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Abstract

Let SN , N = 1, 2, . . . be a random walk on the integers, let α be an irrational
number and let ZN = {SNα}, where {·} denotes fractional part. Then ZN , N =
1, 2, . . . is a random walk on the circle, and from classical results of probability theory
it follows that the distribution of ZN converges weakly to the uniform distribution.
We determine the precise speed of convergence, which, in addition to the distribution
of the elementary step X of the random walk SN , depends sensitively on the rational
approximation properties of α.

1 Introduction

Let X1, X2, . . . be i.i.d. integer valued random variables and SN =
∑N

n=1Xn. As-
sume X1 is nondegenerate, that is, there does not exist a constant c such that
P(X1 = c) = 1. Let α be an irrational number and put ZN = {SNα}, where {·}
denotes fractional part. Then ZN , N = 1, 2, . . . is a random walk on the circle and
from classical results of probability theory (see e.g. [8]) it follows that the distri-
bution of ZN converges weakly to U(0, 1), the uniform distribution on (0, 1). The

speed of convergence in ZN
d→ U(0, 1), i.e. the order of magnitude of the quantity

∆N := sup
0≤x≤1

|P({SNα} < x)− x|

was first investigated by Schatte [15]. It is easy to see that ∆N depends sensitively
on the Diophantine approximation properties of α. Indeed, if α is very close to a
rational number p/q, then as long as |SN | is small, SNα is close to an integer multiple
of 1/q and thus the distribution of {SNα} is markedly different from U(0, 1). By a
standard definition (see e.g. [7, p. 121]), the type γ of an irrational number α is the
supremum of all c such that

lim inf
q→∞

qc∥qα∥ = 0,
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where ∥t∥ denotes the distance of a real number t from the nearest integer. Schatte
[15] proved that if E|X1|3 < ∞ and α is of finite type γ > 1, then

∆N = O(N−1/(2γ)+ε), ∆N = Ω(N−1/(2γ)−ε) (1.1)

holds for any ε > 0. Note that for two sequences aN ∈ R and bN > 0 the notation
aN = Ω(bN ) means that lim supN→∞ |aN |/bN > 0.

The purpose of the present paper is to give a sharp estimate of ∆N for a large
class of i.i.d. integer valued sequences (Xn) and irrational numbers α. Our results
will cover all (Xn) with EX2

1 < ∞ and also a large class of heavy-tailed random
variables X1 with P(|X1| > x) having order of magnitude x−β with some 0 < β < 2.
Concerning α, we will assume that

0 < lim inf
q→∞

qγ∥qα∥ < ∞ (1.2)

for some γ ≥ 1. If (1.2) holds, we will say that α has strong type γ. Note the differ-
ence between ordinary and strong type: relation (1.2) means that for a sufficiently
large constant C the approximation∣∣∣∣α− p

q

∣∣∣∣ < C

qγ+1

holds for infinitely many fractions p/q, while for a sufficiently small C it holds only
for finitely many p/q. In contrast, if the (ordinary) type of α is γ, we only know
that the approximation ∣∣∣∣α− p

q

∣∣∣∣ < 1

qγ+1+ε

holds for infinitely many fractions p/q if ε < 0 and finitely many fractions p/q if
ε > 0. For example, almost all irrational α (in the Lebesgue sense) have type 1,
while α has strong type 1 if and only if the continued fraction of α has bounded
partial quotients. Such numbers are called badly approximable.

For the class of irrational α of a given type, estimates of ∆N that are sharp up
to a factor of N ε, as in (1.1), are thus best possible. The first estimate of ∆N sharp
up to logarithmic factors is also due to Schatte [15]: if E|X1|3 < ∞ and α is badly
approximable, then

∆N = O(N−1/2 logN), ∆N = Ω(N−1/2 log−1/2N).

Using elaborate arithmetic and combinatorial tools, Su [16] proved that if P(X1 =
1) = P(X1 = −1) = 1/2 and α is a quadratically irrational number, then

C1N
−1/2 ≤ ∆N ≤ C2N

−1/2 (1.3)

with some positive constants C1, C2 > 0, yielding the exact order of magnitude of
∆N . According to the theorem of Lagrange, α is quadratically irrational if and only
if the partial quotients in the continued fraction of α are eventually periodic. In
particular, quadratically irrational numbers are badly approximable. The method
used by Su relies heavily on this periodicity, and thus is not applicable to all badly
approximable numbers.

We now formulate our results. The main message of our first theorem is that
(1.3) holds under much more general circumstances. In particular, it is enough to
assume the boundedness instead of the periodicity of the partial quotients in the
continued fraction of α.
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Theorem 1.1. Let X1, X2, . . . be i.i.d. integer valued, nondegenerate random vari-
ables with EX2

1 < ∞, and let SN =
∑N

n=1Xn. If α is badly approximable, then

C1N
−1/2 ≤ ∆N ≤ C2N

−1/2 (1.4)

for every N ∈ N with some constants C1, C2 > 0 depending only on α and the
distribution of X1.

As we will see, the upper bound in (1.4) remains valid assuming only that X1 is
a nondegenerate random variable.

LetX1, X2, . . . be i.i.d. random variables with EX1 = 0,EX2
1 = 1 and E|X1|2+δ <

∞ for some 0 < δ ≤ 1 and let SN =
∑N

n=1Xn. By the classical Berry–Esseen esti-
mate (see e.g. [12], p. 151) we have

∆̃N := sup
x∈R

|P(SN/
√
N < x)− Φ(x)| = O(N−δ/2)

where Φ(x) = (2π)−1/2
∫ x
−∞ e−t2/2dt is the standard normal distribution function.

The remainder term here cannot be improved in general. Thus we see that while
in the case of ordinary i.i.d. sums we need finite third moments for the convergence
speed O(N−1/2) in the CLT, in the case of mod 1 sums the nondegeneracy of X1

suffices to this purpose.
We now turn to the case of an irrational α of strong type γ > 1, when we need

some additional technical assumptions onX1. For an integer valued random variable
Y let suppY = {k ∈ Z : P(Y = k) > 0} denote the support of (the distribution of)
Y .

Theorem 1.2. Let X1, X2, . . . be i.i.d. integer valued, nondegenerate random vari-
ables with EX2

1 < ∞, and let SN =
∑N

n=1Xn. Suppose that suppX1 is a (finite or
infinite) arithmetic progression, and that there exists a constant K > 0 such that
for any large enough N ∈ N the sequence P(SN = k), k ∈ suppSN is nonincreasing
for k > ESN + K

√
N and nondecreasing for k < ESN − K

√
N . If α is of strong

type γ > 1, then

∆N = O(N−1/(2γ)), ∆N = Ω(N−1/(2γ))

with implied constants depending only on α and the distribution of X1.

Again, the upper bound for ∆N is valid assuming only that X1 is nondegen-
erate. The monotonicity assumption on the sequence P(SN = k), k ∈ suppSN is
particularly simple to check if SN has a unimodal distribution, that is, P(SN = k),
k ∈ suppSN is nondecreasing for some k < k∗ and nonincreasing for k > k∗. For
example, if suppX1 has cardinality 2, then SN has a binomial, hence unimodal
distribution. Verifying a conjecture of Brockett and Kemperman [2], Odlyzko and
Richmond [10] proved that if the support of X1 is the set {0, 1, . . . , d} for some
d ≥ 1, then the distribution of SN is unimodal for N ≥ N0.

In the previous two theorems we assumed that X1 has a finite variance. Let us
now consider a random variable X1 with a “heavy-tailed” distribution, that is, with
EX2

1 = ∞. For the sake of simplicity we will assume that the tail distribution of
|X1| is a power function, namely

P(|X1| ≥ x) ∼ cx−β as x → ∞ (1.5)
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with some constants c > 0 and 0 < β < 2. By classical results of probability theory
(see e.g. [4], Chapter XVII.5), relation (1.5) and the additional assumption

lim
x→∞

P(X1 ≥ x)/P(|X1| ≥ x) exists (1.6)

imply that that for a suitable centering factor aN we have

(SN − aN )/N1/β d−→ Gβ (1.7)

where Gβ is a stable law with index β. Moreover, (1.5) and (1.6) together are also
necessary for (1.7). We also note that for 0 < β < 1 we can choose aN = 0 and for
1 < β < 2 (in which case EX1 exists), we can choose aN = ESN = NEX1. The case
β = 1 is exceptional: for symmetric X1 we can choose aN = 0, but e.g. if X1 > 0
and P(X1 = k) = 6/(π2k2) (k = 1, 2, . . .), then (1.7) holds with aN = 6

π2N logN .
We can now formulate the analogue of Theorem 1.1 for heavy-tailed distribu-

tions.

Theorem 1.3. Let X1, X2, . . . be i.i.d. integer valued random variables and let
SN =

∑N
n=1Xn. Suppose that (1.5) and (1.6) hold. If α is badly approximable,

then
C1N

−1/β ≤ ∆N ≤ C2N
−1/β (1.8)

for every N ∈ N with some constants C1, C2 > 0 depending only on α and the
distribution of X1.

As we will see, for the upper bound in (1.8) we need only (1.5), but not (1.6).
The proof of the lower bound will use essentially the limit relation (1.7) (and thus
both of (1.5) and (1.6)), but the centering factor aN in (1.7) does not appear in
(1.8). We note also that by choosing β sufficiently close to 0, ∆N will converge to
0 at an arbitrarily fast polynomial speed.

Finally, we give an analogue of Theorem 1.2 for heavy-tailed distributions.

Theorem 1.4. Let X1, X2, . . . be i.i.d. integer valued random variables, let SN =∑N
n=1Xn and assume that (1.7) holds with some centering factor aN . Suppose,

moreover, that suppX1 is an arithmetic progression, and that there exists a constant
K > 0 such that for any large enough N ∈ N the sequence P(SN = k), k ∈ suppSN

is nonincreasing for k > aN +KN1/β and nondecreasing for k < aN −KN1/β. If
α is of strong type γ > 1, then

∆N = O(N−1/(βγ)), ∆N = Ω(N−1/(βγ)) (1.9)

with implied constants depending only on α and the distribution of X1.

As in the case of Theorem 1.3, the upper bound in (1.9) is valid under assuming
only (1.5), while the proof of the lower bound will make an essential use of (1.7),
i.e. both (1.5) and (1.6).

It is worth comparing Theorems 1.3, 1.4 with the corresponding classical results
for the speed of convergence of centered and normed sums of i.i.d. random variables
to a stable law. Assume (1.7), let F denote the distribution function of X1 and

∆∗
N = sup

x∈R
|P((SN − aN )/N1/β < x)−Gβ(x)|. (1.10)

4



Satybaldina [13], [14] proved that under the additional assumption∫
R
|x|⌊β⌋|F (x)−Gβ(x)|dx < ∞ (1.11)

where ⌊β⌋ denotes the greatest integer smaller or equal to β, we have

∆∗
N =

{
O(N−(2/β−1)) if 1 ≤ β < 2

O(N−(1/β−1)) if 0 < β < 1.
(1.12)

Hall [5] proved that without the assumption (1.11) these estimates are generally
not valid and under some monotonicity assumptions for the distribution of X1 he
gave necessary and sufficient conditions for weaker polynomial estimates of ∆∗

N .
For remainder term estimates for independent, not identically distributed random
variables Xk we refer to Paulauskas [11] and the references therein. Just as in the
case of mod 1 sums, choosing β sufficiently close to 0, ∆∗

N will converge to 0 at an
arbitrarily fast polynomial speed.

If in the definition of ∆N we replace the distribution of {SNα} with the corre-
sponding empirical measure, i.e. N−1

∑N
n=1 δ{Snα}, where δx denotes the probability

measure concentrated at x, then ∆N becomes the star discrepancy D∗
N of the first

N terms of the sequence {Snα}, i.e.

D∗
N := sup

0≤x≤1

∣∣∣∣∣ 1N
N∑

n=1

(
I[0,x)({Snα})− x

)∣∣∣∣∣
where I[0,x) is the indicator function of the interval [0, x). The discrepancy DN of
the first N terms of the sequence {Snα} is defined by taking the supremum over all
subintervals [x, y) ⊂ [0, 1], i.e.

DN := sup
0≤x<y≤1

∣∣∣∣∣ 1N
N∑

n=1

(
I[x,y)({Snα})− (y − x)

)∣∣∣∣∣ .
These two quantities also provide a natural measure of the distance of the distribu-
tion of the sequence {Snα} from the uniform distribution, and are widely used in
analysis and number theory. Note that D∗

N and DN are random variables. In [1]
we gave estimates of DN for the same class of random walks SN and irrational α
as in the present paper. Estimating DN , however, is considerably harder than esti-
mating ∆N since instead of using Fainleib’s inequality employed below, we need the
Erdős–Turán inequality leading to the estimation of exponential sums and rather
hard combinatorics. As a consequence, the results in [1] are slightly less precise
than those in the present paper and are also of a different character.

2 Upper estimates

In this section we prove the upper estimates in Theorems 1.1–1.4 in a somewhat
stronger form. The proof will be based on the Fainleib inequality (see e.g. [3], [9])
which states that for any H ∈ N we have

∆N ≤ 4

H
+

4

π

H∑
h=1

|φ(2πhα)|N

h
(2.1)
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where φ denotes the characteristic function of X1. Note that the Fainleib inequality
is basically an Erdős–Turán-type inequality for ∆N instead of the discrepancy DN .
It is thus natural to prove upper estimates for ∆N under certain conditions for φ.

Proposition 2.1. Let X1, X2, . . . be i.i.d. random variables and let SN =
∑N

n=1Xn.
Suppose that there exist real constants 0 < β ≤ 2, c > 0, and an integer d > 0 such
that |φ(2πx)| ≤ 1− c∥dx∥β for any x ∈ R. If an irrational α satisfies ∥qα∥ ≥ Cq−γ

for every q ∈ N with some constants C > 0 and γ ≥ 1, then ∆N = O
(
N−1/(βγ)

)
with an implied constant depending only on α and the distribution of X1.

Note that if X1 is integer valued and nondegenerate, then its characteristic
function φ satisfies the conditions of Proposition 2.1 with β = 2, a suitable c > 0 and
with d > 0 denoting the greatest common divisor of supp (X1 −X2). Furthermore,
if there exist constants K,x0 > 0 such that

E(X2
1I{|X1|≤x}) ≥ Kx2−β for x ≥ x0, (2.2)

then the conditions of Proposition 2.1 are satisfied with the same β, d > 0 denoting
the greatest common divisor of supp (X1 − X2) and some c > 0. For a proof of
these simple facts see e.g. [1, Proposition 3.2]. This shows that the upper bounds
in Theorems 1.1, 1.2 remain valid valid under the sole assumption that X1 is non-
degenerate. Note also that (2.2) follows from (1.5) by integration by parts and thus
the upper estimates in Theorems 1.3, 1.4 are valid assuming only (1.5).

Proof. Let us apply the Fainleib inequality (2.1) with H = [N1/(βγ)]. Using the
estimate

|φ(2πhα)|N ≤
(
1− c∥hdα∥β

)N
≤ e−c∥hdα∥βN ,

it will thus be enough to prove

[N1/(βγ)]∑
h=1

e−c∥hdα∥βN

h
= O

(
N−1/(βγ)

)
. (2.3)

We wish to use summation by parts in (2.3). To this end, let sh =
∑h

j=1 e
−c∥jdα∥βN

for any 1 ≤ h ≤ [N1/(βγ)]. Let K = (hd)γ/C (where C is the constant in the
Proposition) and let aj ∈ (−1/2, 1/2] be the unique number equivalent to jdα mod
1. On the one hand, since ∥jdα∥ ≥ C(hd)−γ , we have aj ̸∈ (−1/K, 1/K) for every
1 ≤ j ≤ h. On the other hand, for any 1 ≤ j, j′ ≤ h, j ̸= j′ we have

|aj − aj′ | ≥ ∥(j − j′)dα∥ ≥ C(hd)−γ = 1/K,

and thus each interval of the form [k/K, (k + 1)/K) or (−(k + 1)/K,−k/K], k =
1, 2, . . . contains aj for at most one index j. Therefore

sh ≤ 2
∞∑
k=1

e−c(k/K)βN = 2
∞∑
k=1

e−aNkβ/hβγ

with a constant a = cCβ/dβγ . Note that here the k = 1 term dominates. Indeed,
using the fact that N/hβγ ≥ 1 we can further estimate sh as

sh ≤ 2e−aN/hβγ
∞∑
k=1

e−aN(kβ−1)/hβγ ≤ 2e−aN/hβγ
∞∑
k=1

e−a(kβ−1).
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The value of this convergent series depends only on a and β, hence sh = O(e−aN/hβγ
).

Applying summation by parts to the left hand side of (2.3) we thus obtain

[N1/(βγ)]∑
h=1

e−c∥hdα∥βN

h
=

[N1/(βγ)]−1∑
h=1

sh
h(h+ 1)

+
s[N1/(βγ)]

[N1/(βγ)]

= O

( ∞∑
h=1

e−aN/hβγ

h2
+N−1/(βγ)

)
.

By checking that the terms in this series are increasing on 1 ≤ h ≤ (aβγN/2)1/(βγ)

we finally get

[N1/(βγ)]∑
h=1

e−c∥hdα∥βN

h
= O

N1/(βγ) e
−2/(βγ)

N2/(βγ)
+

∑
h>(aβγN/2)1/(βγ)

1

h2
+N−1/(βγ)


= O(N−1/(βγ)).

3 Lower estimates

In this section we prove the lower estimates in Theorems 1.1–1.4. First, note that the
lower estimates in Theorems 1.1 and 1.3 follow easily from the local limit theorem [6,
Theorem 4.2.1] for i.i.d. sums. Indeed, in Theorem 1.1 (SN − ESN )/

√
N converges

weakly to a normal law and under the conditions of Theorem 1.3 we have (1.7) with a
suitable centering factor aN . By [6, Theorem 4.2.1], for a suitable integer k we have
P(SN = k) ≥ C1/

√
N and P(SN = k) ≥ C1/N

1/β, respectively, with some constant
C1 > 0 depending only on the distribution of X1. Hence the distribution of {SNα}
has an atom with weight at least C1/

√
N resp. C1/N

1/β, so by the continuity of the
uniform distribution we have ∆N ≥ C1/(2

√
N) and ∆N ≥ C1/(2N

1/β), respectively,
for N ≥ N0. Note that in particular the lower estimates in Theorems 1.1 and 1.3
hold for any irrational α regardless of its Diophantine character, with a constant
C1 > 0 independent of α.

The lower estimates in Theorems 1.2 and 1.4 are deduced in the following com-
mon form.

Proposition 3.1. Let X1, X2, . . . be i.i.d. integer valued random variables and let
SN =

∑N
n=1Xn. Let 0 < β ≤ 2, and suppose that there exists a sequence EN ∈ R

for which P(|SN−EN | ≥ tN1/β) → 0 uniformly in N as t → ∞. Suppose, moreover,
that suppX1 is a (finite or infinite) arithmetic progression, and that there exists a
constant K > 0 such that for any large enough N ∈ N the sequence P(SN = k),
k ∈ suppSN is nonincreasing on k > EN + KN1/β and nondecreasing on k <
EN −KN1/β. If α is of strong type γ > 1, then ∆N = Ω(N−1/(βγ)) with an implied
constant depending only on α and the distribution of X1.

If EX2
1 < ∞, then P(|SN −ESN | ≥ t

√
N) → 0 uniformly in N as t → ∞ because

of the Chebyshev inequality. The lower estimate in Theorem 1.2 thus follows from
Proposition 3.1 with β = 2. Under the conditions of Theorem 1.4 there exists a
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sequence EN ∈ R such that (SN − EN )/N1/β converges to a stable distribution of
index β which implies that

P(|SN − EN | ≥ tN1/β) → 0 uniformly in N as t → ∞. (3.1)

Thus the lower estimate in Theorem 1.4 also follows.

Proof. We may assume that X1 is nondegenerate, otherwise the claim is trivial. Let
d > 0 be the difference of suppX1, that is, suppX1 = {d0 + kd : k ∈ I} with some
integer d0 and interval I of integers of the form I = [0, i], I = (−∞, 0], I = [0,∞)
or I = Z. Note that suppSN is also an arithmetic progression with difference d > 0.

Let ε > 0 be an arbitrary number, to be chosen later. We claim that there
exist constants N0 > 0 and a > 0 depending only on ε and the distribution of
X1 such that for any N ≥ N0 and any k ∈ suppSN , |k − EN | ≥ aN1/β we have
P(SN = k) < ε/|k − EN |. Indeed, using the monotonicity assumption, for any
k ∈ suppSN , k − EN > 2KN1/β we have

⌊
k − EN

2d

⌋
P(SN = k) ≤

⌊(k−EN )/(2d)⌋∑
ℓ=1

P(SN = k − dℓ)

≤ P
(
SN − EN ≥ k −EN

2

)
→ 0

when (k−EN )/N1/β → ∞. A similar estimate holds for k−EN < −2KN1/β. The
existence of N0 > 0 and a > 0 as in the claim clearly follow.

The definition (1.2) of strong type implies the existence of a constant C > 0
depending only on α such that ∥qα∥ < Cq−γ for infinitely many q ∈ N. For every
such q let N = ⌊qβγ/b⌋, where b > 0 is a large constant to be chosen later, depending
on α, the distribution of X1, ε > 0 and a > 0 from the previous claim. We may
assume N ≥ N0.

Let f(x) = P({SNα} < x)− x. By considering all possible values k ∈ suppSN

f(x) =
∑

k∈suppSN

P(SN = k)
(
I[0,x)({kα})− x

)
. (3.2)

Let p denote the integer closest to qα. For any k ∈ suppSN , |k − EN | < qγ/(3C)
we have∣∣∣∣kα− EN

(
α− p

q

)
− kp

q

∣∣∣∣ = |k − EN | ·
∣∣∣∣α− p

q

∣∣∣∣ < qγ

3C
· Cq−γ

q
=

1

3q
.

This means that the distance of kα from the set EN (α− p/q) + (1/q)Z is less than
1/(3q), in other words, kα does not fall into the middle third interval between any
two consecutive points of the arithmetic progression EN (α−p/q)+(1/q)Z. Consider
such a middle third interval in [0, 1]. More precisely, let J = [u, v) ⊆ [0, 1] be an
interval of length 1/(3q) such that u ∈ EN (α − p/q) + 1/(3q) + (1/q)Z. Then for
any k ∈ suppSN , |k−EN | < qγ/(3C) we have {kα} ̸∈ J . Therefore, using (3.2) we
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can write f(v)− f(u) in the form

f(v)− f(u) =
∑

k∈suppSN

P(SN = k)

(
IJ({kα})−

1

3q

)

= P
(
|SN − EN | < qγ

3C

)
−1

3q
+

∑
k∈suppSN

|k−EN |≥qγ/(3C)

P(SN = k)

(
IJ({kα})−

1

3q

)
. (3.3)

By choosing b > 0 large enough we can ensure that the probability in the first term
in (3.3) is at least 1/2 (see (3.1)), and hence the term itself is at most −1/(6q). To
prove the proposition it will therefore be enough to show that the second term in
(3.3) is less than or equal to 1/(12q). Indeed, this would imply

sup
0≤x≤1

|f(x)| ≥ |f(v)− f(u)|
2

≥ 1

24q
= Ω(N−1/(βγ)).

We will only estimate the terms k ∈ suppSN , k − EN ≥ qγ/(3C) in the second
term of (3.3). The proof for k−EN ≤ −qγ/(3C) is analogous. Let k0 be the largest
integer in suppSN such that k0−EN < qγ/(3C). (Note we may have k0 < 0.) Since
suppSN is an arithmetic progression with difference d, we wish to estimate

M :=
∑
k>k0

k≡k0 (mod d)

P(SN = k)

(
IJ({kα})−

1

3q

)
.

We will use summation by parts to estimate M . To this end, for any k > k0, k ≡ k0
(mod d) let

Ak =
∑

k0<ℓ≤k
ℓ≡k0 (mod d)

(
IJ({ℓα})−

1

3q

)
.

By the definition of discrepancy, |Ak| is at most (k− k0)/d times the discrepancy of
the first (k−k0)/d terms of the sequence {ndα+k0α}, n = 1, 2, . . . . The translation
by k0α modulo 1 does not affect the discrepancy, and dα is also of strong type
γ > 1. From classical estimates of the discrepancy of Kronecker sequences (see e.g.
[7, Lemma 3.2 p. 122, Exercise 3.12 p. 131]) we thus have |Ak| ≤ B(k− k0)

1−1/γ for
some constant B > 0 depending only on α and the distribution of X1 (in fact, the
value of d).

By choosing b > 0 large enough, we can ensure qγ/(3C) > aN1/β . Then for
every k > k0 we have P(SN = k) < ε/(k − EN ). In particular, P(SN = k)|Ak| → 0
as k → ∞, therefore we can apply summation by parts to the infinite series defining
M to obtain

M =
∑
k>k0

k≡k0 (mod d)

Ak (P(SN = k)− P(SN = k + d)) .

For any integer ℓ ≥ 0 consider the terms for which 2ℓ ≤ k − k0 < 2ℓ+1. Observe
that after applying the triangle inequality, we obtain a telescoping sum because of
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the monotonicity assumption on P(SN = k). Using |Ak| ≤ B(k − k0)
1−1/γ and

P(SN = k) < ε/(k − EN ) we thus obtain∣∣∣∣∣∣∣∣∣
∑

2ℓ≤k−k0<2ℓ+1

k≡k0 (mod d)

Ak (P(SN = k)− P(SN = k + d))

∣∣∣∣∣∣∣∣∣
≤ B2(ℓ+1)(1−1/γ)

∑
2ℓ≤k−k0<2ℓ+1

k≡k0 (mod d)

(P(SN = k)− P(SN = k + d))

≤ 2B2ℓ(1−1/γ) ε

2ℓ + k0 − EN
.

Here k0 − EN ≥ qγ/(3C) − d, and we may assume qγ/(3C) − d ≥ qγ/(6C). Hence
by summing over ℓ ≥ 0 we get

|M | ≤ 2εB

∞∑
ℓ=0

2ℓ(1−1/γ)

2ℓ + qγ/(6C)
.

Estimating the terms 2ℓ ≤ qγ/(6C) and 2ℓ > qγ/(6C) separately, we finally obtain

|M | ≤ 2εB

 ∑
2ℓ≤qγ/(6C)

2ℓ(1−1/γ)

qγ/(6C)
+

∑
2ℓ>qγ/(6C)

2−ℓ/γ


≤ 2εB

(
(6C)1/γ

1− 21/γ−1
+

(6C)1/γ

1− 2−1/γ

)
1

q
.

By choosing ε > 0 small enough in terms of B,C and γ (in particular, depending
only on α and the distribution of X1), we can ensure |M | < 1/(24q). Similarly, in
the second term of (3.3) the sum over k−EN < −qγ/(3C) will be less than 1/(24q).
Hence |f(v)− f(u)| ≥ 1/(12q), and we are done.

Acknowledgement. The authors are indebted to the referee for valuable com-
ments.
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