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ABSTRACT 

The minimum volume and cost of a simply supported planar truss with N-type bracing is 

optimized. The lower chord of the truss is horizontal, but the symmetric upper chord parts are 

non-parallel and their inclination angle as well as the cross-sectional area of CHS (circular 

hollow section) rods are optimized. For the calculation of required cross-sectional area of 

compression struts closed formulae are used as a good approximation of Eurocode 3 buckling 

curve. A special method is developed for the minimum volume design considering the 

deflection constraint. In the case of a strong displacement constraint the cross-sectional areas 

required for the allowed deflection are larger than those required for stress and buckling 

constraints. The cost function includes the cost of material, cutting and grinding of CHS strut 

ends, assembly, welding and painting. Special mathematical methods are used to find the 

optima in the case of a numerical problem. 

 

Keywords: tubular truss, structural optimization, overall buckling, displacement constraint, 

minimum cost design 

 

1. INTRODUCTION 



Tubular trusses are applied in many load-carrying structures such as roofs, bridges, offshore 

platforms, towers etc. A literature survey of the optimum design of trusses is given in Section 

2.  

The aim of the present study is to show the minimum volume and cost optima of a truss and 

solve the optimum design problem subject to a strong displacement constraint. In the case of 

stress constraints the tension rods are designed for yield stress by using a safety factor for 

loading and the compression rods are designed for overall buckling. In the case of a strong 

displacement constraint the required cross-sectional areas are larger than those required for 

stress constraints. 

In the optimum design process of a truss the optimal value of the cross-sectional areas of 

struts and the geometric characteristics of the truss are sought which minimize an objective 

function and fulfil the design and fabrication constraints. The objective function can be the 

volume (weight) or cost, the design constraints are the limitation of stress and displacement, 

the fabrication constraints ease the manufacturing (welding) process. 

In the case of an active displacement constraint a special method is developed to calculate the 

required cross-sectional areas and the truss geometry. This method is derived in details in 

Section 3.  

It is shown that the non-parallel chords are more economic than the beam with parallel 

chords. Thus, in our case the angle of the upper chord (unknowns h9 and h13 in Figure 1) is 

optimized. 

Another problem is the grouping of rods having the same cross-sectional area. The design of 

all the rods having different cross-sectional areas can cause difficulties in fabrication, but the 

design of all the rods with the same cross-sectional area would be uneconomic. Thus, the 

economy depends on grouping of rods. In our case four groups are used. 



For the minimization of the structural volume or cost, minimization of the cross-sectional 

areas of rods is needed.  The cross-sectional area of compression rods cannot be calculated 

from the Eurocode 3 buckling formulae. Therefore approximate formulae of Japan Road 

Association are used. Stress and buckling constraints are calculated using factored forces, 

whilst the deflection is calculated with forces without a safety factor.  

To obtain comparable optima the required cross-sectional areas are not rounded to available 

profiles and the most economic δ = D/t = 50 slenderness (diameter/thickness) of CHS is used. 

The limitation of the angle between CHS struts (minimum 300) is taken into account as a 

fabrication constraint. Another fabrication constraint is that the diameters of the chords should 

be larger than those of verticals and diagonals of the bracing. 

The effect of self mass is neglected in this comparative study. 

 

2. SURVEY OF SELECTED LITERATURE 

In order to illustrate the literature of the optimum design of trusses, the characteristics of some 

articles are summarized in Table 1. 

 

Table 1. Literature survey of selected journal articles about the optimization of trusses 

Abbreviations: AISC American Institute of Steel Construction, CHS Circular Hollow Section, 

AASHTO American Assoc. of State and Highway Transportation Officials, EC3 Eurocode 3 

(EN 1993-1-1: 1992), W – American wide flange beam, PSO particle swarm optimizer, ACO 

ant colony strategy, HS harmony search, MINLP mixed-integer nonlinear programming, alum 

- aluminium 

Author(s) Examples Math. 

Method 

Mate-

rial 

Buckling 

calculation 

Cross-

section 

Constraint 

Gil (2001) non-parallel 

chords 

conjugates 

gradient 

steel EC3  stress and 

geometrical 



Tong 

(2001) 

10-,25-bar combina-

torial 

alum.   stress and 

fundamental 

frequency 

Makris 

(2002) 

3-,10-,25-,60-

and 132-bar 

strain-

energy-

density 

alum. no buckling  displacement 

Hasancebi 

(2002) 

224-bar 3D 

pyramid, 

simply 

supported  

simulated 

annealing 

steel AISC CHS, 

W-

section 

layout 

optimization 

Kripakaran 

(2007) 

10-,18-,21-bar new 

algorithm 

steel, 

alum. 

AASHTO, 

Euler 

CHS minimum 

cost 

Lamberti 

(2008) 

18-bar 

cantilever, 25-

bar 3D, 45-,72-

and 200-bar 

simulated 

annealing 

steel, 

alum. 

Euler  stress, nodal 

displacement 

Silih 

(2008) 

non-parallel 

chords 

MINLP steel EC3 CHS minimum 

mass or cost 

Kaveh 

(2009) 

10-,25-,120-

200-, and 244-

bar trans-

mission tower 

PSO,  

ACO,HS 

steel, 

alum. 

AISC  stress, nodal 

displacements 

Jármai 

(2004) 

Simply 

supported, 

parallel chords, 

5, 8 spacing 

Leap-frog, 

dynamic-

Q 

Steel EC3 CHS optimum 

height, effect 

of loads, min. 

volume 

 

Remarks: 

(1) In trusses the compression members should be designed against overall buckling. The use 

of Euler-formula gives unsafe design, since it does not take into account the effect of initial 

imperfections and residual stresses. Therefore buckling formulae of Eurocode 3 or another 

up-to-date improved buckling formulae should be used.  



(2) The type of the investigated cross section should be given, since it has been shown (Farkas 

& Jármai 1997) that the cross-sectional form affects the optima significantly. 

 

 

3. MINIMUM VOLUME DESIGN OF THE TUBULAR TRUSS WITH NON-PARALLEL 

CHORDS 

 

Relatively simple formulae can be derived for trusses to minimize the structural volume and 

fulfil a displacement constraint. 
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Figure 1. The simply supported truss with non-parallel chords 

 

The truss rods are divided into n-groups having the same cross-sectional areas (Ai), so 

AA ii  , i = 1…n,     (1) 

where μi are multipliers and the displacement constraint is given by 
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where  E is the elastic modulus, Si  is the rod force, si is the rod force from the unit force 

acting at the midspan, Li is the rod length, wo is the admissible deflection. 



From Eqn (2) one obtains 
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The structural volume is calculated as 
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where νi parameters are 
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In the minimum volume design the truss geometry is sought, which minimizes  

 

211 vvV  .      (6) 

In the case of the simply supported truss shown in Figure 1 the spacing is constant, the non-

parallel upper chord is determined by variable heights h9 and h13. The truss is subject to a set 

of vertical static forces F acting on the upper nodes. The displacement of the central lower 

node is prescribed. It is supposed that all the truss nodes are restrained against transverse 

deformation. 

The variables to be optimized are the heights h9 and h13  as well as the cross sectional areas of 

rods (A and μi). 

The calculations show that, in the case of a strong displacement constraint the necessary rod 

cross-sectional areas are so large that the stress constraints on tension and overall buckling are 

fulfilled. In spite of this fact these constraints should be checked. 

To facilitate the welding of nodes for tubular trusses a geometric fabrication constraint should 

be considered that the minimal angle between rods should be equal or greater than 300, in our 

case (Figure 1) 
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In our case these constraints are always active. 

The rod forces and lengths (Si, si, Li) are expressed in function of h9 and the inclination angle 

of the upper chords α. 
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The formulae for Si, si and Li are given in Tables 2, 3, 4 and 5. 

 

Table 2. Characteristics of rods in the lower chord 

i Si si Li 

1 0 0 A 

2 3.5Fa/h10 0.5a/h10 A 

3 6Fa/h11 a/h11 A 

4 7.5Fa/h12 1.5a/h12 A 

 

 

 

 



 

 

 

 

 

 

Table 3. Characteristics of rods in the upper chord 

I Si si Li 
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acosh
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53
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Table 4. Characteristics of verticals 

i Si si Li 

9 4F 0.5 h9 

10 -3.5F+S5sinα -0.5+s5sinα h10=h9+atanα 

11 -2.5F+S6sinα -0.5+s6sinα h11=h9+2atanα 

12 -1.5F+S7sinα -0.5+s7sinα h12=h9+3atanα 

13 -F+2S8sinα 2s8sinα h13 

 



 

 

 

 

 

 

Table 5. Characteristics of diagonals 

i Si si Li 

14 S5L14cosα/a s5L14cosα/a 22

9 ah   

15   1015652 h/LsinSF. a    1015650 h/Lsins. a  22

10 ah   

16   1116751 h/LsinSF. a    1116750 h/Lsins. a  22

11 ah   

17   1217850 h/LsinSF. a    1217850 h/Lsins. a  22

12 ah   

 

The rods are divided into four groups having the same cross-section): lower chord (1,2,3,4), 

upper chord (5,6,7,8), verticals (9,10,11,12,13) and diagonals (14,15,16,17). 

In order to facilitate the fabrication, the lower and upper chords have the same cross-section 

(μ1 = μ2 = 1) and the optimal values of μ3 (multiplier for verticals) and μ4 (multiplier for 

diagonals) are sought, which should be smaller than μ1. 

The components of  211 vvV   to be minimized are as follows. 
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With the optimum values of h9, h13, μ3 and μ4  
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The minimum structural volume is 

Vmin = v1A1.      (14) 

For a circular hollow section (CHS of diameter D and thickness t)  

t/D,/DDtA   2 ,     (15) 

from which 
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In the design we should use the maximum value of δ, but it is limited to 50 (Wardenier et al. 

1991). In the case of available CHS profiles according to (EN 10210-2. 2006) δ is varied 

between 10-50. In order to obtain realistic optima in all cases the optimum δ = 50 is used.  

 

4. CHECK OF THE COMPRESSION RODS FOR OVERALL BUCKLING 

For checking the overall buckling, the approximate formulae of the Japan Road Association 

(JRA) (Hasegawa et al. 1985) can be used instead of EC3 curve (b). In this case closed 

formulae can be given for cross-sectional sizes. 
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where fy is the yield stress, N is the compression force, χ is the overall buckling parameter. 

Introducing the symbol 

L/D100  ,     (19)  

and using  /c  the closed formulae are as follows. 
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where the limiting value of  δ = D/t = 50 is used 
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In the case of very long struts with small compressive force, the limitation of the strut 

slenderness can be governing. From the limitation of 

maxR r/LK   ,     (23) 

the required radius of gyration is 

maxR /LKr  .     (24) 

According to (BS 5400 1983) .max 180  

KR is the strut end restraint factor, for chords KR = 0.9, for verticals and diagonals KR = 0.75 

(Rondal et al. 1992). 



For the check of overall buckling the following constraint should be fulfilled for all 

compression rods 
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 i
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D
A  ,               (25) 

where  Ai is the optimum cross-sectional area for displacement constraint and Di is the 

required diameter from overall buckling calculation. 

 

5. THE COST FUNCTION 

 

The cost function contains the cost of material, cutting and grinding of CHS strut ends, 

assembly, welding and painting. 

The cost of material is given by 

2VkK MM  ,              (26) 

where an average specific cost of  kM = 1.0 $/kg is considered, ρ = 7.85x10-6 kg/mm3 for steel. 

V2 is the actual structural volume (see Eqn (35)). 

The cost of cutting and grinding of CHS strut ends is calculated with a formula proposed by 

Glijnis (Farkas & Jármai 2003). 

  a




sin.t

D.
k($)K CGFCG

302350

52


 ,    (27) 

where kF = 1.0 $/min is the specific fabrication cost, 3CG  is a factor for work complexity, 

350 mm/min is the cutting speed, 0.3 is the efficiency factor, diameter D and thickness t are in 

mm, α is the inclination angle of diagonal braces. 

In our case for verticals 
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For diagonals at the lower strut ends 
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where    
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For diagonals at the upper strut ends 
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where 

ii aa  090 , i = 1,2,3,4.    (32) 

The general formula for the welding cost is as follows (Farkas & Jármai 1997, 2003, 2008). 
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where kw [$/min] is the welding cost factor, C1 is the factor for the assembly usually taken as 

C1 = 1 min/kg0.5, Θ is the factor expressing the complexity of assembly, the first member 

calculates the time of the assembly, κ is the number of structural parts to be assembled, ρV is 

the mass of the assembled structure. The second member estimates the time of welding, Cw 

and n are the constants given for the specified welding technology and weld type. 

Furthermore Cpi is the factor for the welding position (download 1, vertical 2, overhead 3), Lw 

is the weld length, the multiplier 1.3 takes into account the additional welding times 

(deslagging, chipping, changing the electrode, etc.). 

In our case kw = 1.0 $/min,  Θ = 3,  

the cost of assembly and welding using SMAW (shielded metal arc welding) fillet welds is 

given by for verticals 
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For diagonals at the lower strut ends 
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For diagonals at the upper strut ends 
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The cost of painting is calculated as 

610828  x.k,SkK PPPP  $/mm2.    (38) 

The superficies to be painted is 
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The total cost is given by 

PwwWCGCGCGM KKKKKKKKK  2121 .  (40) 

 

6. NUMERICAL DATA 

 

Loads for displacement calculation (without safety factor) F = 120000 N, for stress and 

buckling constraints F0 = 1.5F = 180000 N (safety factor of 1.5). Yield stress of steel fy = 355 

MPa, elastic modulus E = 2.1x105 MPa, span length L = 24 m, allowable displacement at the 

middle of the span w0 = 32 mm = L/750. 

 

7. THE OPTIMIZATION PROCESS 

 



Calculate the optimum values of  h9, h13, μ3 and  μ4 to obtain Vmin or Kmin and fulfil the 

constraints on displacement, on minimum angle α1 [Eqn. (8)], on maximum angle α4 [Eqn. 

(9)] as well as on stress and overall buckling. 

The ranges of unknowns are as follows: 1732 < h9 < 5000 mm,  4000 < h13 < 8000 mm and  

h9 < h13, 0.5 < μ3
 < 1,  0.5 < μ4 < 1. 

In the case of minimum volume design Eqns. (13) and (14) give the results and Eqn. (25) 

should be fulfilled. In the case of minimum cost Eqn. (40) should be minimized, for which 

Eqns. (11), (12), (13), (16) and (35) should be used. 

 

8. RESULTS OF THE OPTIMIZATION 

 

The fabrication constraints [Eqn. (7) and (8)] determine the optimal pair of unknowns h9 and 

h13 as follows: for a given h9 a value of h13 smaller than h13opt gives larger v1v2, larger does not 

fulfil the fabrication constraint Eqn. (8). Table 6 shows the max h13 in function of h9. 

 

Table 6. Maximum h13 values in function of h9. Values in mm 

h9 1750 1850 1950 2000 2100 2200 2300 

h13opt 6340 6310 6280 6260 6220 6190 6160 

 

Furthermore the calculations show that the best value for  μ3 and  μ4 is 0.6, since the value of 

0.5 gives cross-sections which do not fulfil the buckling constraints. Thus, the remaining 

unknown h9 can be optimized using the MathCAD program. Table 7 gives the volume and 

cost in function of h9.  The optimum h9 minimizes thee product v1v2 (fulfilling the deflection 

constraint) and also V and K. 

Table 7.  Volume and cost in the function of h9. h in mm. Optima are marked with bold letters 



h9 h13 v1v2x10-15 Vx10-8 mm3 K $ 

1750 6390 2.331 3.469 7854 

1850 6310 2.324 3.459 7830 

1950 6280 2.321 3.454 7825 

2000 6260 2.322 3.456 7829 

2100 6220 2.327 3.463 7843 

 

 

 

Table 7 shows that the following optima are determined:  in the case of   μ3 = μ4 = 0.6, h9opt = 

1950, h13opt = 6280, v1v2min = 2.321x1015, Vmin = 3.454x108 mm3, Kmin = 7825 $, A1 = A2 = 

3708, A3 = A4 = 2225 mm2.  Table 7 shows that the sensitivity of V and K is small. 

The cross-sectional areas required for stress and buckling constraints are as follows:  A1 = A2 

= 2195, A3 = 2084, A4 = 2094 mm2. It can be seen that the cross-sectional areas determined 

for a strong displacement constraint are larger than those required for stress or buckling 

constraints. 

In addition  the calculation results for  μ3 = 0.7 and  μ4 = 0.5 are given.  

Table 8.  Results in the case of  μ3 = 0.7 and  μ4 = 0.5. Optimum is marked by bold letters 

h9 h13 v1v2x10-15 

1750 6390 2.335 

1850 6310 2.329 

1950 6280 2.326 

2000 6260 2.328 

2100 6220 2.334 

 



Another optimum values for h9 = 1950 mm:  A1 = A2 = 3728 , A3 = 2610, A4 = 1864 mm2. V = 

3.462x108 mm3, K = 7818 $. Since A4 = 2094 mm2 is necessary for buckling constraint, the 

value of μ4 = 0.5 is too small and  μ4 = 0.6 should be used. 

 

For comparison the optimum data for the truss of parallel chords:  h9opt = h13opt = 5000 mm, 

Vmin = 5.852x108 mm3. Kmin = 11350 $. It can be seen that the truss of non-parallel chords is 

much more economic than the truss of parallel chords. 

 

 

9. CHECK OF STRENGTH OF A TUBULAR JOINT 

 

After the optimization the optimal cross-sections should be replaced by available profiles 

according to EN 10291-2 and the joints should be checked for strength according to new IIW 

rules (Static design 2009). To illustrate this procedure a tubular joint of the truss optimized for 

strength is shown in Figure 2. 

 

The related rod forces are as follows:   S3 = 787.4 kN (tension), S12 = 11.1 kN (tension), S15 = 

233.4 kN (tension), governing for diagonals, also for rod 16, for which S16 = 13820 N 

compression. 

 

The available CHS profiles for the optimized truss are as follows: chords: ø273.0x5 mm, 

verticals and diagonals:  ø 139.7x6 mm. 

 

According to Figure 2 the joint is designed an overlap K-joint, with the eccentricity of e = 

0.25x273 = 68 mm, the overlap is Ov = 100q/p = 100x34.3/161.6 = 21.2%.  
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Figure 2. The overlapped tubular joint 

 

(a) Check of local yielding of overlapping brace 
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(b) Check of local chord member yielding 
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(c) Check of brace shear 
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10. CONCLUSIONS 

 

The optimization problem to be solved is the following: find the optimal geometry and cross-

sectional areas of rods which minimize the structural volume or cost for a simply supported 

tubular truss with non-parallel chords for a strong displacement constraint.  

For the solution of this problem a developed calculation method is used. Besides the 

displacement constraint the rods are checked for tension stress and overall buckling. It is 

shown that, in the case of a strong displacement constraint the cross-sectional areas are larger 

than those required for constraints on stress and buckling. 

The fabrication (welding) constraints on minimal angle between tubular rods (300) have been 

also active. In the calculation of overall buckling the Eurocode 3 formulae are approximated 



by formulae of Japan Road Association enabling the explicit expression of the necessary 

cross-sectional area. 

Special formulae are used for the cost calculation. The cost function expresses the cost of 

material, cutting and grinding of the tubular (CHS) rod ends, assembly, welding and painting. 

It is shown that, in this case, the structural optima for minimum volume and minimum cost 

are the same. 

Check of strength of a tubular joint shows that the chords and braces of available CHS 

profiles fulfil the requirements. 
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