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Abstract

We solve a problem of Littlewood: there exist seven infinite circular
cylinders of unit radius which mutually touch each other. In fact, we
exhibit two such sets of cylinders. Our approach is algebraic and
uses symbolic and numerical computational techniques. We consider
a system of polynomial equations describing the position of the axes of
the cylinders in the 3 dimensional space. To have the same number of
equations (namely 20) as the number of variables, the angle of the first
two cylinders is fixed to 90 degrees, and a small family of direction
vectors is left out of consideration. Homotopy continuation method
has been applied to solve the system. The number of paths is about
121 billion, it is hopeless to follow them all. However, after checking
80 million paths, two solutions are found. Their validity, i.e., the
existence of exact real solutions close to the approximate solutions at
hand, was verified with the alphaCertified method as well as by the
interval Krawczyk method.

Keywords: touching cylinders, line-line distance, polynomial system,
homotopy method, certified solutions, alpha theory, interval methods
MSC 2010: 52C17, 52A40, 65H04, 65H20, 65G40.

1 Littlewood’s problem on seven touching in-

finite cylinders

John Edensor Littlewood ([11], Problem 7 on p. 20) proposed that

“Is it possible in 3-space for seven infinite circular cylin-

ders of unit radius each to touch all the others? Seven

is the number suggested by constants.”

Two cylinders touch each other if their intersection is either a point or a line.
Ogilvy’s book [12] also includes Littlewood’s problem.

Finite versions of the problem are discussed as puzzles by Gardner and
they are well known as 6 touching cigarettes [5, Figure 54 on page 115] and
7 touching cigarettes [5, Figure 55 on page 115]. The latter works for a ratio
of length/diameter greater than 7

√
3/2. However, as it is noted by Bezdek

[2], it is still open whether it is possible to find 8 or more touching finite
identical cylinders. An arrangement of 5 touching coins (with a small ratio
of length/diameter) is also known [5, Figure 49 on page 110] and this fact
suggests that intermediate ratios of length/diameter could also be analyzed.
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Bezdek [2] showed that 24 is an upper bound for the number of mutually
touching congruent infinite cylinders. Ambrus and Bezdek [1] investigated
the proposal of Kuperberg from the early 1990’s that contained 8 congruent
infinite cylinders. It is shown that they do not mutually touch each other, see
[1, Theorem 1 and Figure 1 on page 1804] for details. Brass, Moser and Pach
discuss an arrangement of 6 mutually touching infinite cylinders [3, page 98].
In the paper this lower bound is improved to 7.

Hereafter, it is assumed that cylinders are infinite and congruent, their
radius is set to 1. Two cylinders of unit radius touch each other if and only if
the distance of their axes is 2. Let Ci and ℓi denote the i-th cylinder and its
axis, respectively. In the paper, i = 1, 2, . . . , 7. The case of parallel cylinders
(lines) is excluded from our analysis. It is left to the reader to show that if
two cylinders are parallel, then the maximum number of mutually touching
cylinders is four.

We intend to apply the well-known formula for the distance of two lines
in R3. Let

ℓi(s) = Pi + swi

be a parametric representation of line ℓi for i = 1, . . . , 7. Here Pi ∈ R3 is a
point of ℓi, wi ∈ R3 is a direction vector and s is a real parameter. If lines ℓi
and ℓj are skew, then their distance can be obtained as

d(ℓi, ℓj) =
|(−−−→PiPj) · (wi ×wj)|

||wi ×wj ||
, (1)

where · denotes dot product, × denotes cross product and || || denotes the
Euclidean norm [6, 20]. Since the cylinders have unit radius, d(ℓi, ℓj) = 2 for
all i, j = 1, 2, . . . , 7, i 6= j, we can write equations (1) as

|(−−−→PiPj) · (wi ×wj)|
2
− 4||wi ×wj ||2 = 0. (2)

In this form we avoid taking square roots. Let us introduce coordinates:

Pi = (xi, yi, zi), wi = (ti, ui, vi).

Then we have

−−−→
PiPj = (xj − xi, yj − yi, zj − zi), (3)

wi ×wj = (uivj − viuj, vitj − tivj , tiuj − uitj). (4)
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Now we substitute (3)-(4) into (2), and by using the well-known determinan-
tal form of the triple product, we obtain the equation

det





xj − xi yj − yi zj − zi
ti ui vi
tj uj vj





2

− 4
(

(uivj − viuj)
2+

+ (vitj − tivj)
2 + (tiuj − uitj)

2
)

= 0. (5)

This is a polynomial equation of degree 6 in 12 variables. The polynomial
on the left is a linear combination of 84 monomials.

We call a line horizontal if it is parallel to the plane z = 0. Any arrange-
ment of seven lines can be translated and rotated to a position in which one
of the lines (ℓ1) is horizontal, with direction vector w1 = (1, 0, 0), and it goes
through the point P1(0, 0,−1). It can also be assumed that the touching
point of cylinders C1 and C2 is (0, 0, 0), that is, ℓ2 goes through the point
P2(0, 0, 1). The direction of (ℓ2) is the only degree of freedom when the first
two lines are considered. We shall assume, and this is explained later, that
(ℓ2) will be chosen to be orthogonal to the first line. We have so far

x1 = 0, y1 = 0, z1 = −1, t1 = 1, u1 = 0, v1 = 0; (6)

x2 = 0, y2 = 0, z2 = 1, t2 = 0, u2 = 1, v2 = 0. (7)

We can make some further simplifications. We may assume without loss
of generality that ℓi (i = 3, . . . , 7) is not horizontal (otherwise it would be
parallel to ℓ1 or ℓ2), consequently, it goes through the plane z = k for any
k ∈ R. Let us choose k = 0 and set

zi = 0 for i = 3, . . . , 7. (8)

Finally, the normalization of the direction vector of line ℓi is chosen to be
ti + ui + vi = 1 for i = 3, . . . , 7. This is equivalent to

vi = 1− ti − ui, i = 3, . . . , 7. (9)

The normalization is restrictive, it may rule out some valid solutions, as it
excludes all nonzero direction vectors fulfilling ti + ui + vi = 0. However, our
aim is to find one solution rather than an analysis of all solutions. At this
point we leave it open whether the excluded direction vectors may produce
a valid solution.
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The distance of ℓ1 and ℓ2 is guaranteed to be 2 by (6)-(7). Substitute (6),
(8) and (9) into (5) to set the distance of ℓ1 and ℓj (3 ≤ j ≤ 7):

y2j t
2
j + 2y2j tjuj − 2y2j tj + y2ju

2
j − 2y2juj + y2j + 2yjtjuj + 2yju

2
j − 2yjuj

−4t2j − 8tjuj + 8tj − 7u2
j + 8uj − 4 = 0, j = 3, . . . , 7. (10)

Substitute (7), (8) and (9) into (5) to set the distance of ℓ2 and ℓj (3 ≤ j ≤ 7):

x2
j t

2
j + 2x2

j tjuj − 2x2
j tj + x2

ju
2
j − 2x2

juj + x2
j − 2xjtjuj − 2xjt

2
j + 2xjtj

−4u2
j − 8tjuj + 8tj − 7t2j + 8uj − 4 = 0, j = 3, . . . , 7. (11)

Finally, substitute (8) and (9) into (5) to set the distance of ℓi and ℓj
(3 ≤ i < j ≤ 7):
−4xiyitiuitjuj +4xixjtiuitjuj +4xiyjtiuitjuj +4yixjtiuitjuj +4yiyjtiuitjuj

−4xjyjtiuitjuj −2x2
i tiuitjuj −2y2i tiuitjuj −2x2

j tiuitjuj −2y2j tiuitjuj

−4xixjtiuiuj +4xixjtiu
2
j +4xixju

2
i tj −4xixjuitjuj +4yiyjt

2
iuj

−4yiyjtiuitj −4yiyjtitjuj +4yiyjuit
2
j +4xixjuiuj +4yiyjtitj

+x2
i t

2
iu

2
j +x2

iu
2
i t

2
j +y2i t

2
iu

2
j +y2i u

2
i t

2
j +x2

j t
2
iu

2
j +x2

ju
2
i t

2
j +y2j t

2
iu

2
j +y2ju

2
i t

2
j

+2xiyit
2
iu

2
j +2xiyiu

2
i t

2
j −2xixjt

2
iu

2
j −2xixju

2
i t

2
j −2xiyjt

2
iu

2
j −2xiyju

2
i t

2
j

−2yixjt
2
iu

2
j −2yixju

2
i t

2
j −2yiyjt

2
iu

2
j −2yiyju

2
i t

2
j +2xjyjt

2
iu

2
j +2xjyju

2
i t

2
j

−2xiyit
2
iuj −2xiyitiu

2
j +2xiyjt

2
iuj +2xiyjtiu

2
j +2xiyju

2
i tj +2xiyjuit

2
j

−2xiyiu
2
i tj −2xiyiuit

2
j +2yixjt

2
iuj +2yixjtiu

2
j +2yixju

2
i tj +2yixjuit

2
j

−2xjyjt
2
iuj −2xjyjtiu

2
j −2xjyju

2
i tj −2xjyjuit

2
j −2x2

i tiu
2
j −2x2

iu
2
i tj −2y2i t

2
iuj

−2y2i uit
2
j −2x2

j tiu
2
j −2x2

ju
2
i tj −2y2j t

2
iuj −2y2juit

2
j +2x2

i tiuiuj +2x2
iuitjuj

+2y2i tiuitj +2y2i titjuj +2x2
jtiuiuj +2x2

juitjuj +2y2j tiuitj +2y2j titjuj

+2xiyitiuitj +2xiyitiuiuj +2xiyititjuj +2xiyiuitjuj −2xiyjtiuitj
−2xiyjtiuiuj −2xiyjtitjuj −2xiyjuitjuj −2yixjtiuitj −2yixjtiuiuj

−2yixjtitjuj −2yixjuitjuj +2xjyjtiuitj +2xjyjtiuiuj +2xjyjtitjuj

+2xjyjuitjuj −2x2
iuiuj −2y2i titj −2x2

juiuj −2y2j titj −2xiyitiui +2xiyitiuj

+2xiyiuitj −2xiyitjuj +2xiyjtiui −2xiyjtiuj −2xiyjuitj +2xiyjtjuj

+2yixjtiui −2yixjtiuj −2yixjuitj +2yixjtjuj −2xjyjtiui +2xjyjtiuj

+2xjyjuitj −2xjyjtjuj −2xixju
2
i −2xixju

2
j −2yiyjt

2
j −2yiyjt

2
i +24tiuitjuj

+x2
iu

2
i +x2

iu
2
j +y2i t

2
i +y2i t

2
j +x2

ju
2
i +x2

ju
2
j +y2j t

2
i +y2j t

2
j −12t2iu

2
j −12u2

i t
2
j

−4t2i −4u2
i −4t2j −4u2

j −8tiuitj −8tiuiuj −8titjuj +8tiu
2
j +8t2iuj +8u2

i tj
+8uit

2
j −8uitjuj +8titj +8uiuj = 0, i = 3, . . . , 6, j = i+ 1, . . . , 7.

(12)

As the first two lines ℓ1, ℓ2 are fixed, the aim is to find five lines ℓ3, . . . , ℓ7
such that the distance of each pair of lines is 2. System (10)-(12) has 20
equations and 20 variables (xi, yi, ti, ui, i = 3, . . . , 7). Each equation is a
multivariate polynomial equation. Note that without fixing the angle of
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lines ℓ1 and ℓ2 at a given value, 90 degrees by our choice, we would have
a system of 20 equations and 21 variables and we would lose the chance of
finding isolated roots.

The numerical solution is presented in the next section. We emphasize
here that, via methods such as alphaCertified discussed in subsection 3.1,
the numbers themselves given in Table 1 prove the existence of real solutions
of system (10)-(12) and hence solve Littlewood’s problem. Nevertheless, we
also outline the method of computing the approximate solutions in Table 1.

2 Solving the polynomial system by the poly-

hedral homotopy continuation method

The polyhedral homotopy continuation method is developed in [8] to ap-
proximate all isolated zeros of a polynomial system and is well implemented
in software HOM4PS-2.0 [10]. The numerical experiments show that the
method is efficient and reliable. More importantly, it can handle the large
scale polynomial systems such as the system (10)-(12).

For a system of polynomials P (x) = (p1(x), . . . , pn(x)) with x = (x1, . . . , xn) ,
write

pj(x) =
∑

a∈Sj

cj,ax
a, j = 1, . . . , n,

where a = (a1, . . . , an) ∈ (N ∪ {0})n, cj,a ∈ C∗ = C\{0}, xa = xa1
1 · · ·xan

n ,
and Sj ⊂ (N ∪ {0})n is finite.

Let ωj : Sj → R be a random lifting function on Sj which lifts Sj

to its graph Ŝj = {â = (a, ωj(a))|a∈Sj} ⊂ Rn+1. A collection of pairs
({a1, a

′
1}, . . . , {an, a

′
n}),where aj , a

′
j ∈ Sj , is called a mixed cell if there ex-

ists α̂ = (α, 1) ∈ Rn+1 such that

〈âj , α̂〉 = 〈â′
j , α̂〉 < 〈â, α̂〉 for all a ∈ Sj\{aj, a

′
j}, j = 1, . . . , n.

Here, 〈 , 〉 stands for the usual inner product in the Euclidean space Rn+1. It
is well-known that the number of mixed cells of a polynomial system is finite
[8]. Those mixed cells play an important role in constructing the polyhedral
homotopy.

Consider a given mixed cell C = ({a11, a12}, . . . , {an1, an2}) with inner
normal α ∈ Rn, where aj1, aj2 ∈ Sj for each j = 1, . . . , n. Let c̃j,a be a
randomly chosen number in C, and denote

βj = min
a∈Sj

〈â, α̂〉 = 〈âj1, α̂〉 = 〈âj2, α̂〉.
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HOM4PS-2.0 constructs the homotopy to beH(x, t) = (h1(x, t), . . . , hn(x, t)),
t ∈ (−∞, 0], where

hj(x, t) =
∑

a∈Sj

[(1− et)c̃j,a + etcj,a]x
aet·(〈â,α̂〉−βj) for j = 1, . . . , n.

Note that H(x, 0) = P (x). When t goes to −∞, H(x, t) becomes a binomial
system











c̃11x
a11 + c̃12x

a12 = 0
...

c̃n1x
an1 + c̃n2x

an2 = 0

having |det (a11 − a12, . . . , an1 − an2)| nonsingular isolated solutions which
provide the starting points for tracking the solution paths of H(x, t) = 0
from t = −∞ to 0. For the details of the algorithm for tracking the solution
paths, see [10].

The polynomial system (10)-(12) consists of 20 equations in 20 variables.
We obtain 180, 734 mixed cells of the system by software MixedVol-2.0 [4],
which provide 121, 098, 993, 664 homotopy curves to be tracked. In order to
track so many curves efficiently, we use the subroutines in the TBB library
(Thread Building Blocks) to distribute data over multiple cores for parallel
computation. Employing total 12 cores in 2 Intel Xeon X5650 2.66 GHz
CPUs, 20 million curves are completed in a month. The first real solution
was found after tracking 80 million paths, and the second one was found after
tracking another 25 million paths.
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first solution second solution
x3 11.675771704477 2.075088491891
y3 −4.124414157636 −2.036516392124
t3 0.704116159640 −0.030209763440
u3 0.235129952793 0.599691085438
x4 3.802878122730 −2.688893665930
y4 −2.910611127075 4.070505903499
t4 0.895623427074 0.184499043058
u4 −0.149726023342 0.426965115851
x5 8.311818491659 −4.033142850644
y5 −1.732276613733 −2.655943449984
t5 2.515897624878 0.251380280590
u5 −0.566129665502 0.516678258430
x6 −6.487945444917 6.311134419772
y6 −8.537495065091 −5.229892181735
t6 0.785632006191 −0.474742889365
u6 0.338461562103 1.230302197822
x7 −3.168475045360 3.914613907006
y7 −2.459640638529 −7.881492743224
t7 0.192767499267 1.698198197367
u7 0.536724141124 −1.164062857743

Table 1. Two solutions of system (10)-(12) by HOM4PS-2.0

Since system (10)-(12) is symmetric in the five 4-tuples (xj , yj, tj , uj), j =
3, . . . , 7, each solution represents a family of 5! = 120 solutions, all of them re-
sulting in the same arrangements of the cylinders. The two solutions in Table
1 are obviously not permutations of each other. However, due to the rota-
tional and reflectional symmetries of the orthogonally fixed pair of cylinders
C1, C2, any arrangement represents a family of 8 congruent arrangements. In
order to show that the two solutions in Table 1 are non-congruent arrange-
ments, we have computed the angles between the pairs of cylinders. The
two sets of pairwise angles are disjoint except for the right angle of C1, C2.
Consequently, the two arrangements in Figure 1 and 2 are not congruent.
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Figure 1. The first set of seven mutually touching infinite cylinders

Figure 2. The second set of seven mutually touching infinite cylinders
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3 Verification of the roots

HOM4PS-2.0 provides the solution up to 50 digits (the first 12 of which being
correct), that can be used as a starting point of a solver using floating-point
arithmetic like fsolve in Maple 13. With several accuracy levels adjusted
previously by Digits:=10r (r = 2, 3, 4), CPU times of running fsolve with-
out any further specification on a personal computer with Pentium(R) 4 CPU
3.4GHz and 2GB of RAM are listed in Table 2.

Digits 102 103 104

CPU time 0.6 seconds 4 seconds 130 seconds

Table 2. CPU time of fsolve for 10r (r = 2, 3, 4) correct digits

It’s worth noting that fsolve recovers the solutions, within approxi-
mately the same CPU time as in Table 2, even if the starting values are
truncated at 2 digits. Moreover, truncation at 1 digit still works for the first
solution. Truncation at 1 digit, except for t3, which is truncated at 2 digits
(−0.03), works for the second solution.

However, a large number of correct digits is still not mathematical cor-
rectness. Two exact verification methods, alphaCertified and the interval
Krawczyk method are applied. Any of them would be sufficient of its own,
nevertheless, two is at least not worse than one.

3.1 alphaCertified

Smale’s α-theory [19] provides a positive, effectively computable constant
α(F,x) for a polynomial system F : Cn → Cn and a point x ∈ Cn with the
property that if

α(F,x) ≤ 13− 3
√
17

4
≈ 0.1576,

then Newton’s iteration starting from x converges quadratically to a solution
ξ close to x of the system F = 0. Based on Smale’s theory Hauenstein
and Sottile [7] developed algorithms which, for given F and x, compute an
upper bound on α(F,x) and on some related quantities. On that basis they
have built a multipurpose verification software called alphaCertified. It can
produce a certificate that
(i) x is an approximate solution of F = 0 in the above sense;
(ii) an approximate solution corresponds to an isolated solution;
(iii) the solution ξ corresponding to x is real (for real F ).

We have used alphaCertified v1.2.0 (August 15, 2011, GMP v4.3.1 &
MPFR v2.4.1-p5) with Maple 13 interface. The input of alphaCertified is
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system (10)-(12) and the approximate solutions in Table 1. We need to write
the first solution up to at least 12 digits, otherwise algorithm alphaCertified
does not certify it. The output of alphaCertified with the first solution as in
Table 1 consists of α = 4.4333 · 10−2, β = 3.1668 · 10−12, γ = 1.3999 · 1010
(see [7] for the details of α, β, γ). The second solution has to be written up
to at least 11 digits in order to be certified. The output of alphaCertified
with the second solution (truncated at 11 digits) consists of α = 6.578 · 10−2,
β = 2.2387 · 10−11, γ = 2.9392 · 109. Both solutions have been certified to be
real and isolated solutions.

3.2 The interval Krawczyk method

We seek for real solutions among the numerical solutions with imaginary
parts less than the heuristic threshold θ = 10−8. The residuals of the real
solutions are less than 5 · 10−14 and their condition numbers are at most
4.8 · 104, which show that these solutions are numerically reliable.

To guarantee that in a small neighborhood of each numerical solution
there is a unique exact physical solution, the interval Krawczyk method [9]
is applied for verification. The method is based on the following fact: for a
smooth function F : Rn → Rn and a point x ∈ Rn, let [ x ]r ⊂ Rn be the
ball centered at x with radius r > 0. Namely,

[ x ]r = {y ∈ R
n : ‖y − x‖∞ ≤ r} ,

where ‖ ‖∞ is the infinity norm. Assuming that the derivative of F at x,
denoted by DF (x), is nonsingular, the Krawczyk set of F associated with
[ x ]r is defined as

K(F, [ x ]r) = x−DF (x)−1F (x) +
[

I −DF (x)−1DF ([ x ]r)
]

([ x ]r − x).

If the Krawczyk set is contained in the interior of [ x ]r, then there exists a
unique zero of F in [ x ]r.

The task of verification is implemented by using the interval arithmetic in
INTLAB (INTerval LABoratory) [18]. In this implementation each numer-
ical solution x is taken as the center of the ball [ x ]r with radius r = 10−8.
Again, both solutions have been certified to be real and isolated solutions.

4 Conclusions and open questions

It remains an open question whether seven is the maximal number of mutu-
ally touching infinite cylinders. Following the same idea for eight cylinders,

11



a polynomial system of 25 variables and 27 equations is resulted in. It is
not yet dis/proven whether it has a solution. In case of seven cylinders, al-
ternative choices instead of that the first two cylinders are orthogonal need
to be analyzed. The maximal number of lines in Rn (n > 3) having the
same pairwise nonzero distance is also unknown. The authors believe that
the method proposed can be applied for a wide class of similar geometrical
problems.

The angle of the first two cylinders was fixed at 90◦ in (6)-(7) in order to
have the same number of variables and equations. A natural question arises
whether the solutions we have found can be extended if the angle of the first
two cylinders varies. We hope to return to this problem with an affirmative
answer.

Peter V. Pikhitsa (Seoul National University) contacted us after we had
uploaded our manuscript to arXiv. He let us know how physicists, including
himself, investigated the problem of mutually touching infinite cylinders [13,
14, 15, 16]. We think that the approximate solutions they found, especially
the one in [15, Fig.1b] could be used as starting points of the refinement
process, which may lead to exact solutions, similar to ours. The generalized
problem that allows different diameters of the cylinders is of mathematical
interest, too.
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