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Abstract

The St. Petersburg paradox (Bernoulli 1738) concerns the fair entry fee in a
game where the winnings are distributed as P (X = 2k) = 2−k, k = 1, 2, . . .. The
tails of X are not regularly varying and the sequence Sn of accumulated gains has,
suitably centered and normalized, a class of semistable laws as subsequential limit
distributions (Martin-Löf (1985), Csörgő and Dodunekova (1991)). This has led to
a clarification of the paradox and an interesting and unusual asymptotic theory in
past decades. In this paper we prove that Sn can be approximated by a semistable
Lévy process {L(n), n ≥ 1} with a.s. error O(

√
n(log n)1+ε) and, surprisingly, the

error term is asymptotically normal, exhibiting an unexpected central limit theorem
in St. Petersburg theory.
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1 Introduction

Let X,X1, X2, . . . be i.i.d. r.v.’s with

P (X = 2k) = 2−k, (k = 1, 2, . . . ) (1.1)

and let Sn =
∑n

k=1Xk. The asymptotic behavior of the sequence {Sn, n ≥ 1}
has attracted considerable attraction in the literature in connection with the St.
Petersburg paradox concerning the ’fair’ entry fee in a game where the winnings are
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distributed asX. We refer to Csörgő and Simons [10] for the history and bibliography
of the problem. Feller [11] proved that

lim
n→∞

Sn

n log2 n
= 1 in probability

(where log2 denotes logarithm with base 2) and Martin-Löf [16] showed

S2k/2
k − k

d−→ G

where G is the infinitely divisible distribution function with characteristic function
exp(g(t)), where

g(t) =

0∑
l=−∞

(eit2
l − 1− it2l)2−l +

∞∑
l=1

(eit2
l − 1)2−l. (1.2)

Let Gγ denote the distribution with characteristic function exp(γg(t/γ) − it log2 γ)
and let γn = n/2[log2 n]+1 ∈ [1/2, 1) be the parameter describing the location of n
between two consecutive powers of 2, where [y] denotes the (lower) integer part of
y ∈ R. Csörgő [6] proved that

sup
x

∣∣∣∣P (Sn

n
− log2 n ≤ x

)
−Gγn(x)

∣∣∣∣ −→ 0 as n → ∞ (1.3)

and determined the precise convergence rate. It follows (and actually it was proved
earlier in [8]) that the class of subsequential limit distributions of Sn/n − log2 n is
the class

G = {Gγ : 1/2 ≤ γ < 1}.

If n runs through the interval [2k, 2k+1], then Gγn moves through the distributions
Gj/2k+1 , 2k ≤ j ≤ 2k+1 representing, in view of G1/2 = G1, a ”circular” path in G. In
view of (1.3), the distribution of Sn/n− log2 n also describes approximately a circular
path, a remarkable asymptotic behavior called in [6] merging.

From the merging theorem (1.3) and the results of [8] it also follows that given
γ ∈ (1/2, 1) and an increasing sequence (nk) of integers, the limit relation

Snk
/nk − log2 nk

d−→ Gγ (1.4)

holds iff γnk
→ γ as k → ∞. For γ = 1/2 this criterion breaks down and (1.4) holds

iff the sequence γnk
has no other cluster points than 1/2 and 1.

Using a decomposition idea of Le Page, Woodroofe and Zinn [15], in [3] a new
representation of the limiting semistable variable of Petersburg sums was given, sim-
plifying the theory considerably and leading to new asymptotic information. Let
Ψ(x) denote the function on (0,∞) which grows linearly from 1 to 2 on any interval
[2k, 2k+1), (k ∈ Z), let η1, η2, . . . be independent exponential random variables with
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mean 1 and let Zk =
∑k

j=1 ηk. In [3], Lemma 2 it was proved that for any 1 ≤ γ < 2
the series

Y (γ) =

∞∑
j=1

[
1

Zj
Ψ

(
Zj

γ

)
− 1

j
Ψ

(
j

γ

)]
(1.5)

converges absolutely with probability 1 and the limit distribution Gγ above is iden-
tical with the distribution of Y (γ) + cγ , where

cγ =
∞∑
k=1

{2kγ}
2kγ

− log2 γ.

We note that for each γ ∈ [1/2, 1) we have

cγ = ξ(γ) := 2−
∞∑
k=1

kεk
2kγ

− log2 k

where the εk’s are the dyadic digits of γ given by γ =
∑∞

k=1 εk2
−k and the function

ξ was introduced by Csörgő and Simons [9], see also Kern and Wiedrich [14]. In
contrast to the representation of the limiting semistable variable of St. Petersburg
theory as an infinite weighted sum of independent Poisson variables in [8], the terms
of the sum (1.5) are dependent random variables. For an analogous representation
of stable random variables, see [15]. A similar representation, implicit in [3], holds
for the partial sums Sn, namely

1

n
Sn − an,γn

d
= (1 + εn)

n∑
j=1

[
1

Zj
Ψ

(
Zj

(1 + εn)γn

)
− 1

j
Ψ

(
j

γn

)]
+ εnan,γn (1.6)

where εn = Zn+1/n−1, γn = n/2[log2 n]+1 is the dyadic location parameter introduced
above and

an,γ =

n∑
j=1

Ψ(j/γ)

j
. (1.7)

For a simple proof, see Section 2. Note that the equality in (1.6) holds only in dis-
tribution and thus (1.6) yields an expansion of Sn in the sense of Strassen: Sn can
be redefined on a suitable probability space together with a sequence (εn) of i.i.d.
exponential random variables such that setting Zn =

∑n
k=1 εk, (1.6) holds pointwise.

This makes the formula easy to apply, in particular, (1.6) makes the asymptotic the-
ory of St. Petersburg sums very transparent. (Note the difference between (1.6) and
the Edgeworth expansion of Sn in [7], [17] giving an expansion of the distribution
function of Sn. The expansion (1.6) is particularly convenient for problems involving
almost everywhere convergence and asymptotics.) By the law of the iterated loga-
rithm we have εn = O(n−1/2(log log n)1/2) a.s. and an easy calculation shows that
replacing εn by 0 in (1.6) results in an error of oP (1) on the right hand side, and thus
we get the result

1

n
Sn − an,γn = Y (γn) + oP (1), (1.8)
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which is meant again in the sense that for each fixed n the variables Sn and Y (γn) can
be defined on a common probability space such that (1.8) holds. Relation (1.8) thus
yields a pointwise version of the merging result (1.3). The purpose of the present
paper is to prove that actually much more is valid: the partial sum process of (Xn) can

be approximated by a semistable Lévy process {L(t), t ≥ 0} with L(1)
d
= Y (1) with

a.s. error O(
√
n(log n)1+ε) and an asymptotically normal error term, establishing an

unexpected central limit theorem in St. Petersburg theory.

Theorem 1.1 Let {L(t), t ≥ 0} be the Lévy process defined by

E(exp(iuL(t)) = exp(tg(u)). (1.9)

where g is the function in (1.2). Then on a suitable probability space one can define
the St. Petersburg sequence (Xn) and the process {L(t), t ≥ 0} jointly such that

n∑
k=1

Xk = L(n) +O(
√
n (log n)1+ε) a.s. for any ε > 0 (1.10)

and for some sequence an ≍ (n log n)1/2 we have

a−1
n

(
n∑

k=1

Xk − L(n)

)
d−→ N(0, 1). (1.11)

Here cn ≍ dn means that the ratio cn/dn lies between positive constants. For
an explicit construction of an, see (2.22). Due to the irregular tail behavior of the
random variables in our construction (see the proof of Lemma 2.1), it seems likely
that an ≍ (n log n)1/2 in Theorem 1.1 cannot be replaced by an ∼ c(n log n)1/2 with
a constant c.

The process L(t) was introduced by Martin-Löf [16] who proved the scaling rela-
tion

g(2mt) = 2m(g(t)− imt).

From this it follows that the transformation t −→ 2t does not change the distribution
of the process

{L(t)/t− log2 t, t > 0}. (1.12)

In particular, L(2)/2 − 1
d
= L(1), and since L(2)

d
= L(1) ⋆ L(1), the distribution of

L(1) is semistable. In view of the atomic Lévy measure in the characteristic function
of Z(1), its distribution is not stable. It also follows that

L(n)/n− log2 n
d
= L(γn)/γn − log2 γn

d
= Gγn , (1.13)

showing that L(n)/n − log2 n exhibits the merging behavior (1.3) in an ideal way,
with zero error. Thus Theorem 1.1 gives an invariance principle for the merging
result (1.3) and actually, for a class of further limit theorems for (Xn). It shows
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also the surprising fact that the partial sum process of (Xn) can be represented as a
semistable Lévy process with an asymptotically normal perturbation.

In a previous paper [1], a strong approximation of St. Petersburg sums with the
weaker remainder term O(n5/6+ε) and without the asymptotic normality of the error
term was proved by a standard blocking argument. The proof in [1] works for a
large class of i.i.d. sequences (Xn) in the domain of geometric partial attraction of a
semistable law G. In contrast, the proof of Theorem 1.1 uses the structure of the St.
Petersburg sequences in a substantial way and whether Theorem 1.1 remains valid
for a larger class of i.i.d. sequences remains open.

Weak and strong approximation of partial sums of i.i.d. random variables (Xn)
in the domain of attraction of stable laws were proved in Stout [21], Simons and
Stout [20], Berkes and Dehling [2]. The remainder terms there are given in terms
of the function β(x) = xα|P (X1 < x) − G(x)|, where G is the limit distribution,
and are rather complicated. In the case when β(x) is a slowly varying function
tending to 0, lower bounds for the remainder term (valid for any construction) are
also given in [2], leaving only a small gap between the upper and lower bounds.
However, in the case of the stable analogue of St. Petersburg sums, when G is a
stable distribution with parameters α = 1, β = −1 (see e.g. [13], p. 164), we have
β(x) = O(x−γ) for some γ > 0 and no lower bounds for the remainder term have been
found. For the same reason, we do not have universal lower bounds for the remainder
term in the St. Petersburg game and thus, even though Theorem 1.1 determines the
precise stochastic order of magnitude of the error term for a specific construction,
the question whether other constructions can give a better error term remains open.

2 Proofs

We first prove (1.6). Clearly

P (X1 > x) = Ψ(x)/x (x ≥ 1). (2.1)

Let F denote the distribution function of X1 and let F−1(x) = inf{t : F (t) ≥ x} be
its (generalized) inverse. Then

F−1(x) = 2k for x ∈ (1− 2−(k−1), 1− 2−k], k = 1, 2, . . .

and thus
F−1(1− x) = x−1Ψ(x) for 0 < x < 1. (2.2)

We also have
Ψ(2−k x) = Ψ(x) for all x ∈ R, k ∈ Z.

As in the Introduction, let η1, η2, . . . , be independent exp(1) random variables, Zk =∑k
j=1 ηj , k = 1, 2, . . ., put

X∗
j,n = F−1

(
1− Zj

Zn+1

)
, 1 ≤ j ≤ n
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and let X1,n ≥ . . . ≥ Xn,n be the decreasing ordered sample of X1, . . . , Xn. By
the well known representation of ordered samples (see e.g. [5], page 285 or [19],
p. 335), the vector (Z1/Zn+1, . . . , Zn/Zn+1) is distributed as the ordered sample
Un,1 ≤ . . . ≤ Un,n of i.i.d. uniform r.v.’s U1, . . . , Un in (0, 1) and thus the vectors
(X1,n, . . . , Xn,n) and (X∗

1,n, . . . , X
∗
n,n) have the same distribution. By (2.2)

X∗
j,n = F−1

(
1− Zj

Zn+1

)
=

Zn+1

Zj
Ψ

(
Zj

Zn+1

)
= (1 + εn)

n

Zj
Ψ

(
Zj

n
(1 + εn)

−1

)
(2.3)

where εn = Zn+1/n − 1. Now if 2k ≤ n < 2k+1, then γn = n/2k+1 and thus from
(2.3) we get

X∗
j,n

n
= (1 + εn)

1

Zj
Ψ

(
Zj

γn 2k+1
(1 + εn)

−1

)
= (1 + εn)

1

Zj
Ψ

(
Zj

(1 + εn)γn

)
(2.4)

which implies (1.6) immediately.
We turn now to the proof of Theorem 1.1, which uses, as in [2], [20], [21], a

termwise approximation of partial sums. As it turns out (see Lemma 2.1 below),
the termwise error in this approximation is determined by the second term of the
expansion (1.5) whose tails were shown in [3] to be ≍ x−2. This implies that the
termwise error is in the domain of attraction of the normal law, explaining relation
(1.11) in Theorem 1.1. The crucial influence of the second term of the expansion (1.5)
in our approximation problem is similar to the convergence of Markov chains to the
stationary distribution whose speed is determined by the second largest eigenvalue
of the transition matrix.

Lemma 2.1 A St. Petersburg variable X with distribution (1.1) and a random vari-
able Y distributed as Y (1) in (1.5) can be jointly defined on a suitable probability
space such that

c1x
−2 ≤ P (|X − Y | > x) ≤ c2x

−2 (x ≥ x0) (2.5)

for some positive constants c1, c2, x0.

Proof. Put

W1 =
Ψ(Z1)

Z1
− 1, W2 =

Ψ(1− e−Z1)

1− e−Z1
, W3 =

∞∑
k=1

(
Ψ(Zk)

Zk
− Ψ(k)

k

)
. (2.6)

We show that (2.5) holds with X = W2, Y = W3. Clearly, the distribution function
of Z1 is G(x) = 1 − e−x, (x ≥ 0) and thus U = G(Z1) = 1 − e−Z1 has distribution
U(0, 1). Next we observe that for any k ∈ Z the function Ψ(u)/u equals 2k for
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u ∈ [2−k, 2−k+1) and thus for a fixed x ∈ [2ℓ, 2ℓ+1), ℓ ∈ Z, the inequality Ψ(u)/u > x
holds iff u < 2−ℓ. Therefore for x ∈ [2ℓ, 2ℓ+1) we have

P (W2 > x) = P (Ψ(U)/U > x) = P (U < 2−ℓ). (2.7)

If x ≥ 1, then ℓ ≥ 0 and thus the last probability in (2.7) equals 2−ℓ; otherwise ℓ < 0
and the last probability in (2.7) equals 1. Thus W2 is a St. Petersburg variable. On
the other hand, W3 has distribution Y (1) in (1.5) and thus to prove Lemma 2.1 it
suffices to show that

c1x
−2 ≤ P (|W2 −W3| > x) ≤ c2x

−2 (x ≥ x0). (2.8)

We first prove that

c3x
−2 ≤ P (|W1 −W2| > x) ≤ c4x

−2 (x ≥ x1) (2.9)

with some positive constants c3, c4, x1. As already noted, for any k ∈ Z the function
Ψ(x)/x equals 2k on the interval Ik = [2−k, 2−k+1). Let now k ≥ 2 and assume
Z1 ∈ Ik. Then 0 < Z1 < 1, 0 < 1− e−Z1 < Z1 and

Z1 −
1

2
Z2
1 < 1− e−Z1 < Z1 −

1

2
Z2
1 +

1

6
Z3
1 . (2.10)

Thus if Z1 ∈ Ik, then for k ≥ 2 we have by (2.10)

2−k+1 ≥ Z1 ≥ 1− e−Z1 ≥ Z1 −
1

2
Z2
1 ≥ 2−k − 2−2k+1 ≥ 2−(k+1)

showing that 1− e−Z1 ∈ Ik or 1− e−Z1 ∈ Ik+1. Thus

∆ = |W1 −W2 + 1| =
∣∣∣∣Ψ(Z1)

Z1
− Ψ(1− e−Z1)

1− e−Z1

∣∣∣∣ (2.11)

equals 0 or 2k+1 − 2k = 2k according as 1 − e−Z1 belongs to Ik or Ik+1. In view of
(2.10) the second alternative implies

2−k ≤ Z1 < 1− e−Z1 +
1

2
Z2
1 ≤ 2−k +

1

2
2−2k+2

and thus Z1 is closer to the left endpoint of Ik than 2−2k+1. But then Z1 ∼ 2−k,
1
2Z

2
1 −O(Z3

1 ) ∼ 1
22

−2k as k → ∞ and thus by (2.10)

1− e−Z1 = Z1 −
1

2
Z2
1 +O(Z3

1 ) = Z1 −
(
1

2
+ ok(1)

)
2−2k.

Consequently, the relation 1− e−Z1 ∈ Ik+1, or, equivalently, 1− e−Z1 < 2−k holds iff
Z1 ∈ Jk, where Jk = [2−k, 2−k + uk) with uk ∼ 1

22
−2k. Since the density e−x of Z1 is

1 +O(2−k) on Jk, we have P (Z1 ∈ Jk) ∼ 1
22

−2k as k → ∞. We thus proved that the
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difference ∆ in (2.11) equals 2k on a set Ak in the probability space, where the Ak

are disjoint for k ≥ k0, P (Ak) ∼ 1
22

−2k and otherwise ∆ = 0. Hence

P (∆ > x) ∼
∑
2k>x

1

2
2−2k =

2

3
4−k0 as x → ∞

where k0 = k0(x) denotes the smallest integer such that 2k0 > x. Thus if x runs in
the interval (2s, 2s+1) for some integer s ≥ 1, then x2P (∆ > x) runs from 1

6 + os(1)
to 4

6 +os(1) as s → ∞, which proves (2.9) and we also see that x2P (∆ > x) and thus
x2P (|W1 −W2| > x) fluctuates between positive constants, without a limit.

Next we observe that

W3 −W1 =

∞∑
k=2

(
Ψ(Zk)

Zk
− Ψ(k)

k

)

is a tail sum of the series representing Y (1) in (1.5) whose tail behavior is described
by Theorem 5 of [3]; in particular we have

c5x
−2 ≤ P (W3 −W1 > x) ≤ P (|W3 −W1| > x) ≤ c6x

−2 (2.12)

with suitable positive constants c5, c6. Theorem 5 of [3] also shows that x2P (|W1 −
W3| > x) has no limit as x → ∞. Now (2.9) and (2.12) imply

P (|W2 −W3| > x) ≤ P (|W2 −W1| > x/2) + P (|W1 −W3| > x/2) ≤ c7x
−2, (2.13)

proving the upper half of (2.8). To prove the lower half, we note that

P (|W2 −W3| > x) ≥ P (W3 −W2 > x) ≥ P (W3 −W1 > 3x/2, W1 −W2 > −x/2)

= P (W3 −W1 > 3x/2)− P (W3 −W1 > 3x/2, W1 −W2 ≤ −x/2) (2.14)

≥ P (W3 −W1 > 3x/2)− P (W3 −W1 > 3x/2, |W1 −W2| ≥ x/2).

For any t ≥ 0, set

Vt =

∞∑
k=2

(
Ψ(t+ Z∗

k)

t+ Z∗
k

− Ψ(k)

k

)
, (2.15)

where Z∗
k =

∑k
j=2 ηj for k ≥ 2. We claim that there exists a positive constant C

such that for any 0 ≤ t ≤ 1 we have

E|Vt| ≤ C. (2.16)

Since the sequence (Z∗
k) has the same distribution as (Zk), for t = 0 relation (2.16)

follows from Lemma 2 of [3]. As inspection shows, the properties of (Zk) used in the
proof in [3] remain valid for the sequence (Zk + t) for any fixed t ≥ 0 and moreover,
the inequalities in [3] hold uniformly for 0 ≤ t ≤ 1, proving (2.16). Now, conditionally
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on Z1 = t, W3 −W1 becomes Vt in (2.15) which is independent of η1 = Z1 and thus
of ∆ = |W1 −W2 + 1| in (2.11) and consequently for x ≥ x0

P (W3 −W1 > 3x/2, |W1 −W2| ≥ x/2 | Z1 = t)

≤ P (W3 −W1 > 3x/2, ∆ ≥ x/4 | Z1 = t)

= P (Vt > 3x/2)I{∆(t) ≥ x/4}

≤ 2

3x
E|Vt|I{∆(t) ≥ x/4} ≤ Cx−1I{∆(t) ≥ x/4},

(2.17)

where ∆(t) is the expression in (2.11) with Z1 replaced by t. If Z1 is bounded away
from 0, then |W1−W2| is bounded above, or putting differently, if |W1−W2| is large,
then Z1 is near 0. Thus integrating (2.17) over 0 ≤ t ≤ 1 with respect to P (Z1 ∈ dt)
we get

P (W3 −W1 > 3x/2, |W1 −W2| ≥ x/2) ≤ Cx−1P (|∆| > x/2) ≤ C ′x−3 (2.18)

for sufficiently large x, where in the last step we used (2.9). Now using (2.12), (2.14)
and (2.18) we get the lower half of (2.8).

Proof of Theorem 1.1. For the vector (X,Y ) in Lemma 2.1, let H denote the
distribution function of X − Y and put

U(x) =

∫
|t|≤x

t2dH(t).

Using Lemma 2.1 and integration by parts we get

U(x) = −x2(1−H(x) +H(−x)) +

∫ x

0
2t(1−H(t) +H(−t))dt

= O(1) +

∫ x

0
2t(1−H(t) +H(−t))dt (2.19)

provided that x and −x are continuity points of H. Using Lemma 2.1 again for the
last integral it follows that

c8 log x ≤ U(x) ≤ c9 log x and U(2x)− U(x) = O(1) as x → ∞ (2.20)

with suitable positive constants c8 and c9. Thus limx→∞ U(2x)/U(x) = 1, i.e. the
nondecreasing function U is slowly varying. Further, (2.5) implies that H has a finite
expectation. Let now (Xn, Yn) be i.i.d. copies of the vector (X,Y ) in Lemma 2.1.
By the slow variation of U , X − Y is in the domain of attraction of the normal law,
specifically we have

1

an

n∑
k=1

(Xk − Yk − c)
d−→ N(0, 1) (2.21)

where c = E(X − Y ) and

an = inf{x ∈ (0,∞) : nx−2U(x) ≤ 1}. (2.22)
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(See e.g. [12], p. 580, Theorem 3 and the comment after (5.23) on page 579.) Using
(2.22) and the first relation of (2.20), we get by a simple calculation

c10(n log n)1/2 ≤ an ≤ c11(n log n)1/2 (2.23)

with suitable constants c10, c11. Recall now that along the sequence n = 2k we have

1

n

n∑
k=1

Xk − log2 n
d−→ G,

1

n

n∑
k=1

Yk − log2 n
d−→ G (2.24)

where G = G1/2 is the semistable distribution defined after (1.2). The first relation

here follows from (1.4) and the second from (1.13), since
∑n

k=1 Yk
d
= L(n). Relation

(2.23) shows that replacing 1/an by 1/n in (2.21), the left hand side will converge to
0 in probability and adding the second relation of (2.24) yields

1

n

n∑
k=1

Xk − log2 n− c
d−→ G

which, together with the first relation of (2.24), implies c = 0 and thus (2.21) yields

1

an

n∑
k=1

(Xk − Yk)
d−→ N(0, 1). (2.25)

Since the process {
∑n

k=1 Yk, n ≥ 1} has the same distribution as {L(n), n ≥ 1}
where L is the Lévy process defined by (1.9), relation (1.11) is proven.

To prove (1.10), let bn =
√
n(log n)1+ε, ε > 0. Then using Lemma 2.1, (2.20) and

integration by parts one can easily verify the relations

∞∑
n=1

1

b2n

∫
|x|<bn

x2dH(x) < +∞,
1

bn

n∑
k=1

∫
|x|<bn

xdH(x) −→ 0 (2.26)

and
∞∑
n=1

P (|X − Y | ≥ bn) < +∞.

(In the case of the second relation of (2.26) replace the domain {|x| < bn} of inte-
gration by {|x| ≥ bn} in view of E(X − Y ) = 0.) Thus using Theorem 6.8 in Petrov
[18], p. 211 we get

1

bn

n∑
k=1

(Xk − Yk) −→ 0 a.s.,

yielding (1.10).

10



References

[1] Berkes, I.: Strong approximation of the St. Petersburg game. Statistics 51
(2017), 3–10.

[2] Berkes, I. and Dehling, H.: Almost sure and weak invariance principles for
random variables attracted by a stable law. Prob. Theory Rel. Fields 83 (1989),
331–353.
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[8] Csörgő, S. and Dodunekova, R.: Limit theorems for the Petersburg game, in:
Trimmed sums and extremes (M. G. Hahn, D. M. Mason, D. C. Weiner, eds.)
pp. 285–315. Progress in Probability, Vol. 23, Birkhäuser, Boston 1991.
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