF A RING	1/1
STIFFENED CVLINDRICAL SHELL LOADED BY EXTERNAL	
PRESSURE	179
Liviu Costiuc EXPERIMENTAL INVESTIGATION ON ENERGY	177
DENSITY OF BIO-FUELS	185
László Daróczy, Károly Jármai, TOPOLOGY OPTIMIZATION BY A	100
QUASI-STATIC FLUID-BASED EVOLUTIONARY METHOD	191
László Kalmár, Béla Fodor, CFD Investigation of the Flows in One-Stage	
Blower Aggregate	197
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica	197
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES	197 203
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION	197 203
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS	197 203
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS	197 203 209
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS Liviu Gaiță, Manuella Militaru, OPTIMIZATION OF AN ARTIFICIAL	197 203 209
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS Liviu Gaiță, Manuella Militaru, OPTIMIZATION OF AN ARTIFICIAL NEURAL NETWORK USED FOR THE PROGNOSTIC OF CANCER	197 203 209
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS Liviu Gaiță, Manuella Militaru, OPTIMIZATION OF AN ARTIFICIAL NEURAL NETWORK USED FOR THE PROGNOSTIC OF CANCER PATIENTS	 197 203 209 214
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS Liviu Gaiță, Manuella Militaru, OPTIMIZATION OF AN ARTIFICIAL NEURAL NETWORK USED FOR THE PROGNOSTIC OF CANCER PATIENTS Luděk Hynčík, Luděk Kovář, TOWARDS PERSONALIZED VEHICLE	197203209214220
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS Liviu Gaiță, Manuella Militaru, OPTIMIZATION OF AN ARTIFICIAL NEURAL NETWORK USED FOR THE PROGNOSTIC OF CANCER PATIENTS Luděk Hynčík, Luděk Kovář, TOWARDS PERSONALIZED VEHICLE SAFETY	 197 203 209 214 220
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS Liviu Gaiță, Manuella Militaru, OPTIMIZATION OF AN ARTIFICIAL NEURAL NETWORK USED FOR THE PROGNOSTIC OF CANCER PATIENTS Luděk Hynčík, Luděk Kovář, TOWARDS PERSONALIZED VEHICLE SAFETY Călin Itu, THEORETICAL ENGINE DESIGN SOLUTION TO MINIMIZE	 197 203 209 214 220 220
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS Liviu Gaiță, Manuella Militaru, OPTIMIZATION OF AN ARTIFICIAL NEURAL NETWORK USED FOR THE PROGNOSTIC OF CANCER PATIENTS Luděk Hynčík, Luděk Kovář, TOWARDS PERSONALIZED VEHICLE SAFETY Călin Itu, THEORETICAL ENGINE DESIGN SOLUTION TO MINIMIZE CONSUMPTION AND POLLUTION	 197 203 209 214 220 226
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS Liviu Gaiță, Manuella Militaru, OPTIMIZATION OF AN ARTIFICIAL NEURAL NETWORK USED FOR THE PROGNOSTIC OF CANCER PATIENTS Luděk Hynčík, Luděk Kovář, TOWARDS PERSONALIZED VEHICLE SAFETY Călin Itu, THEORETICAL ENGINE DESIGN SOLUTION TO MINIMIZE CONSUMPTION AND POLLUTION Mănescu Tiberiu Jr., Gillich Gilbert-Rainer, Mănescu Tiberiu Ștefan, Suciu Cornel EXPERIMENTAL INVESTIGATIONS LIDON CONTACT	 197 203 209 214 220 226
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS Liviu Gaiță, Manuella Militaru, OPTIMIZATION OF AN ARTIFICIAL NEURAL NETWORK USED FOR THE PROGNOSTIC OF CANCER PATIENTS Luděk Hynčík, Luděk Kovář, TOWARDS PERSONALIZED VEHICLE SAFETY Călin Itu, THEORETICAL ENGINE DESIGN SOLUTION TO MINIMIZE CONSUMPTION AND POLLUTION Mănescu Tiberiu Jr., Gillich Gilbert-Rainer, Mănescu Tiberiu Ștefan, Suciu Cornel, EXPERIMENTAL INVESTIGATIONS UPON CONTACT BEHAVIOR OF BALL BEARING BALLS PRESSED ACADIST ELAT	 197 203 209 214 220 226
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS Liviu Gaiță, Manuella Militaru, OPTIMIZATION OF AN ARTIFICIAL NEURAL NETWORK USED FOR THE PROGNOSTIC OF CANCER PATIENTS Luděk Hynčík, Luděk Kovář, TOWARDS PERSONALIZED VEHICLE SAFETY Călin Itu, THEORETICAL ENGINE DESIGN SOLUTION TO MINIMIZE CONSUMPTION AND POLLUTION Mănescu Tiberiu Jr., Gillich Gilbert-Rainer, Mănescu Tiberiu Ștefan, Suciu Cornel, EXPERIMENTAL INVESTIGATIONS UPON CONTACT BEHAVIOR OF BALL BEARING BALLS PRESSED AGAINST FLAT SURFACES	 197 203 209 214 220 226 230
Blower Aggregate Ligia Munteanu, Veturia Chiroiu, Ștefania Donescu, Ruxandra Ilie, Valerica Moșneguțu, ON THE EFFECTIVE MODULI OF SONIC COMPOSITES Liviu Gaiță, Manuella Militaru, Gabriela Popescu, FRACTAL DIMENSION OF CHROMATIN REGIONS IN HISTOLOGICAL PICTURES REVEALS THE PRESENCE OF EPITHELIAL TUMOURS Liviu Gaiță, Manuella Militaru, OPTIMIZATION OF AN ARTIFICIAL NEURAL NETWORK USED FOR THE PROGNOSTIC OF CANCER PATIENTS Luděk Hynčík, Luděk Kovář, TOWARDS PERSONALIZED VEHICLE SAFETY Călin Itu, THEORETICAL ENGINE DESIGN SOLUTION TO MINIMIZE CONSUMPTION AND POLLUTION Mănescu Tiberiu Jr., Gillich Gilbert-Rainer, Mănescu Tiberiu Ștefan, Suciu Cornel, EXPERIMENTAL INVESTIGATIONS UPON CONTACT BEHAVIOR OF BALL BEARING BALLS PRESSED AGAINST FLAT SURFACES Maria Luminita Scutaru Marius Baba MECHANICAL BEHAVIOR OF	 197 203 209 214 220 226 230
	Gabriel Popescu, ON THE OPTIMIZATION OF THREE-DIMENSIONAL LINE CONTACTS INCLUDING SKEW AND MISALIGNMENT ANGLES FOR CAM-FOLLOWER TYPE CONTACTS

42.	Maria Luminita Scutaru, Marius Baba, Janos Timar, FLEXURAL RIGIDITY EVALUATION OF COMPOSITE SANDWICH PANEL OF CARBON- HEMP	2/13
43	Marian N. Velea, Simona Lache, NOVEL IMPACT ATTENUATOR	243
44.	Marian Truță, Marin Marinescu, Valentin Vînturiş, MULTI-SPECTRAL ANALYSIS OF THE SELF GENERATED TORQUE'S SIGNAL WITHIN A	217
45.	Mariana D. Stanciu, Dragos Apostol, Ioan Curtu, EVALUATION OF STRESS AND STRAIN STATES BY FINITE ELEMENT METHOD OF PANOPAMIC STRUCTURE MADE OF PARS AND PLATES	252
46.	Marinică Stan ¹ , Petre Stan, RANDOM OSCILLATIONS OF LIQUID IN THE U-SHAPED PIPE WITH PRONOUNCED RUGOSITY AND THE NON- LINEAR DAMPING FORCE	250
47.	Octavian Stan, Simion Popescu, Carmen Bracacescu, CONTRIBUTION REGARDING THE MANAGEMENT OF EFFICIENT USE OF CROP	202
48.	Petre Stan, Marinică Stan, RANDOM VIBRATION FOR THE DISK-SHAFT	200
49.	V. Roşca, C. Miriţoiu, I. Geonea, Alina Romanescu, COMPARATIVE ANALYSIS OF THE CRACKING RATE FOR A STAINLESS STEEL	271
50	LOADED AT 213K TEMPERATURE.	275
30.	METHOD BY COMPRESSING THIN VENEERS (0,3 - 1,2 MM)	281
51.	Sebastian M. Zaharia, Ionel Martinescu, RELIABILITY AND ENVIRONMENTAL DEGRADATION OF COMPOSITE MATERIALS USING ACCELERATED METHODS	205
52.	Sebastian M. Zaharia, Ionel Martinescu, RELIABILITY AND FATIGUE LIFE PREDICTION OF CYLINDRICAL ROLLER BEARINGS BASED ON EINITE ELEMENTS METHODS	283
53.	Silviu Nastac, Cristian Simionescu, COMPUTATIONAL DYNAMICS OF HELICAL FLEXIBLE COUPLING WITH TRANSITORY CONTINUOUS REGIME	291
54.	Silviu Nastac, ON NONLINEAR EFFECTS DUE TO THERMO- MECHANICAL BEHAVIOUR IN COMPUTATIONAL DYNAMICS OF ELASTOMERIC ISOLATORS	302
55.	Traian Bolfa, THE INFLUENCE OF PRINCIPAL FACTORS WITH WORKING CONDITIONS FOR HIGH SPEED BEARINGS	308
56.	Ungureanu I. Virgil-Barbu, VARIABLE CONDUCTANCE HEAT PIPE MODEL FOR TEMPERATURE CONTROL OF PROCESSES	312
57.	V. Nastasescu, Gh. Barsan, COMPARATIVE NUMERICAL ANALYSIS OF AN ARMOR PLATE LINDER EXPLOSION	318
58.	Vasile Ciofoaia, THE MECHANICAL RESPONSE OF TEXTILE	224
59.	Vasile Ciofoaia, THE STRENGTH OF SIMPLE BELT GUIDE UNDER	324
60.	Venetia S. Sandu, MEASUREMENT OF COEFFICIENTS OF FRICTION OF AUTOMOTIVE LUBRICANTS IN PIN AND VEE BLOCK TEST	330
(1	MACHINE	334
61.	A.O. AIIŞanu, FI. KUS, THE INFLUENCE OF PROCESS PARAMETERS ON MECHANICAL EXPRESSION OF SUNFLOWER OILSEEDS	341

62.	A.O. Arişanu, MECHANICAL CONTINUOUS OIL EXPRESSION FROM	
	OILSEEDS: OIL YIELD AND PRESS CAPACITY.	347
63.	E. Badiu, Gh. Brätucu, RESEARCHES REGARDING THE CAUSES OF	252
64	E Padin Ch Protion DESEADON ON DECRADATION DV CORDOSION	333
04.	OF SOME COMPONENTS OF BUILDINGS ROOFS	357
65	C Bodolan Gh Brătucu HEAT AND LIGHT REOUIREMENTS OF	551
	VEGETABLE PLANTS	361
66.	C. Bodolan, WATER, AIR AND SOIL REQUIREMENTS OF VEGETABLE	
	PLANTS GROWN IN GREENHOUSES.	365
67.	Gh. Brătucu, D.D. Păunescu, SOLAR ENERGY - AN ENERGETIC	
	SOURCE FOR THE VEGETABLE AND FRUIT PRODUCTS DRYING IN	
	BRASOV AREA	369
68.	Gh. Brătucu, I. Căpățînă, D.D. Păunescu, SOIL PRESERVATION	272
(0)	THROUGH THE PERFECTIONING OF ITS BASIC WORKS	373
69.	UVCIENE DILLES IN DAVEDV INDUSTRY	277
70	C M Cania M I Lunu V Pădureanu STUDV ON RHEOLOGICAL	511
70.	BEHAVIOR OF BAKERY DOUGH	383
71	C Csatlós OPTIMIZING THE ENERGY CONSUMPTION TO MOULDS	505
,	OF PALLETING MACHINES OF MIXED FODDERS	388
72.	M. Hodîrnău, E. Mihail, C. Csatlos, ASPECTS OF ANALOG	
	THEORETICAL AND EXPERIMENTAL RESEARCH ON THE	
	DYNAMICS OF CABLE CARS	393
73.	M. Hodîrnău, E. Mihail, C. Csatlos, RESEARCH ON IMPROVING	
	COMFORTABLE CABLE CAR BY LATERAL DAMPING	397
74.	D.C. Ola, D.M. Danila, M.E. Manescu, ENERGY OPTIMIZATION OF	
	SMALL HOUSE PHOTOVOLTAIC PANEL BY INCREASING THE	
	WORKING EFFICIENCY THROUGH ADDITIONAL MIRKORING OF	
	ENERGY FROM THE PHOTOVOLTAIC CELLS	401
75	A N Ormenisan USING AUTOMATIC CONTROL SYSTEMS TO	401
10.	INCREASE DYNAMIC PERFORMANCE AND OPERATING ENERGY	
	PLOUGHING AGGREGATES.	405
76.	V. Pădureanu, M.I. Lupu, C.M. Canja, THEORETICAL RESEARCH TO	
	IMPROVE TRACTION PERFORMANCE OF WHEELED TRACTORS BY	
	USING A SUPLEMENTARY DRIVEN AXLE	410
77.	H.Gh. Schiau, Fl. Rus, ENERGY EFFICIENCY ANALYSIS OF AGARICUS	
-	BISPORUS MUSHROOM PRODUCE IN FELDIOARA-BRASOV	416
78.	H.Gh. Schiau, AN INVESTIGATION OF THE AIRFLOW IN MUSHROOM	400
70	GROWING STRUCTURES FOR MODELLING NEW STRUCTURES	423
19.	CONDUCTED ON A CONSTRUCTIVE-FUNCTIONAL BASIS ON	
	TUBERS DISTRIBUTION SYSTEMS OF POTATO PLANTERS	430
80	Szilard Ilves. Simion Popescu, Mihai Nedelcu, EXPERIMENTAL DEVICE	150
	FOR THE RESEARCHES ON THE PRECISION OF THE TUBERS	
	PLANTING DISTANCE WITHIN THE ROW FOR DIFFERENTS POTATO	
	PLANTERS	435

81.	Anca Elena Stanciu, Diana Cotoros, Ramona Purcarea, Mihaela Violeta	
	TESTED.	440
82.	Anca Elena Stanciu, CONSTRUCTIVE SOLUTION, USING FINITE	-
	ELEMENT METHOD, FOR OPTIMIZATION STRUCTURE OF	
	COMPOSITE MATERIALS	444
83.	Horațiu Teodorescu-Draghicescu, Sorin Vlase, PREDICTION OF ELASTIC PROPERTIES OF SOME SHEET MOLDING COMPOUNDS	448
84.	Cătălin I. Pruncu. THE COMPUTATIONAL MODELLING APPROACH A	
	MULTI-SCALE OVERVIEW	455
85.	Vasile Gheorghe, Costel Bejan, Nicolae Sîrbu, Ioan Lihtețchi, Arina Modrea,	
	POLYMER MATRIX COMPOSITES SUBJECTED TO BENDING	460
86	Maria Violeta Guiman AN APPROACH TO MULTIBODY	100
00.	FORMULATIONS FOR BIOMECHANICAL MODELING.	467
87.	Gheorghe N. Radu, Ioana Sonia Comănescu, THEORETICAL STUDIES	
	AND EXPERIMENTAL RESEARCH FOR THE INCREASE OF THE	
	WORK SAFETY AT GANTRY CRANES	472
88.	Gheorghe N. Radu, Ioana Sonia Comănescu, THEORETICAL STUDIES	
	AND EXPERIMENTAL DETERMINATIONS FOCUSED ON THE	
	INCREASE OF THE GANTRY CRANE'S WORK SAFETY, PART II –	
	PECOMMENDATIONS CONCERNING THE INCREASE OF THE WORK	
	SAFFTY	477
89	L Predescu M Predescu PLANNING THE TRAJECTORY OF THE	• • • •
	SCORBOT-ER VII ROBOT.	483
90.	Mariana D. Stanciu, Ioan Curtu, Dumitru Lica, EVALUATING THE	
	EFFICIENCY OF RECYCLING COMPOSITE PANELS MADE FROM ABS	
	TO REDUCE THE TRAFFIC NOISE	489
91.	Vasile Gheorghe, Costel Bejan, Veneția Sandu, Ioan Lihtețchi, Eugenia	
	Secará, DETERMINATION OF COEFFICIENT OF THERMAL	
	CONDUCTIVITY ON GLASS FIBERS-REINFORCED POLYMER	402
02	Mihai IIIaa CONSIDERATION ABOUT ENERGY IN PLASTIC IONITS	493
92. 93	Mihai Ulea Mihai Tofan MATHCAD REPRESENTATION OF PLASTIC	ч 77
<i>))</i> .	JOINTS IN BUSBODY SECTION.	500

MINIMUM COST DESIGN OF A RING-STIFFENED CYLINDRICAL SHELL LOADED BY EXTERNAL PRESSURE

József Farkas¹, Károly Jármai²

¹ Professor emeritus, Dr.sci.techn. University of Miskolc, Hungary, altfar@uni-miskolc.hu ² Professor, Dr.sci.techn. University of Miskolc, Hungary, altjar@uni-miskolc.hu

Abstract: The aim of this paper is to find the minimum cost of a ring-stiffened circular cylindrical shell loaded by external pressure. The minimum cost is given by the optimum dimensions, which can be calculated by an optimization technique. The calculation shows that the cost reduction has an effect reducing the shell diameter. The decrease in diameter restricted by a production constraint, that the inner diameter should be minimum of 2 m, to allow the welding and painting within the shell. This paper describes the optimization of this kind of structure considering cost calculation, which includes not only the material, but welding and painting costs as well.

Keywords: stiffened shell, minimum cost design, ring stiffeners

1. INTRODUCTION

Cylindrical shell used in various structures, such as pipelines, offshore structures, columns and towers, bridges, silos, etc. shell is stiffened against buckling of the ring - stiffeners or stringers or perpendicular. The efficiency depends on the type of stiffening load. In many cases, the loads and brace studied in comparison with the cost of realistic numerical models and concluded by the structural design aspects of the optimized versions [1,2,3,4,5].

Since in Eurocodes [6] design method for stiffened shell buckling is not given, the design rules of Det Norske Veritas [7] are used. In this new investigation newer DNV shell buckling formulae are applied.

Optimum design of ring-stiffened cylindrical shells has been treated in [8, 9]. Results of model experiments for cylindrical shells used in offshore oil platforms have been published by Harding [10]. Cho and Frieze [11] have compared the proposed strength formulation with DNV rules, British Standard BS 5500 and experimental results.

The tripping of open section ring-stiffeners is treated by Huang and Wierzbicki [12]. Buckling solutions for shells with various end conditions, stiffener geometry and under various pressure distributions have been presented by Wang et al. [13] and by Tian et al. [14].

In Akl et al. [15] the adopted approach aims at simultaneously minimizing the shell vibration, associated sound radiation, weight of the stiffening rings as well as the cost of the stiffened shell. The production cost as well as the life cycle and maintenance costs, are computed using the Parametric Review of Information for Costing and Evaluation (PRICE) model (PRICE System, Mt. Laurel, N.J. 1999) without any detailed cost data.

In the optimization process the optimum values of shell diameter and thickness as well as the number and dimensions of ring-stiffeners are sought to minimize the structural volume or cost. In order to avoid tripping welded square box section stiffeners are used, their side length and thickness of plate elements should be optimized.

Besides the constraints on shell and stiffener buckling the fabrication constraints can be active. To make it possible the welding of stiffeners inside the shell the minimum shell diameter should be fixed (2000 mm). The calculations show that the volume and cost decreases when the shell diameter is decreased. Thus, the shell diameter can be the fixed minimum value. Another fabrication constraint is the limitation of shell and plate thickness (4 mm).

The remaining unknown variables can be calculated using the two buckling constraints and the condition of volume or cost minimization. The relation between the side length and plate thickness of ring-stiffeners is determined be the local buckling constraint. To obtain the optimum values of variables a relative simple systematic search method is used.

The cost function contains the cost of material, assembly, welding and painting and is formulated according to the fabrication sequence.

1.1 Characteristics of the optimization problem

Given data: external pressure intensity $p = 0.5 \text{ N/mm}^2$, safety factor $\gamma = 1.5$, shell length L = 6000 mm, steel yield stress $f_y = 355 \text{ MPa}$, elastic modulus $E = 2.1 \times 10^5 \text{ MPa}$, Poisson ratio v = 0.3, density $\rho = 7.85 \times 10^{-6} \text{ N/mm}^3$, the cost constants are given separately.

Unknown variables: shell radius R, shell thickness t, number of spacing between ring-stiffeners n, thus, the spacing between stiffeners is $L_r = L/n$, the side length of the square box section stiffener h_r , the thickness of stiffener plate parts t_r .

1.2 Constraint on shell buckling

According to the DNV rules [7]

$$\sigma = \frac{\gamma p R}{t} \le \frac{f_y}{\sqrt{1 + \lambda^4}}, \lambda = \sqrt{\frac{f_y}{\sigma_E}}$$
(1)

$$\sigma_E = \frac{C\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{L_r}\right)^2 \tag{2}$$

$$C = \psi \sqrt{1 + \left(\frac{\rho_1 \xi}{\psi}\right)^2}, \psi = 4, \rho_1 = 0.6$$
(3)

$$\xi = 1.04\sqrt{Z}, Z = \frac{L_{r}^{2}}{Rt}\sqrt{1-\nu^{2}}$$
(4)

1.3 Constraint on ring-stiffener buckling

The moment of inertia of the effective stiffener cross-section should be larger than the required one

$$I_x \ge I_{req} \tag{5}$$

The effective shell length between ring-stiffeners is the smaller of

$$L_e = \frac{1.56\sqrt{Rt}}{1+12\frac{t}{p}} \quad \text{or} \quad L_r \tag{6}$$

The distance of the gravity centre of the effective ring-stiffener cross-section (Fig. 1)

$$y_{E} = \frac{L_{e}t\left(h_{r} + \frac{t+t_{r}}{2}\right) + h_{r}t_{r}\left(h_{r} + t_{r}\right)}{3t_{r}h_{r} + L_{e}t}$$
(7)

The moment of inertia of the effective stiffener cross-section

$$I_x = \frac{t_r h_r^3}{6} + 2t_r h_r \left(\frac{h_r + t_r}{2} - y_E\right)^2 + h_r t_r y_E^2 + \frac{L_e t^3}{12} + L_e t \left(h_r + \frac{t + t_r}{2} - y_E\right)^2$$
(8)

The relation between h_r and t_r is determined by the local buckling constraint

$$t_r \ge \delta h_r, \delta = \frac{1}{42\varepsilon}, \varepsilon = \sqrt{\frac{235}{f_y}}$$
(9)

For $f_y = 355$ $\delta = 1/34$, the required t_r is rounded to the larger integer, but $t_{rmin} = 4$ mm. The required moment of inertia

Fig. 1 Ring-stiffened cylindrical shell loaded by external pressure

1.4 The cost function

The cost function contents the cost of material, assembly, welding and painting and is formulated according to the fabrication sequence.

The cost of assembly and welding is calculated using the following formula [1,2,3,5]

$$K_{w} = k_{w} \left(C_{1} \Theta \sqrt{\kappa \rho V} + 1.3 \sum_{i} C_{wi} a_{wi}^{n} C_{pi} L_{wi} \right)$$
(11)

where k_w [\$/min] is the welding cost factor, C_I is the factor for the assembly usually taken as $C_I = 1 \text{ min/kg}^{0.5}$, Θ is the factor expressing the complexity of assembly, the first member calculates the time of the assembly, κ is the number of structural parts to be assembled, ρV is the mass of the assembled structure

The second member estimates the time of welding, C_w and *n* are the constants given for the specified welding technology and weld type, C_p is the factor of welding position (for downhand 1, for vertical 2, for overhead 3), L_w is the weld length, the multiplier 1.3 takes into account the additional welding times (deslagging, chipping, changing the electrode).

The fabrication sequence is as follows:

(a) Welding the unstiffened shell from curved plate parts of dimensions 6000x1500 mm and of number

$$n_p = \frac{2R\pi}{1500}$$

which should be rounded to the larger integer. Use butt welds of length

$$L_{w1} = n_p L, \quad \Theta = 3, \kappa_1 = n_p, V_1 = 2R\pi L t, k_W = 1,$$
(12)

welding technology SAW (submerged arc welding)

for
$$t = 4-15$$
 mm $C_{W1} = 0.1346 \times 10^{-3}$ and $n_1 = 2$, (13a)

for $t > 15 \text{ mm } C_{W1} = 0.1033 \times 10^{-3} \text{ and } n_1 = 1.9,$ (13b)

$$K_{W1} = k_W \Big(\Theta \sqrt{\kappa_1 \rho V_1} + 1.3 C_{W1} t^{n_1} L_{W1} \Big).$$
(14)

(b) Welding the ring-stiffeners separately from 3 plate parts with 2 fillet welds (GMAW-C –gas metal arc welding with CO₂):

$$K_{W2} = k_W \left(\Theta \sqrt{3\rho V_2} + 1.3x 0.3394 x 10^{-3} a_W^2 L_{W2} \right)$$
(15)

where

$$V_2 = 4\pi h_r t_r \left(R - \frac{h_r}{2} \right) + 2\pi h_r t_r \left(R - h_r \right)$$
(16)

$$L_{W2} = 4\pi (R - h_r) a_W = 0.7t_r \tag{17}$$

(c) Welding the (n+1) ring-stiffeners into the shell with 2 circumferential fillet welds (GMAW-C)

$$K_{W3} = k_W \left(\Theta \sqrt{(n+2)\rho V_3} + 1.3x 0.3394 x 10^{-3} a_W^2 L_{W3} \right)$$
(18)

where

$$V_3 = V_1 + (n+1)V_2, L_{W3} = 4R\pi(n+1)$$
(19)

Material cost

$$K_M = k_M \rho V_{3,k_M} = 1$$
 \$/kg (20)

Painting cost

$$K_p = k_p S_p, k_p = 28.8 \times 10^{-6} \, \text{mm}^2, \tag{21}$$

$$S_{p} = 2R\pi L + 2R\pi \left[L - (n+1)h_{r}\right] + 2\pi (R - h_{r})h_{r}(n+1) + 4\pi \left(R - \frac{h_{r}}{2}\right)h_{r}(n+1)$$
(22)

The total cost

$$K = K_M + K_{W1} + (n+1)K_{W2} + K_{W3} + K_P$$
(23)

1.5 Results of the optimization

In the following the minimum cost design is obtained by a systematic search using a MathCAD algorithm. For a shell thickness *t* the number of stiffeners *n* is determined by the shell buckling constraint (Eq. 1) and the stiffener dimensions (h_r and t_r) are determined by the stiffener buckling constraint (Eq. 5).

The search results for R = 1851 and 1500 (Tables 1 and 2) show that the volume and cost decreases when the radius is decreased. Thus, the realistic optimum can be obtained by taking the radius as small as possible. This minimum radius is determined by the requirement that the internal stiffeners should easily be welded inside of shell, i.e. $R_{\min} = 1000$ mm. Therefore the more detailed search is performed for this radius (Table 3).

Table 1: Systematic search for R = 1850 mm. Dimensions are in mm. The minimum cost is marked by bold letters

The minimum cost is marked by bold letters									
t	п	$\sigma < \sigma_{adm}$ MPa	h_r	t_r	$I_x > I_{req} \times 10^{-4} \text{ mm}^4$	$V \mathrm{x10^{-5}} \mathrm{mm^{3}}$	<i>K</i> \$		
11	7	126<152	180	6	3352>3341	10490	18770		
12	6	115<143	180	6	3530>3502	10830	18640		
13	5	106<124	190	6	4245>4014	11290	18650		
14	4	99<109	200	6	5050>4888	11710	18620		
15	4	92<121	200	6	5252>4718	12400	19390		

t	п	$\sigma < \sigma_{\rm adm}$ MPa	h_r	t_r	$I_x > I_{req} \times 10^{-4} \text{ mm}^4$	$V \mathrm{x10^{-5}} \mathrm{mm^{3}}$	K \$
8	10	140<157	160	5	1745>1616	6830	13890
9	8	125<140	160	5	1590>1550	6870	13250
10	6	112<115	160	5	1995>1885	7130	12900
11	5	102<106	150	5	2109>2102	7480	12950
12	5	93<120	160	5	2217>2003	8050	13570

Table 2: Systematic search for *R* = 1500 mm. Dimensions are in mm. The minimum cost is marked by **bold** letters

It can be seen from Table 3 that the optima for minimum volume and minimum cost are different. It is caused by the larger value of fabrication (welding and painting) cost. The details of the cost for K = 7221 \$ are given in Table 4.

	Optima are marked by bold letters									
t	п	$\sigma < \sigma_{\rm adm}$ MPa	h_r	t_r	$I_{x} > I_{reg} \times 10^{-4} \text{ mm}^{4}$	$V \mathrm{x10^{-5}} \mathrm{mm^{3}}$	K \$			
5	16	150<156	110	4	402>364	3192	8338			
6	12	125<141	100	4	353>296	3177	7631			
7	9	107<123	100	4	387>336	3343	7321			
8	7	94<111	100	4	419>400	3579	7244			
9	5	83<90	110	4	572>557	3854	7221			
10	4	75<82	120	4	759>703	4186	7419			
11	3	68<69	130	4	982>953	4505	7598			

Table 3: Systematic search for R = 1000 mm. Dimensions are in mm. Optima are marked by bold letters

 Table 4: Details of the minimum cost in \$.

 (The sum of the welding and painting costs is \$4196)

K_M	K_{W1}	$(n+1)K_{W2}$	K_{W3}	K_P	K
3025	673	474	665	2384	7221

6 CONCLUSIONS

The structural volume and the cost decrease when the shell radius is decreased. Thus, the shell radius should be taken as small as possible. The minimum radius is determined by the limitation that the internal ring-stiffeners should welded into the shell ($R_{min} = 1000 \text{ mm}$).

The shell thickness and the number of ring-stiffeners can be calculated using the constraint on shell buckling. In order to avoid ring-stiffener tripping, welded square box section rings are used. The dimensions of the rings can be determined from the constraint on ring-stiffener buckling. The constraints on buckling are formulated according to the newer DNV design rules.

In the cost function the costs of material, assembly, welding and painting are formulated. The welding cost parts are calculated according to the fabrication sequence. The optima for minimum volume and minimum cost are different, since the fabrication cost parts are relative high as compared to the whole cost.

The ring-stiffening is very effective, since in the case of n = 1 (only 2 end stiffeners) the required shell thickness is t = 18 mm, the volume is $V = 7144 \times 10^{-3}$ mm³ and the cost is K = \$10450, i.e. the cost savings achieved by ring-stiffeners is $(10450-7221)/10450 \times 100 = 31\%$.

ACKNOWLEDGEMENT

The research was supported by the TÁMOP 4.2.4.A/2-11-1-2012-0001 priority project entitled 'National Excellence Program - Development and operation of domestic personnel support system for students and researchers, implemented within the framework of a convergence program, supported by the European Union, co-financed by the European Social Fund. The research was supported also by the Hungarian Scientific Research Fund OTKA T 75678 and T 109860 projects and was partially carried out in the framework of the Center of Excellence of Innovative Engineering Design and Technologies at the University of Miskolc.

REFERENCES

- [1] Farkas J, Jármai K (1997) Analysis and optimum design of metal structures, Rotterdam, Brookfield, Balkema
- [2] Farkas J, Jármai K (2003) Economic design of metal structures, Rotterdam, Millpress

- [3] Farkas J, Jármai K (2008a) Design and optimization of metal structures, Chichester, UK, Horwood Publishing
- [4] Farkas J, Jármai K(2008b) Minimum cost design of a conical shell External pressure, non-equidistant stiffening. In: Proceedings of the Eurosteel 2008 5th European Conference on Steel and Composite Structures Graz Austria. Eds Ofner R. et al. Brussels, ECCS European Convention for Constructional Steelwork Vol.B. 1539-1544.
- [5] Farkas J, Jármai K (2013) Optimum design of metal structures, Heidlberg, Springer Verlag
- [6] Eurocode 3 (2009) Design of steel structures. Part 1-1: General structural rules. Brussels, CEN
- [7] Det Norske Veritas (2002) Buckling strength of shells. Recommended Practice DNV-RP-C202. Høvik, Norway
- [8] Pappas M, Allentuch A (1974) Extended capability for automate design of frame-stiffened submersible cylindrical shells. Comput. Struct. 4: (5) 1025-1059.
- [9] Pappas M, Morandi J (1980) Optimal design of ring-stiffened cylindrical shells using multiple stiffener sizes. AIAA J 18: (8) 1020-1022.
- [10] Harding JE (1981) Ring-stiffened cylinders under axial and external pressure loading. Proc. Inst Civ. Engrs Part 2. 71:(Sept.) 863-878.
- [11] Cho SR, Frieze PA (1988) Strength formulation for ring-stiffened cylinders under combined axial loading and radial pressure. J. Constr. Steel Res. 9: 3-34.
- [12] Huang J, Wierzbicki T (1993) Plastic tripping of ring stiffeners. J. Struct. Eng Proc Am Soc Civ Eng 119: (5) 1622-1642.
- [13] Wang CM, Swaddiwudhipong S, Tian J (1997) Buckling of cylindrical shells with general ring-stiffeners and lateral pressure distributions. In: Proceedings of the Seventh Internat. Conf. Computing in Civil and Building Engng. Vol.1. Eds. Choi ChK et al. Seoul, Korea 237-242.
- [14] Tian J, Wang CM, Swaddiwudhipong S (1999) Elastic buckling analysis of ring-stiffened cylindrical shells under general pressure loading via the Ritz method. Thin-Walled Struct. 35: 1-24.
- [15] Akl W, Ruzzen M, Baz A (2002) Optimal design of underwater stiffened shells. Struct. Multidisc. Optim. 23: 297-310.