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Abstract 

Two new methods for improving the PSO algorithm are proposed. One of the 

methods doesn’t need more function evaluations than the standard algorithm, and it’s 

efficiency doesn’t depends on the initial state of the process. The efficiency of the 

method depends on how and when we change the particle’s speed knowing the gradient 

information in the previous sample points. These parameters can be different for every 

objective function. The other method improves the technique which uses an operator 

called Crazy Bird. We have applied the methods on several two dimensional test 

problems, and on a structural optimization problem. 
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1. INTRODUCTION 
 

Optimization problems can be found in various fields of science, among which there 

are a lot of problems that can’t be solved by analytical methods because of their 

complexity. Over the years the researchers have developed a lot of algorithms to solve 

these problems among which evolutionary algorithms became the most popular because 

of their simplicity and efficiency. These methods can find an approximate solution of 

these problems. In the literature a lot of evolutionary algorithms can be found for 

example the ant colony algorithm [1] which simulates the behaviour of ants, genetic 

algorithms [6] which solves the problem by simulating the process of evolution, Particle 

Swarm Optimization (PSO) algorithm, and hybrid techniques which are created as a 

mixture of algorithms to compound their beneficial features. 

In the literature we can meet wide scale of PSO variants, and PSO improvement 

techniques [3]. The efficiency of a lot of techniques depends on the stochastic nature of 

the process, and these methods don’t use the local features of the objective function. One 

of our new methods uses the gradient information in the previous sample points to 

change the speed of the particle. The tests have shown that this method improves the 

convergence speed of the algorithm in a lot of test cases, and we can use it in any 

optimization problem where the gradient information exists. The other method (Section 

4.) improves the technique called Crazy Bird which can be described as a stochastic 

process. 

 

2. PSO ALGORITHM 
 

PSO algorithm [4, 7] was developed by Kennedy and Eberhart in 1995. Their goal 

was to visualize the social behaviour of bird flocks, and later they realized that the 

algorithm can be efficiently used to solve optimization problems. Over the years the 



 

researchers have developed a lot of PSO variants which can solve wide scale of 

optimization problems. These algorithms have become popular in practice [3, 8, 9] 

because of their simplicity, efficiency and easy implementation. 

In the first step the algorithm generates particles in a predefined interval of the 

objective function. Every particle has a position x, and a velocity v vector. The length 

of these vectors equals to the dimension of the objective function. The algorithm 

generates the position vectors by uniform distribution in the predefined interval. The 

particles move in the interval and search for the optimal solution. Every particle stores 

the best solution and its position during the particle’s movement. These are called local 

best value and local best position. The algorithm selects the best of the local bests 

which are called global best value and position. Every particle in every iteration step 

evaluates the objective function, and they change their positions using the following 

equations: 
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where vi is the i-th element of the velocity vector, xi is the i-th element of the position 

vector, c1 and c2 are positive constants, r1, r2 are uniformly distributed number in [0,1], 

pbesti is the i-th element of the local best position vector, gbesti is the i-th element of 

the global best position vector of a given particle, k is the iteration number, and t 

stands for the unit time. The following flowchart shows the steps of the algorithm: 

 

Figure 1. Flowchart of the PSO algorithm 

 



 

3. IMPROVING PSO ALGORITHM WITH GRADIENT ESTIMATION 
 

PSO algorithm has a lot of variants. The efficiency of lots of techniques depends 

on the random nature of the process. We can work with multiple swarms which 

communicate, or we can use the Crazy Bird approach which sends some of the 

particles to random direction instead of using equation (1), but the effectiveness of 

these methods are different in every objective function. 

We propose a new method that doesn’t need more function evaluations than the 

standard algorithm, and its efficiency doesn’t depend on the initial state of the process. 

This method uses the gradient information in the previous sample points. Using the 

gradient information we can change the speed of the particles. If there are a lot of 

positive gradients in a particle’s history, we raise its speed, because we conclude that 

the particle is moving towards the optimum point. This statement is true for a lot of 

objective functions, but not in all cases. Using the backward difference gradient 

estimation 
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which can be derived from the Taylor expansion of a one dimensional function we can 

easily compute the sign of the gradient knowing only the sample values at the previous 

sample points. 

We have tested the method using twelve optimization test problems. We have run 

the algorithm one hundred times for one objective function and we have computed the 

average of the global best values in every iteration step. The algorithm has found the 

optimum faster for nine test functions, for two functions the speed was approximately 

the same as the standard algorithm, and for one test function it was worse. 

 

4. IMPROVING PSO ALGORITHM WITH ELITIST CRAZY BIRD 
 

We can improve the technique by introducing an operator called Crazy Bird [10] 

which can be described as a stochastic process. This approach sends some of the 

particles to random direction, or puts them in a random position instead of using 

equation (1), but the effectiveness of this method is different for every objective 

function, furthermore, if we raise the dimension of the objective function, the 

probability of finding a better result is highly decreasing. 

If we put some of the particles in the local neighborhood of the actual global best 

position, we can find better result than the actual global best. In equation (2) the t unit 

time is a predefined constant. If we choose a big number for this constant, the particles 

will miss the optimum, and if we choose a small number, we have to run the algorithm 

for a very long time to find the optimum. Using the elitist crazy bird method we can 

get information about the objective function at the local neighborhood of the global 

best position. The method slightly depends on the predefined t constant.  

 

 

 

 



 

5. TEST RESULTS 
 

We have tested the gradient based technique using twelve optimization test 

problems [5, 2]. We have run the algorithm one hundred times for one objective 

function and we have calculated the average of the global best values in every iteration 

step. The light grey curve represents the gradient based technique the dark grey 

represents the standard algorithm. 

 

 
 

Figure 2. Global best values in the function of iterations. De-Jong test function with 1000 

particles f(x,y) = x
2
 + y

2
. 

 

 
 

Figure 3. Global best values in the function of iterations. Drop Wave test function with 1000 

particles. f(x,y)=-(1+cos(12(x
2
+y

2
)
0.5

))/(0.5(x
2
+y

2
)+2) 

 

We can see on the plots that the gradient based method has higher global best value 

at almost every iteration level in these test functions. We have created tests using the 

elitist crazy bird method. If we change the parameters (crazy bird probability, local 

neighboring volume of global best, exit criteria) the results can be different. Testing 

with the De-Jong function (theoretical maximum value is 0), after averaging 100 test 

run’s global best values the standard algorithm’s result was -0.000001727, and with 

elitist crazy bird the result was -0.00000004. 



 

6. MINIMUM COST DESIGN OF A CELLULAR PLATE 

 

Cellular plates are constructed from two base plates and an orthogonal grid of 

stiffeners welded between them. Halved rolled I-section stiffeners are used for 

fabrication aspects. The torsional stiffness of cells makes the plate very stiff. In the 

case of uniaxial compression the buckling constraint is formulated on the basis of the 

classic critical stress derived from the Huber’s equation for orthotropic plates. The cost 

function contains the cost of material, assembly and welding and is formulated 

according to the fabrication sequence. The unknown variables are the base plate 

thicknesses, height of stiffeners and numbers of stiffeners in both directions. 

 

 
Figure 4. Orthogonally stiffened cellular plate and its cross-section 

 

Method 
x1=t1 

[mm] 

x2=t2 

[mm] 

x3=h 

[mm] 
x4=nx x5=ny cost [$] 

Particle 

number 

PSO 8 5 403.2 2 14 42308.18 1000 

PSO 9 5 403.2 2 14 44364.36 10000 

GPSO 5 5 454.6 2 14 41679.97 1000 

GPSO 7 5 403.2 2 15 41442.72 10000 

 

Table 1. Optimum values for a cellular plate. The discrete values are found after finding 

the continuous ones. 

 



 

7. CONCLUSION 

 

Two new methods for improving the PSO algorithm are proposed. One of the 

methods doesn’t need more function evaluations than the standard algorithm, and its 

efficiency doesn’t depend on the initial state of the process. We have tested the method 

using twelve optimization test problems. The algorithm has found the optimum faster 

for nine test functions, for two functions the speed was approximately the same as the 

standard algorithm, and for one test function it was worse. We have applied the 

gradient based method in a structural optimization problem, and the results were better 

than the standard algorithm. The other method improves the technique called Crazy 

Bird. By means of the gradient based method, the particle can find the optimum faster, 

and with the Elitist Crazy Bird we can get closer to the theoretical optimum. Further 

research is needed in order to define the parameters of these methods. 
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