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Abstract

The asymptotic behavior of exponential sums
∑N

k=1 exp(2πinkα)
for Hadamard lacunary (nk) is well known, but for general (nk) very
few precise results exist, due to number theoretic difficulties. It is
therefore natural to consider random (nk) and in this paper we prove
the law of the iterated logarithm for

∑N
k=1 exp(2πinkα) if the gaps

nk+1 − nk are independent, identically distributed random variables.
As a comparison, we give a lower bound for the discrepancy of {nkα}
under the same random model, exhibiting a completely different be-
havior.

1 Introduction

It is well known that the behavior of lacunary series resembles that
of independent random variables. The following classical result was
proved by Erdős and Gál [8].

Theorem. Let (nk) be a sequence of positive numbers satisfying

nk+1/nk ≥ q > 1 k = 1, 2, . . . . (1.1)

Then

lim sup
N→∞

∣∣∣∑N
k=1 e

2πinkx
∣∣∣

√
N log logN

= 1 for almost all x. (1.2)
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Note that here the nk need not be integers. As was shown by Taka-
hashi [22], [23], for integers nk the gap condition (1.1) can be weakened
and an optimal condition was obtained by Berkes [4]: relation (1.2)
remains valid if nk are positive integers and

nk+1/nk ≥ 1 + (log log k)γ/
√
k, γ > 1/2

for k ≥ k0 and this becomes false for γ = 1/2. In particular, there

exist sequences nk ≥ e
√
k such that (1.2) is not true. This does not

mean, however, that for sequences (nk) growing at a slower speed,
(1.2) cannot be true. From the results of Salem and Zygmund [19] it
follows that there exists a sequence (nk) of integers with nk = O(k)
such that (1.2) holds, and Aistleitner and Fukuyama [2] showed the
existence of an integer sequence (nk) with nk+1−nk = O(1) satisfying
(1.2). For other, related constructions see [1], [3], [11], [14]. Note,
however, that all these constructions use random (nk) and no explicit
polynomially growing (nk) satisfying (1.2) seems to be known. Indeed,
proving (1.2) for a “concrete” sequence (nk) requires precise estimates
for the number of solutions of the Diophantine equation

±nk1 ± · · · ± nkr = M, 1 ≤ k1, . . . , kr ≤ N (1.3)

which is a notoriously difficult problem of additive number theory,
see e.g. Halberstam and Roth [12], Chapters II and III. Thus proving
precise asymptotic results for exponential sums

∑N
k=1 exp(2πinkx) is

more or less restricted to random sequences (nk), and the purpose of
the present paper is to study the law of the iterated logarithm in the
random case.

Naturally, there are many different types of random sequences; we
will consider the simplest case when the gaps nk+1 − nk are indepen-
dent, identically distributed (i.i.d.) random variables. As in [8], we
will not assume that the nk are integers, although, as we will see,
this is the most interesting case. We will not assume, either, that the
sequence (nk) is increasing. To avoid confusion between random and
nonrandom sequences, in the random case the sequence (nk) will be
denoted by (Sk); the assumption that the gaps Sk+1 − Sk are i.i.d.
means that Sk =

∑k
j=1Xj is a random walk. Schatte [21] showed

that in the case when X1 is absolutely continuous, for any fixed x the
sequence {Skx} (where {·} denotes fractional part) has strong inde-
pendence properties implying the LIL for the discrepancy of {Skx}.
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For the same class of random walks, the almost everywhere conver-
gence of

∑∞
k=1 ckf(Skx) under

∑∞
k=1 c

2
k < +∞ where f is a smooth

periodic function was proved in Berkes and Weber [6], Theorem 4.2.
Whether this remains valid for integer valued (nk) remains open; for a
partial result see [6], Theorem 4.3. Upper bounds for the discrepancy
of {Skx}, which is closely related to the behavior of the corresponding
exponential sum, are given in Weber [24] and Berkes and Weber [6];
the bounds depend on the distribution of the variable X1 defining the
random walk and on the rational approximation properties of x. Im-
proving the tools in [6], [24] and determining the precise asymptotics
of high moments of the exponential sum

∑n
k=1 exp(2πiSkx), in this pa-

per we will prove the law of the iterated logarithm for the exponential
sum for arbitrary random walks (Sn).

Theorem 1.1. Let X1, X2, . . . be i.i.d. random variables with char-
acteristic function φ, let Sk =

∑k
j=1Xj, and let α ∈ R. Suppose that

exp(2πiX1α) is non-degenerate.

(i) If P(2X1α ∈ Z) < 1, then with probability 1

lim sup
n→∞

1√
n log log n

∣∣∣∣∣
n∑

k=1

e2πiSkα

∣∣∣∣∣ =
√

1− |φ(2πα)|2
|1− φ(2πα)|

. (1.4)

(ii) If P(2X1α ∈ Z) = 1, then with probability 1

lim sup
n→∞

1√
n log log n

∣∣∣∣∣
n∑

k=1

e2πiSkα

∣∣∣∣∣ = √
2

√
1− |φ(2πα)|2
|1− φ(2πα)|

. (1.5)

Note that the variable x in the sum
∑n

k=1 exp(2πiSkx) was re-
placed by α to emphasize that, unlike in (1.2), in (1.4) α is fixed and
the relation holds with probability 1 in the space of the random walk
(Sk). From now on, we will use the abbreviation “a.s.” (almost surely)
instead of “with probability 1”.

If exp(2πiX1α) is degenerate, i.e. if there exists a constant c ∈ C
such that exp(2πiX1α) = c a.s., then exp(2πiSkα) = ck a.s. In this
case clearly no law of the iterated logarithm with a nonzero limsup
can hold for exp(2πiSkα). Note that exp(2πiX1α) is degenerate if
and only if P((X1 − X2)α ∈ Z) = 1, or alternatively if and only if
|φ(2πα)| = 1.
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A random variableX1 is called a lattice variable if there exist a, b ∈
R such that X1 ∈ a+bZ a.s. If X1 is not a lattice variable (e.g. if it has
a continuous distribution), then for any α ̸= 0 the random variable
exp(2πiX1α) is non-degenerate, moreover we have P(2X1α ∈ Z) < 1,
and thus (1.4) holds.

In the case of a lattice variable X1 there are only countably many
exceptional values of α for which exp(2πiX1α) is degenerate. Even
though the law of the iterated logarithm holds whenever exp(2πiX1α)
is non-degenerate, the structure of the sequence exp(2πiSkα) can be
very different for different values of α. For example, if X1 is integer
valued and non-degenerate, and α is irrational, then the possible values
of the sequence exp(2πiSkα) form a countable dense subset of the
unit circle, while for rational α the corresponding set is finite (in fact
comprised of certain roots of unity). The law of the iterated logarithm
in the last case follows relatively easily from Markov chain theory, in
contrast to the case of a non-latticeX1, which lies considerably deeper.

Note that the condition P(2X1α ∈ Z) = 1 in (ii) is equivalent
to exp(2πiX1α) = ±1 a.s. In this case the terms exp(2πiSkα) of
the random exponential sum are all ±1 a.s. If, on the other hand
P(2X1α ∈ Z) < 1, then the terms are not all purely real.

It is interesting to note that in Theorem 1.1 no assumptions were
made about the moments of |X1| and the distribution of X1 enters
the theorem only through arithmetic conditions on (X1 − X2)α and
2X1α. The moments of |X1|, or more generally, the tail behavior of
|X1|, influences only the growth of the sequence |Sn|. Assume for
example that

P(|X1| > t) ∼ ct−β as t → ∞ (1.6)

for some c > 0, 0 < β < 2 and in the case β > 1 assume also
EX1 = 0. Then E|X1|γ is finite for γ < β and infinite for γ > β and
by classical results of probability theory (see e.g. Feller [9], p. 580,
Lévy [16], p. 143) Sn/n

1/β has a non-degenerate limit distribution
with characteristic function exp(−c1|t|β), and

|Sn| = O(n1/β+ε) a.s.

holds for ε > 0, but not for ε < 0. Hence in this case Sk has poly-
nomial growth. The case β = 1/2 is of particular interest, since the
corresponding nonrandom sequence nk = k2 is the only “concrete”
polynomial case when the precise asymptotics of the exponential sum∑N

k=1 exp(2πinkα) is known. In this case Fiedler, Jurkat and Körner
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[10] showed that given any positive nondecreasing function g(n), for
almost all α the relation

n∑
k=1

exp(2πik2α) ≪
√
ng(n) (1.7)

holds if and only if
∞∑
n=1

1

ng4(n)
< ∞. (1.8)

In particular, (1.7) holds if g(n) = (log n)1/4+ε for ε > 0, but not for
ε = 0. The criterion (1.7)-(1.8) also shows that if (1.7) holds with some
g(n), then it also holds for g(n)h(n) for some h(n) → 0 depending on
g(n), and thus for

∑n
k=1 exp(2πik

2α) no law of the iterated logarithm
type result can hold. As Hardy and Littlewood [13] showed, for fixed
α the behavior of the sum is connected to the rational approximation
properties of α. We stress, however, that in the random case exhibiting
the same growth of (Sk), the LIL holds for

∑n
k=1 exp(2πiSkα).

In view of Koksma’s inequality (see [15], p. 143), under the as-
sumptions of Theorem 1.1 the discrepancy DN ({Skα}) of the first N
terms of the sequence {Skα} satisfies with probability 1

DN ({Skα}) ≫ N−1/2(log logN)1/2

for infinitely many N . By the results of Schatte [21], for absolutely
continuous X1 this estimate is sharp, but as the remark at the end
of our paper will show, if X1 is integer valued, has mean 0 and finite
variance and ∣∣∣∣α− p

q

∣∣∣∣ < C

qγ
(1.9)

for infinitely many rationals p/q with some constants C > 0 and γ > 2,
then with probability 1 we have

DN ({Skα}) ≫ N−1/(2γ−2)−ε

for any ε > 0 and infinitely many N . Thus for irrational num-
bers α allowing a very good approximation by rational numbers, the
order of magnitude of the discrepancy can be much greater than
N−1/2(log logN)1/2. The precise order of magnitude of DN ({Skα})
remains open.
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2 A moment estimate

We use ∥x∥ to denote the distance of a real number x from the nearest
integer. Recall that ∥−x∥ = ∥x∥ and ∥x+ y∥ ≤ ∥x∥ + ∥y∥ for any
x, y ∈ R. We will also frequently use the fact that the characteristic
function φ of an arbitrary distribution satisfies φ(−x) = φ̄(x) and
|φ(x)| ≤ 1 for any x ∈ R.

First, we find a simple upper bound for |φ|.

Proposition 2.1. Let X1, X2 be independent random variables with
characteristic function φ. For any t ∈ R we have

1− |φ(πt)| ≥ (E ∥t(X1 −X2)∥)2 .

Proof. Since X1, X2 are independent, we have

Eeπit(X1−X2) = EeπitX1Ee−πitX2 = |φ(πt)|2

for any t ∈ R. After taking the real part, and using |φ| ≤ 1 we obtain

1− |φ(πt)| ≥ 1− |φ(πt)|2

2
= E

1− cos(πt(X1 −X2))

2
.

Let us now use the general estimate

1− cos(πx)

2
≥ sin2(πx)

4
≥ ∥x∥2 ,

valid for all x ∈ R, to get

1− |φ(πt)| ≥ E ∥t(X1 −X2)∥2 .

Applying Jensen’s inequality finishes the proof.

The following result, giving a sharp asymptotic bound for the high
moments of

∑n
k=1 exp(2πiSkα), is the crucial ingredient of the proof

of Theorem 1.1.

Proposition 2.2. Let X1, X2, . . . be i.i.d. random variables with char-
acteristic function φ, and let Sk =

∑k
j=1Xj. Let α ∈ R be such that

P (4α(X1 −X2) ∈ Z) < 1, (2.1)

and let
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R =
16

(E ∥4α(X1 −X2)∥)2
.

For any integers p ≥ 1, m ≥ 0 and n ≥ 1 we have∣∣∣∣∣∣E
∣∣∣∣∣

m+n∑
k=m+1

e2πiSkα

∣∣∣∣∣
2p

−
(
1− |φ(2πα)|2

|1− φ(2πα)|2

)p

p!2
(
n

p

)∣∣∣∣∣∣ ≤
(2pR)2p max

0<q<p

q2p−qnq

q!Rq−1
+ (pR)p+1np−1.

Note that assumption (2.1) is stronger than the nondegeneracy
condition in Theorem 1.1 and implies that

E ∥4α(X1 −X2)∥ > 0.

If (2.1) fails then, as we will see, {e2πiSkα, k ≥ 1} is an exponentially
mixing Markov chain and Theorem 1.1 can be deduced from the theory
of mixing processes.

Proof. Expanding the power we get

E

∣∣∣∣∣
m+n∑

k=m+1

e2πiSkα

∣∣∣∣∣
2p

=
∑

m+1≤ℓ1,...,ℓ2p≤m+n

Ee2πiα
(
Sℓ1

−Sℓ2
+···+Sℓ2p−1

−Sℓ2p

)
.

(2.2)
For any positive integer N let [N ] = {1, 2, . . . , N}. We call B =
(B1, . . . , Bs) an ordered partition of [2p] if B1, . . . , Bs are pairwise
disjoint, nonempty subsets of [2p] the union of which is [2p]. For any
2p-tuple ℓ = (ℓ1, . . . , ℓ2p) let us define an ordered partition B(ℓ) of [2p]
in the following way. If

{ℓ1, . . . , ℓ2p} = {k1, . . . , ks} (2.3)

with k1 < · · · < ks, then let

Bj(ℓ) = {i ∈ [2p] : ℓi = kj} ,

and B(ℓ) = (B1(ℓ), . . . , Bs(ℓ)). We will estimate the sum of the terms
in (2.2) for which B(ℓ) is a given ordered partition B of [2p]. Let us
thus introduce the notation
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Σ(B) =
∑

m+1≤ℓ1,...,ℓ2p≤m+n
B(ℓ)=B

Ee2πiα
(
Sℓ1

−Sℓ2
+···+Sℓ2p−1

−Sℓ2p

)
.

Fix an ordered partition B = (B1, . . . , Bs), and let ℓ be such that
B(ℓ) = B. Let k1 < · · · < ks be as in (2.3). Then

Sℓ1 − Sℓ2 + · · ·+ Sℓ2p−1 − Sℓ2p = ε1Sk1 + · · ·+ εsSks ,

where ε1, . . . , εs are integers depending only on B, in fact

εj =
∑
i∈Bj

(−1)i+1 (2.4)

for all 1 ≤ j ≤ s. Let q = q(B) denote the maximum number of
nonempty intervals I1, . . . , Iq partitioning [s] such that

∑
j∈Ik εj = 0

for every 1 ≤ k ≤ q. From (2.4) we obtain that whenever I ⊆ [s] is a
nonempty interval such that

∑
j∈I εj = 0, then∑

i∈∪j∈IBj

(−1)i+1 = 0.

Thus ∪j∈IBj contains both an even and an odd integer in [2p], and so
its cardinality is at least 2. Since B is a partition of [2p], we have

2q ≤
q∑

k=1

|∪j∈IkBj | =
s∑

j=1

|Bj | = 2p.

Hence q ≤ p. Moreover, we have q = p if and only if there exists a
partition of [s] into nonempty intervals I1, . . . , Ip such that ∪j∈IkBj

contains precisely one even and one odd integer for every 1 ≤ k ≤ p.
We first compute Σ(B) in the case q = p, which, as we will

see, gives the main contribution. Let πe and πo be arbitrary per-
mutations of the even and odd integers in [2p], respectively, and let
σ ∈ {−1, 0, 1}p also be arbitrary. Let us construct an ordered partition
B = B(πe, πo, σ) = (B1, . . . , Bs) of [2p] in exactly p steps the follow-
ing way. In the first step consider πo(1), πe(2). If σ1 = −1, then let
B1 = {πo(1)} and B2 = {πe(2)}. If σ1 = 1, then let B1 = {πe(2)} and
B2 = {πo(1)}. If σ1 = 0, then let B1 = {πo(1), πe(2)}. We proceed in
a similar way. In step k we add the sets {πo(2k − 1)} and {πe(2k)}, or
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{πe(2k)} and {πo(2k − 1)}, or {πo(2k − 1), πe(2k)} to the end of the
list of previously chosen sets, depending on whether σk = −1, 1, or 0.

It is easy to see that for an ordered partition B of [2p] we have
q = p if and only if B = B(πe, πo, σ) for some πe, πo, σ as above.
Indeed, the desired partition of [s] into intervals I1, . . . , Ip is that Ik is
the set of indices of (B1, . . . , Bs) chosen in step k of the construction.
In particular, there are exactly p!23p ordered partitions B for which
q = p.

Fix πe, πo, σ as above, let B = B(πe, πo, σ), and consider Σ(B).
For any 1 ≤ k ≤ p let mk = min

{
ℓπo(2k−1), ℓπe(2k)

}
and Mk =

max
{
ℓπo(2k−1), ℓπe(2k)

}
. Note that

m+ 1 ≤ m1 ≤ M1 < m2 ≤ M2 < · · · < mp ≤ Mp ≤ m+ n, (2.5)

Sℓ1 −Sℓ2 + · · ·+Sℓ2p−1 −Sℓ2p = σ1(SM1 −Sm1)+ · · ·+σp(SMp −Smp).

Using the fact that X1, X2, . . . are i.i.d. random variables, we obtain

Σ(B) =
∑

m1,...,mp

M1,...,Mp

φ(σ12πα)
M1−m1 · · ·φ(σp2πα)Mp−mp , (2.6)

where the summation is over all m1, . . . ,mp and M1, . . . ,Mp satisfying
(2.5), with the extra conditions thatmk < Mk if σk ̸= 0, andmk = Mk

if σk = 0, for all 1 ≤ k ≤ p.
Fix M1, . . . ,Mp. Then (2.6) factors into p factors, the kth factor

being a sum over mk. If σk ̸= 0, then the kth factor is

∑
Mk−1<mk<Mk

φ(σk2πα)
Mk−mk =

φ(σk2πα)

1− φ(σk2πα)
− φ(σk2πα)

Mk−Mk−1

1− φ(σk2πα)
,

where we use the convention that M0 = m. If σk = 0, then the
extra condition mk = Mk shows that the kth factor is simply 1. Let
A(σk) =

φ(σk2πα)
1−φ(σk2πα)

if σk ̸= 0, and A(σk) = 1 if σk = 0. Let, moreover

E(σk) = E(σk,Mk−1,Mk) = −φ(σk2πα)
Mk−Mk−1

1− φ(σk2πα)

if σk ̸= 0, and E(σk) = 0 if σk = 0. With this notation we thus have
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Σ(B) =
∑

m+1≤M1<···<Mp≤m+n

p∏
k=1

(A(σk) + E(σk)) . (2.7)

Let us now expand the product in (2.7). The main term will come
from

∏p
k=1A(σk). Indeed, all other terms are of the form

∏p
k=1 ak,

where ak is either A(σk) or E(σk) for all 1 ≤ k ≤ p, and ak = E(σk) for
at least one k. Let k∗ denote the largest index k such that ak = E(σk).
If σk∗ = 0, then E(σk∗) = 0 and so

∏p
k=1 ak = 0. Else, by summing

over Mk∗ first, we can use the estimate

∣∣∣∣∣∣
∑

Mk∗−1<Mk∗<Mk∗+1

φ(σk∗2πα)
Mk∗−Mk∗−1

1− φ(σk∗2πα)

∣∣∣∣∣∣ ≤ 2

|1− φ(σk∗2πα)|2
,

where Mp+1 = m+ n+ 1 by convention in the case k∗ = p. Applying
Proposition 2.1, the subadditivity of ∥·∥ and the definition of R we
obtain

1−|φ(σk∗2πα)| ≥ (E ∥2α(X1 −X2)∥)2 ≥
1

4
(E ∥4α(X1 −X2)∥)2 =

4

R
,

2

|1− φ(σk∗2πα)|2
≤ R2

8
.

We similarly get |ak| ≤ R
4 . Since there are

(
n

p−1

)
ways to fix M1, . . . ,

Mk∗−1, Mk∗+1, . . . , Mp, we have∣∣∣∣∣∣
∑

m+1≤M1<···<Mp≤m+n

p∏
k=1

ak

∣∣∣∣∣∣ ≤
(

n

p− 1

)
Rp+1

2 · 4p
.

Note that the main term
∏p

k=1A(σk) does not depend on M1, . . .Mp,
and that there are 2p terms in the expansion. Therefore

Σ(B) =

(
n

p

) p∏
k=1

A(σk)±
Rp+1np−1

2 · 2p(p− 1)!
. (2.8)

Let us fix πe, πo as before, and sum (2.8) over σ ∈ {−1, 0, 1}p to
get
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∑
σ∈{−1,0,1}p

Σ(B(πe, πo, σ)) =

(
n

p

) p∏
k=1

1∑
σk=−1

A(σk)±
3pRp+1np−1

2 · 2p(p− 1)!
.

Here

1∑
σk=−1

A(σk) =
φ̄(2πα)

1− φ̄(2πα)
+ 1 +

φ(2πα)

1− φ(2πα)
=

1− |φ(2πα)|2

|1− φ(2πα)|2
.

Since nothing depends on πe and πo, summing over them simply in-
troduces a new factor of p!2. By checking that

3pp!2

2 · 2p(p− 1)!
≤ pp+1,

we thus get

∑
B

q=p

Σ(B) =

(
1− |φ(2πα)|2

|1− φ(2πα)|2

)p

p!2
(
n

p

)
± (pR)p+1np−1. (2.9)

Now we estimate Σ(B) in the case q < p. Using the fact that
X1, X2, . . . are i.i.d. random variables, and k1 < · · · < ks, it is easy to
see that

Ee2πiα(ε1Sk1
+···+εsSks) = φ(2c1πα)

k1φ(2c2πα)
k2−k1 · · ·φ(2csπα)ks−ks−1 ,

where cj = εj + · · ·+ εs. Hence

Σ(B) =
∑

m+1≤k1<···<ks≤m+n

φ(2c1πα)
k1φ(2c2πα)

k2−k1 · · ·φ(2csπα)ks−ks−1 .

(2.10)
Consider the set

A =

{
k ∈ Z : E ∥2kα(X1 −X2)∥ <

1

4
E ∥4α(X1 −X2)∥

}
.

Note that A does not contain any two consecutive integers. Indeed, if
k, k + 1 ∈ A, then the subadditivity of ∥·∥ implies
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∥4α(X1 −X2)∥ ≤ 2 ∥2kα(X1 −X2)∥+ 2 ∥2(k + 1)α(X1 −X2)∥ .

Taking the expected value of both sides we would thus get

E ∥4α(X1 −X2)∥ <

(
2 · 1

4
+ 2 · 1

4

)
E ∥4α(X1 −X2)∥ ,

contradiction. Clearly A is symmetric (i.e. k ∈ A implies −k ∈ A),
0 ∈ A and ±1,±2 ̸∈ A. Let

{j ∈ [s] : cj ∈ A} = {j1, j2, . . . , jM}

where j1 < j2 < · · · < jM . Note that c1 = ε1 + · · · + εs = 0 ∈ A,
therefore j1 = 1. For any 1 ≤ r ≤ M − 1 let Ir = [jr, jr+1), and let
IM = [jM , s]. By the definition of cj we have

cjr − cjr+1 =
∑
j∈Ir

εj , cjM =
∑
j∈IM

εj . (2.11)

We claim M < p. Consider the following two cases.
Case 1. Assume cj1 = cj2 = · · · = cjM = 0. Then (2.11) shows that
I1, I2, . . . , IM is a partition of [s] intoM intervals such that

∑
j∈Ir εj =

0 for every r. By the definition of q = q(B) this means M ≤ q < p.
Case 2. Assume cj1 , cj2 , . . . , cjM are not all zero. Recalling that
cj1 = c1 = 0, (2.11) shows that there exists an r such that

∑
j∈Ir εj = a

for some nonzero a ∈ A. Note |a| ≥ 3. From the definition (2.4) of εj
we thus obtain ∣∣∣∣∣∣

∪
j∈Ir

Bj

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
∑
j∈Ir

εj

∣∣∣∣∣∣ = |a| ≥ 3 (2.12)

for this particular r. For any other r′ (2.11) shows that
∑

j∈Ir′
εj is

the difference of two elements of A. Since A does not contain any two
consecutive integers, this difference cannot be ±1. From the definition
(2.4) of εj it is thus easy to see that∣∣∣∣∣∣

∪
j∈Ir′

Bj

∣∣∣∣∣∣ ≥ 2. (2.13)

Summing (2.13) over r′ ̸= r and adding (2.12), we get

12



2p =

s∑
j=1

|Bj | ≥ 2M + 1,

hence M < p in this case as well.
We have thus proved that M < p. Set Φ = 1 − 1

R . According to
Proposition 2.1, for any j ̸= j1, . . . , jM we have

|φ(2cjπα)| ≤ 1− (E ∥2cjα(X1 −X2)∥)2 .

Since cj ̸∈ A, we have

(E ∥2cjα(X1 −X2)∥)2 ≥
1

16
(E ∥4α(X1 −X2)∥)2 =

1

R
,

showing |φ(2cjπα)| ≤ Φ.
Let us now apply the triangle inequality to (2.10), and let us use

the estimate |φ(2cjπα)| ≤ Φ whenever j ̸= j1, . . . , jM , and the trivial
estimate |φ(2cjπα)| ≤ 1 for j = j1, . . . , jM . We get

|Σ(B)| ≤
∑

m+1≤k1<···<ks≤m+n

1 ·Φkj2−1−kj1 ·1 ·Φkj3−1−kj2 · · · 1 ·Φks−kjM .

Fix kj1 , . . . , kjM and the exponent

k = (kj2−1 − kj1) + (kj3−1 − kj2) + · · ·+ (ks − kjM ) (2.14)

of Φ. Then for all j ̸= j1, . . . , jM the integer kj belongs to the set

[kj1 + 1, kj1 + k] ∪ [kj2 + 1, kj2 + k] ∪ · · · ∪ [kjM + 1, kjM + k]

of cardinality at most Mk. Hence for fixed kj1 , . . . , kjM the number

of s-tuples (k1, . . . , ks) for which (2.14) holds is at most
(
Mk
s−M

)
≤

(Mk)s−M

(s−M)! , and so we get

|Σ(B)| ≤
∑

m+1≤kj1<···<kjM≤m+n

∞∑
k=0

(Mk)s−M

(s−M)!
Φk

≤ nM

M !
· M s−M

(s−M)!

∞∑
k=0

ks−MΦk.

13



Here 0 ≤ Φ < 1, therefore we can use a well-known Taylor expan-
sion to obtain the estimate

∞∑
k=0

ks−MΦk ≤
∞∑
k=0

(k + s−M) · · · (k + 2)(k + 1)Φk =
(s−M)!

(1− Φ)s−M+1
.

Since R = (1− Φ)−1, we get

|Σ(B)| ≤ RsM
s−MnM

M !RM−1
.

Here s ≤ 2p, and 0 < M < p. The total number of ordered partitions
B of [2p] is at most (2p)2p, hence

∑
B

q<p

|Σ(B)| ≤ (2pR)2p max
0<q<p

q2p−qnq

q!Rq−1
. (2.15)

Since

E

∣∣∣∣∣
m+n∑

k=m+1

e2πiSkα

∣∣∣∣∣
2p

=
∑
B

q=p

Σ(B) +
∑
B

q<p

Σ(B),

combining (2.9) and (2.15) finishes the proof.

3 Proof of Theorem 1.1

We distinguish between two main cases. First, we will assume

P (4α(X1 −X2) ∈ Z) < 1, (3.1)

in which case the proof will rely on Proposition 2.2. Note that (3.1)
implies that exp(2πiX1α) is non-degenerate, and it also implies condi-
tion P(2αX1 ∈ Z) < 1 from (i). Thus we will need to prove that (3.1)
implies (1.4). Next, we will assume that P (4α(X1 −X2) ∈ Z) = 1
and that exp(2πiX1α) is non-degenerate. In this case we will use the
theory of φ-mixing Markov chains in the proof.

Let us thus assume that (3.1) holds. Put Tm,n =
∑m+n

k=m+1 e
2πiSkα,

Tn = T0,n. Let 1 ≤ p ≤ 3 log log n, and apply Proposition 2.2 to Tm,n.
It is easy to see that the error term in Proposition 2.2 satisfies

14



(2pR)2p max
0<q<p

q2p−qnq

q!Rq−1
+ (pR)p+1np−1 ≪ np−1+ε

for any ε > 0, with an implied constant depending only on α, ε and
the distribution of X1. For the main term we have(

1− |φ(2πα)|2

|1− φ(2πα)|2

)p

p!2
(
n

p

)
∼
(
1− |φ(2πα)|2

|1− φ(2πα)|2

)p

p!np.

Indeed, we only need to check that the limit of the sequence

1

(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− p− 1

n

)
is 1. Standard computation shows that this sequence can be approx-
imated by e−(1+2+···+(p−1))/n, and hence by e−p2/n, which clearly has
limit 1. We thus have

E|Tm,n|2p ∼cpp!np as n → ∞,

uniformly for m ≥ 0, 1 ≤ p ≤ 3 log log n
(3.2)

with

c =
1− |φ(2πα)|2

|1− φ(2πα)|2
. (3.3)

We now show that (1.4) holds. We break the argument into lemmas.
We follow the method of [8].

Lemma 3.1. We have for any 0 < ε < 1,

P{|Tm,n| ≥ ((1 + 2ε)cn log log n)1/2} ≪ exp(−(1 + ε) log log n),

where the constant implied by ≪ depends on the sequence (Xk), α and
ε.

Proof. Clearly, multiplying the terms of Tm,n by c−1/2, (3.2), (1.4)
and the conclusion of Lemma 3.1 will be satisfied with c = 1 and thus
without loss of generality we can assume c = 1. Let

Gm,n(t) = P{|Tm,n| ≥ (tn log log n)1/2}, t > 0

and
Zm,n = |Tm,n|2/(n log log n). (3.4)
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Using Stirling’s formula, we get from (3.2) for m ≥ 0, n ≥ n0 and
1 ≤ p ≤ 3 log log n that

√
p(p/e)p(log log n)−p ≪ EZp

m,n ≪ √
p(p/e)p(log log n)−p. (3.5)

Here, an in the sequel, the constants implied by ≪, ≫ depend (at
most) on (Xk), α and ε. Thus by the Markov inequality

Gm,n(t) = P(Zm,n ≥ t) ≤ t−pEZp
n ≪ t−p√p(p/e)p(log log n)−p.

If t ≥ 3, we choose p = [e log log n] to get

Gm,n(t) ≪ t−p(log log n)1/2 ≪ t−2 log logn, t ≥ 3. (3.6)

For 0 < t < 3 we choose p = [t log log n] to get

Gm,n(t) ≪ (log log n)1/2 exp(−t log log n) 0 < t < 3, (3.7)

and choosing t = 1 + 2ε, Lemma 3.1 is proved.

Lemma 3.2. We have for any 0 < ε < 1,

P{|Tm,n| ≥ ((1− ε)cn log log n)1/2} ≫ exp(−(1− ε2/8) log log n).

Proof. As before, we can assume c = 1. We set

D1 = {1− ε ≤ Zm,n ≤ 1}, D2 = {0 ≤ Zm,n < 1− ε}, D3 = {1 < Zm,n ≤ 3},
D4 = {Zm,n > 3},

where Zm,n is defined by (3.4). Then by (3.5) we have for m ≥ 0,
n ≥ n0 and 1 ≤ p ≤ 3 log log n,

Gm,n(1− ε) = P(Zm,n ≥ 1− ε) ≥ P(D1) ≥
∫
D1

Zp
m,n dP

≥ A
√
p(p/e)p(log log n)−p − (I2 + I3 + I4) (3.8)

where A is a constant and

Ik =

∫
Dk

Zp
m,n dP, k = 2, 3, 4.
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We choose p = [(1 − ε/2) log log n] and estimate I2, I3 and I4 from
above. First we get, using Gm,n(t) = P (Zm,n ≥ t) and (3.7),

I2 ≤ p

∫ 1−ε

0
tp−1Gm,n(t)dt

≪ p(log log n)1/2
∫ 1−ε

0
tp−1 exp(−t log log n)dt

= p(log log n)−(p−1/2)

∫ (1−ε) log logn

0
up−1e−udu.

Since up−1e−u reaches its maximum at u = p − 1 which exceeds the
upper limit of the last integral by the choice of p, we get

I2 ≪ p(log log n)1/2(1− ε)pe−(1−ε) log logn

≪ (log log n)3/2 · (1− ε)(1−ε/2) log logn(log n)−(1−ε)

= (log log n)3/2 (log n)−γ ,

where
γ = 1− ε− (1− ε/2) log(1− ε).

Similarly as above, we get

I3 ≪ p(log log n)−(p−1/2)

∫ 3 log logn

log logn
up−1e−udu.

Now the maximum of the integrand is reached at a point which is
smaller than the lower limit of the integral and we get

I3 ≪ (log log n)3/2 (log n)−1. (3.9)

Finally, to estimate I4 we proceed as with I2, but instead of (3.7) we
use (3.6) to get

I4 ≪ p

∫ ∞

3
tp−1Gm,n(t)dt ≪ p

∫ ∞

3
tp−1t−2 log logndt

≪ (log log n)e− log logn = (log log n)(log n)−1.

Now using p = [(1 − ε/2) log log n] we see that the first term in the
second line of (3.8) is

A
√
p(p/e)p(log log n)−p ≫ (p/e)p

(
p

1− ε/2

)−p

≫ (log n)−γ′
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where
γ′ = (1− ε/2)− (1− ε/2) log(1− ε/2).

For 0 < ε < 1 we have γ′ < γ and γ′ < 1 − ε2/8. Indeed, after
some simplification the inequality γ′ < γ is equivalent to

log

(
1− ε/2

1− ε/2

)
< − ε/2

1− ε/2
,

which follows from the general inequality log(1 − x) < −x, valid for
any 0 < x < 1. To see γ′ < 1 − ε2/8, since their values are equal at
ε = 0, it will be enough to check that their derivatives with respect to
ε satisfy

1

2
log (1− ε/2) < −ε/4

for all 0 < ε < 1. This again follows from log(1 − x) < −x. This
implies that all of I2, I3 and I4 are of smaller order of magnitude than
the first term in the second line of (3.8). Thus we get

Gm,n(1− ε) ≫ (log n)−γ′ ≫ (log n)−(1−ε2/8)

and Lemma 3.2 is proved.

Lemma 3.3. Let Fn denote the σ-algebra generated by Sj , 1 ≤ j ≤ qn

and let 0 < ε < 1. Then there exists a number q0(ε) such that for any
n ≥ 1 and any integer q ≥ q0(ε) we have

P
(
|Tqn | ≥ ((1− ε)cqn log log qn)1/2 | Fn−1

)
≫ exp(−(1− ε2/32) log log qn)

(3.10)

with the exception on a set in the probability space with measure ≪
n−100.

Proof. Choosing again c = 1, as we may, we first note that by (3.2)
and the Markov inequality we have, choosing p = [log log n],

P
(
|Tn| ≥ B(n log log n)1/2

)
≤

E
∣∣∑n

k=1 e
2πiαSk

∣∣2p
B2p(n log log n)p

≪ p!np

B2p(n log log n)p
≤ ppnp

B2p(np)p
= B−2p ≤ e−100p

≪ e−100 log logn = (log n)−100

(3.11)
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provided we choose the constant B large enough. Call a point ω ∈ Ω
“good” or “bad” according as the inequality

|Tqn−1(ω)| ≤ B(qn−1 log log qn−1)1/2 (3.12)

holds or not. By (3.11) the set of bad ω’s has total measure (prob-
ability) ≪ n−100. Consider now a good ω ∈ Ω. Letting S∗

k =∑k
j=1Xqn−1+j , we have

Tqn = Tqn−1 + e2πiαSqn−1

qn−qn−1∑
k=1

e2πiαS
∗
k

= Tqn−1 + e2πiαSqn−1Wn (3.13)

where

Wn =

qn−qn−1∑
k=1

e2πiαS
∗
k

is a shifted analogue of the sum Tqn−qn−1 . Clearly Tqn−1 and e2πiαSqn−1

are Fn−1 measurable and thus the conditional probability in (3.10) at
ω can be evaluated by using (3.13) and substituting the values of these
variables at ω. Since ω is a good point, for Tqn−1 we have the estimate

(3.12), further |e2πiαSqn−1 | = 1 and observing that Wn is independent
of Fn−1, we get

P
(
|Tqn | ≥ ((1− ε)qn log log qn)1/2 | Fn−1

)
≥ P

(
|Wn| ≥ ((1− ε)qn log log qn)1/2 +B(qn−1 log log qn−1)1/2|Fn−1

)
= P

(
|Wn| ≥ ((1− ε)qn log log qn)1/2 +B(qn−1 log log qn−1)1/2

)
≥ P

(
|Wn| ≥ ((1− ε/2)qn log log qn)1/2

)
≫ exp(−(1− ε2/32) log log qn)

provided q ≥ q0(ε), where in the last step we used Lemma 3.2 for
the exponential sum Wn belonging to the i.i.d. sequence {Xj , j =
qn−1 + 1, qn−1 + 2, . . .}. This completes the proof of Lemma 3.3.

The following is Lévy’s conditional form of the Borel–Cantelli lemma;
see e.g. [25], p. 124.
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Lemma 3.4. Let A1, A2, . . . be arbitrary events, let F1 ⊂ F2, . . . be σ-
algebras such that An is Fn measurable and

∑∞
n=1 P(An|Fn−1) = +∞

a.s. Then with probability 1, infinitely many An occur.

We are now in a position to prove (1.4). We first observe that
Lemma 3.1 and the Borel–Cantelli lemma imply

lim sup
n→∞

(c[θn] log log[θn])−1/2T[θn] ≤ 1 a.s. (3.14)

for any real θ > 1. On the other hand, (3.2) and the Erdős–Stechkin
inequality (see [17], Theorem A) imply

E max
1≤ℓ≤[θn+1]−[θn]

|T[θn],ℓ|2p ≤ Kcpp!([θn+1]− [θn])p

with some constant K > 0. Thus by the Markov inequality we get,
choosing p ∼ log log[θn] ∼ log n

P
{

max
1≤ℓ≤[θn+1]−[θn]

|T[θn],ℓ| ≥ A(c([θn+1]− [θn]) log log([θn+1]− [θn]))1/2
}

≪ Kcpp!([θn+1]− [θn])p

A2pcp([θn+1]− [θn])p(log log([θn+1]− [θn]))p
≪ Kpp

A2p(log n)p

≪ K(2A−2)p ≪ n−2

provided A is large enough. Choosing θ sufficiently close to 1, we have
[θn+1]− [θn] ≤ ε2[θn] for n ≥ n0(ε) and thus the previous probability
bound and the Borel–Cantelli lemma imply

max
1≤ℓ≤[θn+1]−[θn]

|T[θn],ℓ| ≪ ε([θn] log log[θn])1/2 a.s.

The last relation and (3.14) together imply the ≤ inequality in (1.4).
To prove the ≥ inequality, fix 0 < ε < 1 and let q ≥ q0(ε) be an
integer, where q0(ε) is the threshold number in Lemma 3.3. Put

An =
{
|Tqn | ≥ ((1− ε)cqn log log qn)1/2

}
and let Fn = σ{S1, . . . , Sqn}. Then Lemma 3.3 shows that for any
n ≥ 1 the inequality

P(An|Fn−1) ≫ exp(−(1− ε2/32) log log qn) (3.15)

holds with probability≥ 1−Cn−100 for some constant C. By the (ordi-
nary) Borel–Cantelli lemma this implies that with probability 1 the in-
equality (3.15) holds for sufficiently large n and thus

∑∞
n=1 P(An|Fn−1) =
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+∞ a.s. Thus the inequality ≥ in (1.4) follows from Lemma 3.4, com-
pleting the proof of Theorem 1.1 in the case when (3.1) holds.

Next we assume

P(4α(X1 −X2) ∈ Z) = 1, (3.16)

and that exp(2πiX1α) is non-degenerate. Recall that a sequence (ξk)
of C- or Rd-valued random variables is called φ-mixing with mixing
rate φ(n) if

φ(n) := sup
k

sup
A∈F1,k,B∈Fk+n,∞

|P(B|A)− P(B)| → 0

as n → ∞, where Fa,b denotes the σ-algebra generated by the random
variables {ξj : a ≤ j ≤ b}. We claim that (exp(2πiSkα)) is φ-mixing

with exponential rate φ(n) = O(e−λn) for some positive constant λ.
We first note that (3.16) implies that there exists a constant a ∈ R

such that

P
(
e2πiX1α ∈

{
±e2πia,±ie2πia

})
= 1. (3.17)

Without loss of generality we may assume that

P
(
e2πiX1α = e2πia

)
> 0. (3.18)

Let ξk = exp(2πi(Skα− ka)).
First, suppose that

P
(
e2πiX1α ∈

{
±ie2πia

})
> 0. (3.19)

Using (3.17), we get that ξk ∈ {±1,±i}. Since X1, X2, . . . are i.i.d.,
the sequence (ξk) is in fact a Markov chain with state space {±1,±i}.
The assumption (3.19) implies that it is possible to get from any state
to any other state, i.e. that this Markov chain is irreducible. From
(3.18) we can see that P(ξk+1 = ξk) > 0. This clearly implies that
given any state, the greatest common divisor of the possible number
of steps to return to the same state is 1, i.e. that this Markov chain
is aperiodic. By a basic result for Markov chains (see e.g. Lemma 3
in [18]), p. 209), (ξk) is geometrically ergodic and thus φ-mixing with
exponential rate. Replacing ξk by exp(2πiSkα) = e2πikaξk, the finite
state space property of (ξk) can be destroyed, but the dependence
properties of (ξk) do not change and thus exp(2πiSkα) is also φ-mixing
with exponential rate.

21



Suppose now that

P
(
e2πiX1α ∈

{
±ie2πia

})
= 0.

This, together with (3.17), shows that in fact

P
(
e2πiX1α ∈

{
±e2πia

})
= 1.

Therefore we now have ξk ∈ {±1}. Since X1, X2, . . . are i.i.d., the
sequence (ξk) is again a Markov chain, this time with state space
{±1}. Since exp(2πiX1α) is non-degenerate, we have

P
(
e2πiX1α = e2πia

)
> 0, P

(
e2πiX1α = −e2πia

)
> 0,

i.e. P(ξk+1 = ξk) > 0 and P(ξk+1 = −ξk) > 0. Hence the Markov
chain (ξk) is also irreducible and aperiodic, and therefore φ-mixing
with exponential rate. As before, exp(2πiSkα) is also φ-mixing with
exponential rate.

We have thus proved that (exp(2πiSkα)) is φ-mixing with expo-
nential rate. We are going to use the following law of the iterated
logarithm for weakly dependent random vectors.

Lemma 3.5. Let ξ1, ξ2, . . . be a sequence of uniformly bounded ran-
dom vectors in Rd, d ≥ 1 satisfying Eξk = 0 for all k ≥ 1, and assume
that the sequence (ξk) is φ-mixing with exponential rate. Assume that
for some matrix Σ we have

lim
n→∞

1

n
Cov (ξm+1 + . . .+ ξm+n) = Σ (3.20)

for any m ≥ 0, uniformly in m, where Cov(ξ) denotes the covariance
matrix of a vector ξ. Then with probability 1 the set of accumulation
points of {

1

(2n log log n)1/2

n∑
k=1

ξk, n = 1, 2, . . .

}
is the unit ball K of the reproducing kernel Hilbert space defined by
the matrix Σ. In particular, if Σ is diagonal with diagonal elements
σ2
j , 1 ≤ j ≤ d, then K is the ellipsoid {(x1, . . . , xd) :

∑d
j=1 x

2
j/σ

2
j ≤ 1}.

Proof. Split N into consecutive blocks I1, J1, I2, J2, . . . such that the
cardinality of Ik is [k1/2] and the cardinality of Jk is [k1/4]. Put

Uk =
∑
j∈Ik

ξj , Vk =
∑
j∈Jk

ξj .
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Since the gap between Ik and Ik+1 is [k1/4] and (ξk) is φ-mixing with
exponential rate, by Theorem 2 of [5] there exist independent random
vectors U∗

k, k = 1, 2, . . . such that U∗
k has the same distribution as Uk

and

P(|Uk −U∗
k| ≥ Ce−λk1/4) ≤ Ce−λk1/4 , k = 1, 2, . . . (3.21)

for some positive constants C, λ. Thus by the Borel–Cantelli lemma

|Uk −U∗
k| = O(e−λk1/4) a.s. (3.22)

Since EUk = 0 and U∗
k has the same distribution as Uk, we have

EU∗
k = 0. Put Cov (Uk) = Cov (U∗

k) = Σk, then by the assumption
(3.20) we have

Σk ∼ k1/2Σ, as k → ∞ (3.23)

uniformly in all entries of Σk, where Σ is the limit matrix in (3.20).
It follows then that

1

k3/2
(Σ1 + . . .+Σk) → Σ as k → ∞. (3.24)

Since |Uk| = O(
√
k) and U∗

k has the same distribution as Uk, we
have |U∗

k| = O(
√
k) and thus applying Theorem 1 of Berning [7] with

sn = n3/4 it follows that with probability 1 the set of accumulation
points of {

(2n3/2 log log n)−1/2
n∑

k=1

U∗
k, n ≥ 1

}
is the unit ball K of the reproducing kernel Hilbert space determined
by the matrix Σ. By (3.22) the same holds if U∗

k is replaced with Uk.
Repeating the argument for the short block sums Vk, V

∗
k, we get that

with probability 1 the set of accumulation points of{
(2n5/4 log log n)−1/2

n∑
k=1

V∗
k, n ≥ 1

}
is K and thus

lim
n→∞

(2n3/2 log log n)−1/2
n∑

k=1

V∗
k = 0 a.s.

We thus see that almost surely the set of accumulation points of{
(2n3/2 log log n)−1/2

n∑
k=1

(U∗
k +V∗

k), n ≥ 1

}
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and its analogue for Uk + Vk is K, proving Lemma 3.5 along the
indices n = Nk, where Nk =

∑k
j=1[j

1/2]. By the uniform boundedness
of the ξk, the maximal fluctuation of

∑n
j=1 ξj for Nk ≤ n ≤ Nk+1 is

O(Nk+1 − Nk) = O(k1/2) and thus Lemma 3.5 holds for all indices
n.

Set
Yk = cos(2πSkα), Zk = sin(2πSkα).

For any 1 ≤ k ≤ ℓ the random variables Sk and Sℓ − Sk are indepen-
dent, hence

E cos(2πSkα) cos(2πSℓα) =
1

2
E cos(2π(Sℓ − Sk)α) +

1

2
E cos(2π(Sℓ + Sk)α)

=
1

2
Re
[
E(e2πi(Sℓ−Sk)α) + E(e2πi(Sℓ+Sk)α)

]
=

1

2
Re
[
E(e2πi(Sℓ−Sk)α)

+ E(e2πi(Sℓ−Sk)α)E(e4πiSkα)
]
=

1

2
Re
(
φ(2πα)ℓ−k + φ(2πα)ℓ−kφ(4πα)k

)
and thus

EYkYℓ =
1

2
Re
(
φ(2πα)ℓ−k + φ(2πα)ℓ−kφ(4πα)k

)
.

Therefore

E

(
m+n∑

k=m+1

Yk

)2

= Re
∑

m+1≤k<ℓ≤m+n

(
φ(2πα)ℓ−k + φ(2πα)ℓ−kφ(4πα)k

)

+
1

2
Re

(
n+

m+n∑
k=m+1

φ(4πα)k

)
(3.25)

and similarly

E

(
m+n∑

k=m+1

Zk

)2

= Re
∑

m+1≤k<ℓ≤m+n

(
φ(2πα)ℓ−k − φ(2πα)ℓ−kφ(4πα)k

)

+
1

2
Re

(
n−

m+n∑
k=m+1

φ(4πα)k

)
(3.26)

and

E

(
m+n∑

k=m+1

Yk

)(
m+n∑

k=m+1

Zk

)
= Im

 ∑
m+1≤k<ℓ≤m+n

φ(2πα)ℓ−kφ(4πα)k


+

1

2
Im

(
m+n∑

k=m+1

φ(4πα)k

)
. (3.27)
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Now we prove (i). Assume that exp(2πiX1α) is non-degenerate,
that P (2X1α ∈ Z) < 1 and that (3.16) holds. The first two conditions
imply that |φ(2πα)| < 1 and that φ(4πα) ̸= 1. We claim that∑

m+1≤k<ℓ≤m+n

φ(2πα)ℓ−kφ(4πα)k = O(1) uniformly in m. (3.28)

Indeed, if φ(4πα) ̸= φ(2πα), then by fixing the index k first, we get
that the sum in (3.28) is

∑
m+1≤k<m+n

φ(4πα)kφ(2πα)
φ(2πα)m+n−k − 1

φ(2πα)− 1
.

Here we have a partial sum of two geometric series with quotients
φ(4πα) ̸= 1 and φ(2πα)

φ(4πα) ̸= 1, therefore it is easy to see that

∑
m+1≤k<ℓ≤m+n

φ(2πα)ℓ−kφ(4πα)k = O(1) uniformly in m.

If, on the other hand φ(4πα) = φ(2πα), then the sum in (3.28) is

∑
m+1<ℓ≤m+n

(ℓ−m− 1)φ(2πα)ℓ = φ(2πα)m+2
n−1∑
r=1

rφ(2πα)r−1.

Here |φ(2πα)|m+2 < 1, and the sum is also O(1), because it is a partial
sum of a convergent series. Since we clearly also have

m+n∑
k=m+1

φ(4πα)k = O(1) uniformly in m,

formulas (3.25)–(3.27) simplify to

E

(
m+n∑

k=m+1

Yk

)2

= E

(
m+n∑

k=m+1

Zk

)2

=

Re
∑

m+1≤k<ℓ≤m+n

φ(2πα)ℓ−k +
n

2
+O(1),

E

(
m+n∑

k=m+1

Yk

)(
m+n∑

k=m+1

Zk

)
= O(1),
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both uniformly in m. Here we have

∑
m+1≤k<ℓ≤m+n

φ(2πα)ℓ−k =

n−1∑
r=1

(n−r)φ(2πα)r = n

n−1∑
r=1

φ(2πα)r+O(1) =

n
φ(2πα)

1− φ(2πα)
+O(1) uniformly in m,

therefore

lim
n→∞

1

n
E

(
m+n∑

k=m+1

Yk

)2

= lim
n→∞

1

n
E

(
m+n∑

k=m+1

Zk

)2

=

1

2
+ Re

φ(2πα)

1− φ(2πα)
=

1− |φ(2πα)|2

2|1− φ(2πα)|2
(3.29)

and

lim
n→∞

1

n
E

(
m+n∑

k=m+1

Yk

)(
m+n∑

k=m+1

Zk

)
= 0 (3.30)

uniformly in m.
Let now Y ∗

k = Yk−EYk, Z∗
k = Zk−EZk. Clearly EYk = Reφ(2πα)k,

EZk = Imφ(2πα)k, and since |φ(2πα)| < 1, there exists a 0 < ρ < 1
such that |EYk| ≤ ρk, |EZk| ≤ ρk. From this it follows that (3.29) and
(3.30) remain valid if we replace Yk and Zk by Y ∗

k and Z∗
k , respectively,

and thus letting

ξk = (Yk, Zk), ξ∗k = (Y ∗
k , Z

∗
k)

it follows that the sequence (ξ∗k) satisfies the assumptions of Lemma
3.5 in dimension d = 2 with a diagonal matrix Σ. Thus by Lemma
3.5 the set of accumulation points of{

1

(2n log log n)1/2

n∑
k=1

ξ∗k, n = 1, 2, . . .

}

is, with probability 1, the circle around the origin with radius√
1− |φ(2πα)|2√
2|1− φ(2πα)|

.
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By the exponential decrease of E|ξk|, the same holds if ξ∗k is replaced
by ξk and thus (1.4) is proved.

Finally, we prove (ii). Assume that exp(2πiX1α) is non-degenerate
and that P(2X1α ∈ Z) = 1. Note that the latter condition in fact
implies (3.16). In this case

Zk = sin(2πSkα) = 0 a.s.

which means that exp(2πiSkα) = Yk ∈ R. We also have φ(4πα) = 1.
Thus (3.25) simplifies to

E

(
m+n∑

k=m+1

Yk

)2

= 2Re
∑

m+1≤k<ℓ≤m+n

φ(2πα)ℓ−k + n.

As before, we have

∑
m+1≤k<ℓ≤m+n

φ(2πα)ℓ−k =

n−1∑
r=1

(n−r)φ(2πα)r = n

n−1∑
r=1

φ(2πα)r+O(1) =

n
φ(2πα)

1− φ(2πα)
+O(1) uniformly in m,

therefore

lim
n→∞

1

n
E

(
m+n∑

k=m+1

Yk

)2

=
1− |φ(2πα)|2

|1− φ(2πα)|2
(3.31)

uniformly in m.
Let now Y ∗

k = Yk − EYk. Clearly EYk = Reφ(2πα)k, and since
|φ(2πα)| < 1, there exists a 0 < ρ < 1 such that |EYk| ≤ ρk. From
this it follows that (3.31) remains valid if we replace Yk by Y ∗

k , and thus
it follows that the sequence (Y ∗

k ) satisfies the assumptions of Lemma
3.5 in dimension d = 1. Thus by Lemma 3.5 the set of accumulation
points of {

1

(2n log log n)1/2

n∑
k=1

Y ∗
k , n = 1, 2, . . .

}
is, with probability 1, the closed interval centered at zero with radius√

1− |φ(2πα)|2
|1− φ(2πα)|

.
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By the exponential decrease of E|Yk|, the same holds if Y ∗
k is replaced

by Yk and thus (1.5) is proved.

In conclusion we prove, using a standard argument in uniform
distribution theory (see e.g. [15], pp. 124–125) the remark made at the
end of the Introduction concerning the discrepancy of {Skα}. Assume
that X1 is integer valued, it has mean zero and finite variance and
(1.9) holds for infinitely many rationals p/q with some C > 0, γ >
2. Take such a rational p/q, fix ε > 0 and set N = [qβ], where
β = (γ − 1)/(1/2 + ε). By the law of the iterated logarithm we have
|Sn| = O(n(1+ε)/2) a.s., pick a point ω in the probability space for
which this holds. Then α = p/q + Cθ/qγ with |θ| ≤ 1 and thus for
1 ≤ n ≤ N we have Snα = Snp/q + θn with

|θn| ≤ C ′N (1+ε)/2q−γ < C ′qβ(1+ε)/2−γ = C ′q−1−δ

where δ = γ − 1− β(1 + ε)/2 > 0. Since Sn is an integer, none of the
numbers

{S1α}, {S2α}, . . . , {SNα} (3.32)

lie in the interval [C ′q−1−δ, 1/q − C ′q−1−δ] and thus the discrepancy
of the sequence (3.32) is ≥ 1/(2q). Since the choice of N implies
q ≤ (2N)1/β, if follows that, given any ε > 0, the discrepancy of the
sequence (3.32) exceeds C ′′N−1/β = C ′′N−(1/2+ε)/(γ−1). Since ε can
be chosen to be arbitrarily small, our claim is proved.
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