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Abstract 20 

The Elements of Metacommunity Structure (EMS) framework originally suggested by Leibold 21 

and Mikkelson (2002) in Oikos is a popular approach to identify idealized metacommunity 22 

patterns (i.e. checkerboard, nested, evenly spaced, Clementsian, Gleasonian), and hereby to 23 

infer the existence of structuring processes in metacommunities. Essentially, the EMS 24 

framework consists of the rearrangement of the sites-by-species incidence matrix followed 25 

by a series of tests for coherence, turnover and boundary clumping in species distributions. 26 

Here, we give a critical evaluation of the EMS framework based on theoretical considerations 27 

and simulations. We found that user defined site ordering may influence the coherence test 28 

(number of embedded absences) depending also on the ordering of species, and therefore 29 

we argue that the application of user-defined matrix rearrangement has strong limitations. 30 

The recommended ordering by correspondence analysis is sensitive to matrix structure and 31 

may even include arbitrary decisions in special cases. Further, we revealed different 32 

meanings of the checkerboard pattern and showed that negative coherence is not 33 

necessarily associated with this as assumed in the EMS framework. Also, the turnover test 34 

cannot always detect nested pattern, because turnover and nestedness are not necessarily 35 

the opposite endpoints of a continuum. We argue that the boundary clumping test can only 36 

be used for separating Clementsian, Gleasonian and evenly spaced patterns if sites are 37 

ordered along a real environmental gradient rather than a latent one identified by 38 

correspondence analysis. We found that the series of tests in the EMS framework are 39 

burdened by anomalies and that the detection of some metacommunity patterns is sensitive 40 

to type II error. In sum, our findings suggest that the analytical methodology of the EMS 41 

framework, as well as the conclusions drawn from its application to metacommunity studies 42 

require careful reconsideration. 43 

 44 
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1. Introduction 49 

Detecting and understanding drivers of metacommunity structure are key issues in 50 

community ecology with significant legacy (Mittelbach 2012). Early ecologists have already 51 

inferred the existence of structuring forces from the community patterns observed. For 52 

instance, Clements (1916), the pioneer of North American plant ecology, viewed plant 53 

communities as coherent units with discrete boundaries formed in response to 54 

environmental factors (Clementsian pattern). In contrast, Gleason (1926) argued that species 55 

have distinct ecological characteristics and therefore individualistic responses to underlying 56 

environmental gradients (Gleasonian pattern). Evenly spaced pattern occurs in systems with 57 

trade-offs in fitness in different environments, resulting in a spatial distribution with evenly 58 

dispersed populations (Tilman 1982). Intense interspecific competition may generate 59 

checkerboard pattern where pairs of species are mutually exclusive (Diamond 1975). Finally, 60 

nested pattern occurs when species poor communities consist of subsets of species 61 

occurring in richer communities (Patterson and Atmar 1989). These cases have been 62 

regarded as idealized types of metacommunity pattern (Ulrich and Gotelli 2013, Heino et al. 63 

2015) and have received increasing attention due to their theoretical interpretation 64 

(Carvalho et al. 2013, Ulrich and Gotelli 2013). 65 

The development of metacommunity theory provided a conceptual framework for ecologists 66 

to disentangle underlying drivers (niche based species sorting, dispersal, drift, see Vellend 67 

2010, Shipley et al. 2012) of multisite communities (Leibold et al. 2004). Some of the 68 

approaches use multispecies distribution patterns for inferring the existence of structuring 69 

ecological forces. No doubt that the “elements of metacommunity structure” approach 70 

suggested by Leibold and Mikkelson (2002) and its upgrade (Presley et al 2010, hereafter 71 

referred to as EMS framework) provide a very popular methodology developed for this 72 

purpose. 73 

The EMS framework includes the rearrangement of the sites-by-species incidence matrix 74 

followed by three tests (Fig. 1), each related to a given element of metacommunity 75 

structure. First, the rows and the columns of the matrix are ordered along the first axis of 76 

correspondence analysis (CoA) to discern variation in response to a latent environmental 77 

gradient. According to Leibold and Mikkelson (2002, p. 241), the simultaneous ordering of 78 

sites and species has three purposes: (1) it often minimizes the number of interruptions in 79 

species' ranges (number of embedded absences), (2) it provides a basis for judging whether 80 

a given metacommunity is nested, or dominated by turnover (high number of species 81 

replacements), and (3) it defines the boundaries of species' ranges (boundary clumping). 82 

Consequently, matrix rearrangement via CoA has strong impact on the assessment of each 83 

element of metacommunity structure. Note that although this procedure is recommended 84 

for general use, the EMS framework also allows user-defined matrix ordering. Secondly 85 

coherence, the first element of metacommunity structure is defined as the number of 86 

embedded absences in the matrix and its significance is examined using null model tests. 87 

Following the study of Gotelli (2000), species richness of sites is kept constant in the 88 

recommended null model (Presley et al. 2010). If coherence is negative (the number of 89 

embedded absences is significantly higher than expected by chance) then the EMS 90 
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framework detects checkerboard pattern. If the number of embedded absences does not 91 

differ significantly from a randomly generated value (coherence is random) then the EMS 92 

framework indicates a random pattern. If coherence is positive (the number of embedded 93 

absences is lower than expected by chance) then the matrix should be examined for 94 

turnover. Turnover, the second element of metacommunity structure, is measured as the 95 

number of times one species replaces another between two sites (i.e. number of 96 

replacements) for each possible pair of species and for each possible pair of sites. If turnover 97 

is negative (the number of replacements is lower than expected by chance) then the EMS 98 

framework reveals a nested pattern, if turnover is random the EMS detects quasi pattern 99 

(see Presley et al. 2010), and if turnover is positive (the number of replacements is higher 100 

than expected by chance) then the EMS framework suggests the existence of Clementsian, 101 

Gleasonian or evenly spaced patterns. These latter three are separated from each other by 102 

examining the boundary clumping of species ranges, the third element of metacommunity 103 

structure, using the Morisita test. If clumping is positive (Morisita I is significantly larger than 104 

1.0) then the EMS framework detects Clementsian pattern; if clumping is negative (Morisita I 105 

is significantly lower than 1.0) evenly spaced pattern is indicated, and if clumping is random 106 

(Morisita I does not significantly differ from 1.0) then the pattern is thought to be 107 

Gleasonian. 108 

There is, however, much controversy about the relative merits of the EMS framework. 109 

Gotelli and Ulrich (2012, p. 178), for instance, noted that species segregation and 110 

aggregation examined in the coherence test "might be the different sides of the same coin" 111 

and that rearranging the matrix (i.e. the reordering of sites by correspondence analysis) 112 

"does not alter any of the underlying information on species occurrences in the matrix". By 113 

examining the power of different null model algorithms, Gotelli and Ulrich (2012) found that 114 

a segregation measure was not exactly opposite in its behavior to a nestedness measure, 115 

suggesting that nested and segregated patterns (i.e. evenly spaced, Gleasonian and 116 

Clementsian) are not necessarily mutually exclusive as implied by the turnover test in the 117 

EMS framework. The same authors repeated this comment later and also argued that "The 118 

frameworks proposed by Leibold and Mikkelson (2002), and Presley et al. (2010) implicitly 119 

assume that measures of coherence, turnover, and boundary clumping describe orthogonal, 120 

independent properties of matrices. But if the measures are strongly correlated, some of the 121 

proposed cells in their classification frameworks may be redundant or not achievable. 122 

Leibold and Mikkelson (2002) recognized this problem and noted that they were able to 123 

identify empirical matrices that fit each of the five different scenarios they described" (Ulrich 124 

and Gotelli 2013, p. 3). A more recent paper stated that the efficiency of the EMS framework 125 

is heavily dependent on data quality (Mihaljevic et al. 2015, see also Gotelli and Graves 126 

1996, Ulrich and Gotelli 2013) and suggested the use of occupancy models to at least partly 127 

overcome this problem. These models allow an estimation of predicted occupancy at each 128 

sample site and thus make it possible to distinguish between the probability of a species 129 

occurring at a site and the probability of a species being detected at a site in which it does 130 

occur (Mihaljevic et al. 2015). These critical comments, however, did not prevent community 131 

ecologists from using the methodology even further. The EMS framework has still been used 132 

increasingly both in terrestrial and aquatic realms for finding the best fit to idealized 133 
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metacommunity patterns (Dallas and Presley 2014, de la Sancha 2014, Heino et al. 2015). 134 

However, the reliability of the method in discerning idealized (meta)community patterns has 135 

not been tested as yet. 136 

To fill this methodological gap, this paper examines the performance of the EMS framework. 137 

Combining theoretical aspects with simulation approaches we go through this approach step 138 

by step and inspect how the rearrangement of the matrix, the output of individual tests as 139 

well as their series influence the success of analysis. We examined also the robustness of the 140 

methodology to increasing noise in the data, as well as the practice of researchers in 141 

revealing the importance of environmental factors structuring metacommunity patterns. 142 

 143 

2. Methods 144 

To guarantee unambiguous answers, we first carefully review terms and procedures related 145 

to the EMS framework. We discuss possible interpretations of terms and evaluate the 146 

performance of different procedures. In case of equivocal use of any term or procedure, we 147 

attempt to clarify the situation by suggesting a solution. 148 

We calculated the following indices: the number of embedded absences (the index of 149 

coherence test, Leibold and Mikkelson 2002, Presley et al. 2010), the number of mutually 150 

exclusive species pairs (Diamond 1975), turnover (the index of turnover test, Leibold and 151 

Mikkelson 2002, Presley et al. 2010). As nestedness is not defined in the EMS framework, we 152 

used two nestedness measures, the relativized nestedness (Nrel, Podani and Schmera 2011) 153 

and the site-order independent version of NODF (Almeida-Neto et al. 2008) called as 154 

NODFmax (Podani and Schmera 2012, Ulrich and Almeida-Neto 2012). 155 

We examined the behavior of indices themselves as well as the behavior of the indices in 156 

null model tests. Indices were examined using toy data sets in series of site-by-species 157 

incidence matrices. We examined the relationship between indices in two-site situations 158 

using the random parameter approach (Chao et al. 2012, see also Baselga and Leprieur 159 

2015). In the first (Random parameter approach 1), we assumed that the numbers of species 160 

present in both sites (a), present only in the first site (b), and present only in the second site 161 

(c) are derived from a uniform distribution ranging from 0 to 100. We generated 50,000 162 

triplets of random a, b and c values, and removed data records with empty sites. In the 163 

second case (Random parameter approach 2), we assumed that 200 species are distributed 164 

among the three sets (a, b and c). We produced all possible combinations and removed data 165 

records with empty sites. Furthermore, we simulated all the possible sites-by-species 166 

matrices containing 4 sites and 4 species (degenerate matrices were omitted). This 167 

procedure resulted in 41,503 binary matrices, called hereafter as 4-by-4 binary matrices. 168 

Although the 4-by-4 binary matrices allow examining the response of indices to all possible 169 

situations in the matrix, the null model test of the matrix might be problematic due to the 170 

small number of sites and species. We therefore produced 10,000 random matrices with 10 171 

sites and 10 species (degenerate matrices, i.e. those containing empty rows or columns, 172 

were omitted). These are referred to as 10-by-10 matrices. We used them in null model tests 173 
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(Gotelli and Graves 1996). For each random matrix, we generated 1000 null matrices. 174 

Although there are many algorithms to produce 'random' or 'null' matrices and these 175 

algorithms have different statistical properties and ecological meanings (Gotelli and Ulrich 176 

2012, Ulrich and Gotelli 2013, Strona et al. 2017), we selected the null model method that 177 

maintained the species richness of every site and filled species ranges based on their 178 

marginal probabilities ("r1" method in metacom package, Dallas 2014). The P value 179 

(estimated probability of type I error) was calculated as the number of null matrices whose 180 

index value was more extreme than or equal to the observed index. We applied a two-tailed 181 

test at  = 0.05. The Jaccard index (Jaccard 1912) was used to measure the similarity of 182 

different null model tests: the number of matrices proved to be significantly positive (or 183 

negative) in both tests was divided by the number of such matrices plus those that were 184 

found significant only in either of the two tests. Positive and negative results in the two tests 185 

were not distinguished. 186 

We used a noise test (Gotelli 2000, Podani and Schmera 2012) to examine the sensitivity of 187 

the EMS framework to increasing randomness in community data. We started with 20-by-20 188 

perfectly structured nested, Gleasonian, evenly spaced and Clementsian patterns (Electronic 189 

Appendix 1). These patterns were regarded as initial patterns (step 0, 0% noise). We then 190 

gradually added noise (randomness) to the matrix in the following way: In the first step (5% 191 

noise), 20 pairs of randomly chosen values in the matrix were interchanged (referred to the 192 

full randomization model in Podani and Schmera 2012). In the second step (10% noise), 40 193 

pairs of randomly chosen values were interchanged. Complete randomness (100% noise) is 194 

achieved after 20 steps, with a total of 400 interchanges. Degenerate matrices were 195 

omitted. This procedure was repeated 100 times for every step. EMS analysis was performed 196 

for each step (21 steps) 100 times. The output of the noise test shows the relative frequency 197 

of detected metacommunity patterns in response to increasing noise level (from 0% to 198 

100%). The ideal - and expected - situation is that at low noise level the methodology detects 199 

mostly the initial pattern. At intermediate noise level, the initial pattern is detected in a 200 

decreasing number of times, while the frequency of random pattern is increasing. At high 201 

noise level, the frequency of random pattern should be the largest. If the initial pattern is 202 

not detected many times even at low noise level, then the EMS framework is sensitive to 203 

type II error. In contrast, if the initial pattern is detected with high frequency even at high 204 

noise level, the EMS framework is sensitive to type I error. 205 

Finally, we examined how researchers use the EMS framework and handle the importance of 206 

environmental factors in shaping metacommunity patterns. To reveal this, first we made a 207 

search using ISI Web of Science (access date: 28 July 2015) on the number of papers citing 208 

Presley et al. (2010). In the second step, we searched for papers applying the EMS 209 

framework. We divided these papers into two groups: those applying user defined matrix 210 

ordering and articles using CoA for site and species ordering. Then, we searched for papers 211 

that reported the variance explained by CoA axes. In our view, this information is essential, 212 

and should be obligatorily added to EMS analysis as an expression of the reliability of the 213 

method. No doubt that the amount of community variation explained must be used for 214 
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assigning the studied metacommunity to an idealized pattern. Finally, we examined whether 215 

the axes of CoA (EMS framework) were related to any environmental variables. 216 

All calculations were performed in R (R Core Team 2016). All possible matrices containing 4 217 

sites and 4 species were produced by the gtools package (Warnes et al. 2015). Null matrices 218 

were produced by the metacom package (Dallas 2014). Correspondence analysis (CoA) was 219 

performed by the ca package (Nenadic and Greenacre 2007), the number of mutually 220 

exclusive species pairs, number of embedded absences, turnover, relativized nestedness and 221 

NODFmax were calculated by R-scripts developed by the authors (Electronic Appendix 2). 222 

 223 

3. Site and species ordering 224 

By definition, site and species orderings influence the number of embedded absences 225 

(order-dependent measure) in the data matrix, but they have no impact on the number of 226 

replacements (order-independent measure). In addition, site ordering also affects patterns 227 

in boundary clumping (order-dependent measure). That site and species ordering both 228 

influence coherence can be explained by the definition of embedded absence: "an 229 

interruption in a range or community" (p. 242 in Leibold and Mikkelson 2002). 230 

Studying communities along an environmental gradient is a typical situation for user-defined 231 

site-ordering. The EMS framework allows user-defined matrix ordering without emphasizing 232 

the importance of species ordering. Since coherence is influenced not only by the order of 233 

sites but also by species ordering, as said, user-defined matrix ordering has strong 234 

limitations. Therefore, if the data matrix is ordered by the user, we recommend a clear 235 

definition of species ordering, if it is possible at all. 236 

Alternatively, the recommended matrix-ordering uses the first axis of CoA to define the 237 

order of sites (and species) for the coherence test. In this case, we disclaim real 238 

environmental gradients and focus on the "within-matrix data structure". In complex data 239 

structures, however, the first axis of CoA does not necessarily explain considerably more 240 

variation than the subsequent axes. In other words, the first axis of CoA might identify one 241 

dominant but not necessarily the only dominant axis of community variation. This means 242 

that analyses of the same data matrix reordered along different axes might reveal 243 

contrasting aspects of data structure. We by no means state that the use of the first axis of 244 

CoA is a bad decision but emphasize that further studies are needed to reveal the effect of 245 

choosing among similarly important axes, and to merge alternative results into a consensus. 246 

Finally, although CoA has been one of the most popular ordination methods in numerical 247 

ecology, it has some limitations. One of these is that sites with single and unique species 248 

cannot be ordered due to the lack of overlap with other sites and species. If software 249 

packages do order such matrices "in a way" then the result is based on an arbitrary decision 250 

(Electronic Appendix 3). Accordingly, CoA performed by different software packages may 251 

provide differently ordered matrices and thus it cannot be regarded as "a standardized 252 

approach to order sites and species" as stated by Presley et al. (2010, p. 910). Although field 253 

ecologists might argue that actual data sets rarely contain sites with unique species, we have 254 
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three arguments in favor of discussing this situation. First, a methodology should work under 255 

all circumstances, or at least its users should be aware of any limitations. Second, the chance 256 

of observing sites with unique species cannot be excluded completely in actual data sets. 257 

Finally, checkerboard pattern, a key term of the EMS framework, has a strong theoretical 258 

connection to sites with unique species (see next paragraph). 259 

 260 

4. The multiple meaning of checkerboard pattern 261 

Since the coherence test of the EMS framework is supposed to separate checkerboard, 262 

random and other data structures from each other, first we review the meaning of 263 

checkerboard pattern and then identify its most conspicuous realization. In examining the 264 

co-occurrence of bird species on islands, Diamond (1975) proposed the term "checkerboard 265 

distribution" for competing pairs of species with mutually exclusive island-by island 266 

distributions. In this metaphor, the distribution of the competing pair of species reflects the 267 

alternating squares of dark and light colors in a checkerboard pattern (of which the 268 

chessboard is a special case). Accordingly, we can visualize this checkerboard distribution for 269 

a given pair of species by the following matrix (M1), where sites are rows and species are 270 

columns: 271 

 272 

M1=



















10

01

10

01

 273 

 274 

It is very important to emphasize that Diamond's original checkerboard distribution reflects 275 

the distribution of pairs of species, and the "checkerboard character" of a community has 276 

been mostly (but not always, see Stone and Roberts 1990, 1992; Gotelli 2000) characterized 277 

by the number of checkerboard species pairs (i.e. the number of species pairs with non-278 

overlapping occurrence). In agreement with this, and for compatibility with the EMS 279 

framework (Presley et al. 2010), we will use the term checkerboard pattern for binary 280 

matrices in which the number of checkerboard species pairs (Stone and Roberts 1990) is 281 

high. This definition means that the checkerboard pattern may be identified in binary 282 

(presence-absence) matrices without any restriction as to the order of sites and species. 283 

Almeida-Neto et al. (2008) used the term "checkerboard" for any binary matrix in which 284 

every cell containing the value of 1 has the same value in all diagonally neighboring cells and 285 

0 in the remaining neighboring cells, for example:  286 

 287 
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M2=



















1010

0101

1010

0101

 288 

 289 

We refer to this as visual checkerboard pattern, which has been used mostly for visualization 290 

purposes. Since its first appearance (Almeida-Neto et al. 2008), the visual checkerboard 291 

pattern has been used frequently as an example matrix for developing pattern analysis 292 

procedures (Podani and Schmera 2011, Ulrich and Gotelli 2013). However, many analytical 293 

tools in metacommunity ecology are insensitive to the order of sites and species in the 294 

matrix and therefore are unable to detect and test this unique property. A noted example is 295 

the compartment pattern, which differs from the visual checkerboard pattern only in the 296 

ordering of sites and species (Podani and Schmera 2011, Ulrich and Gotelli 2013). 297 

Recently, Connor et al. (2013) have contributed by two very important points to the proper 298 

interpretation of the checkerboard pattern in situations where ordering is fixed by 299 

geographical constraints. First, they argued that the checkerboard metaphor reflects the 300 

mutually exclusive distribution of two species on a set of islands, where only one of the two 301 

species (denoted by the letters A or B) is present on a single island, while the position of the 302 

letters corresponds to the explicit geographic position of the islands. Consequently, a set of 303 

16 islands arranged spatially in a regular 4-by-4 grid and occupied by two species (A and B) 304 

shown below indicates a checkerboard pattern: 305 

 306 



















ABAB

BABA

ABAB

BABA

 307 

 308 

Connor et al. (2013) argued also that the metaphor does not intend to visualize the 309 

presence-absence of the species in a sites-by-species incidence matrix (for example, M2 as 310 

given above) and thus this incidence matrix, in disagreement with other studies (Almeida-311 

Neto et al. 2008, Podani and Schmera 2011, Ulrich and Gotelli 2013), should not be regarded 312 

as a "real" spatial checkerboard pattern. 313 

As a second contribution, Connor et al. (2013) pointed out that the idea of Diamond's 314 

checkerboard distribution includes not only mutually exclusive island-by-island distribution 315 

of species pairs, but also the overlapping geographic ranges of the species. According to this 316 

argument and without any information on the distribution ranges of species, the lack of co-317 

occurrence due to competition cannot be separated from lack of co-occurrence owing to 318 

non-overlapping ranges (spatial turnover). All of these suggest that presence-absence 319 
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matrices fail to address Diamond's (1975) original idea because a binary data matrix by itself 320 

has "no explicit geography" and provides no information on the distribution ranges of 321 

species. To clarify the situation, Connor et al. (2013) suggested the term true checkerboard 322 

pattern for a pair of species which never co-occur on the same island and the islands 323 

occupied by these two species are geographically alternating. 324 

In sum, we will use the term checkerboard pattern when the binary matrix contains a large 325 

number of checkerboard species pairs. Visual checkerboard pattern refers to a binary matrix, 326 

in which zeros regularly alternate with 1-s over columns and rows. Finally, true checkerboard 327 

pattern refers to a pair of species which never co-occur on the same island and the islands 328 

occupied by these two species geographically alternate. 329 

The EMS framework (Presley et al. 2010) refers to Diamond's definition (Diamond 1975), and 330 

thus to checkerboard pattern. Some studies using the EMS framework, however, apparently 331 

have to do with the visual checkerboard pattern (see Fig. 2 in Tonkin et al. 2017) to which 332 

this methodology does not apply. 333 

Of the 41,503 4-by-4 binary matrices, the largest number of mutually exclusive species pairs 334 

(6) was observed when all sites contained only a unique species (Electronic Appendix 4). This 335 

suggests that if the checkerboard pattern is quantified by the number of checkerboard 336 

species pairs (as in the EMS framework), then sites with single and unique species will 337 

contribute the most to the checkerboard character. Unfortunately, ordering of such matrices 338 

is arbitrary in correspondence analysis (Electronic Appendix 3), and thus the application of 339 

CoA and exclusive species pairs within the same approach may not be optimal. 340 

 341 

5. Coherence test 342 

The first promise of the coherence test is that a high number of embedded absences 343 

(negative coherence) indicates checkerboard pattern (high number of checkerboard species 344 

pairs). The examination of 4-by-4 binary matrices shows that sites with single and unique 345 

species (matrices with the highest number of checkerboard species pairs) have no 346 

embedded absences. To get a deeper insight into this relationship, we plotted the number of 347 

embedded absences (quantifying negative coherence) against the number of checkerboard 348 

species pairs (quantifying checkerboard pattern) for the 41,503 4-by-4 incidence matrices 349 

(Fig. 2). As seen, a high number of embedded absences is not necessarily associated with low 350 

number of checkerboard species pairs and vice versa. Moreover, 4-by-4 matrices with the 351 

highest number of checkerboard species pairs (sites with single and unique species) contain 352 

no embedded absences, while matrices with the largest number of embedded absences (not 353 

shown) do not contain checkerboard species pairs. 354 

The analyses of 10-by-10 matrices revealed that 303 matrices showed a significantly higher 355 

number of embedded absences (negative coherence) than expected and thus exhibited 356 

checkerboard pattern. The null model test detected 66 matrices with significantly large 357 

number of checkerboard species pairs, of which 15 matrices were selected also by the 358 

coherence test. This suggests that 4.24% (Jaccard similarity = 15/354) is the agreement 359 
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between null model tests using the number of embedded absences (coherence test of the 360 

EMS framework) and the number of checkerboard species pairs. Consequently, the number 361 

of embedded absences does not necessarily indicate checkerboard pattern and thus cannot 362 

be used alone as its indicator. 363 

 364 

6. Definition of turnover and its test 365 

The EMS framework assumes that turnover and nestedness are opposing patterns (Leibold 366 

and Mikkelson 2002, p. 239). This means that if we observe low nestedness then turnover 367 

should be high and vice versa. In an extreme situation, zero nestedness should yield 368 

maximum turnover. To illuminate the relationship between turnover and nestedness, let us 369 

examine the following example (rows are sites and species are columns): 370 

 371 

1000000000 372 

0111111111 373 

 374 

Here turnover (number of times one species replaces another between two sites: in a two-375 

site situation it means b*c, where b is the number of species present only in the first, while c 376 

is the number of species present only in the second site, Presley et al. 2010) equals to 9. 377 

Note that in a 2-by-10 incidence matrix the maximum possible value of turnover is 25 378 

(obtained when b = 5 and c = 5). Consequently, this turnover value is 64% lower than the 379 

theoretical maximum. Although several nestedness indices do exist (the EMS framework 380 

does not define any measure), all of them agree that if two sites do not share any species 381 

then nestedness should be zero (Ulrich et al. 2009, Podani and Schmera 2012). Thus, this 382 

example demonstrates a situation with relatively low turnover and zero nestedness. 383 

Before discussing the relationship between turnover and nestedness, we should note that 384 

the turnover definition applied by Presley et al. (2010) and used here differs from many 385 

existing definitions of turnover (see Tuomisto 2010, Anderson et al. 2011, Gotelli and Ulrich 386 

2012). We by no means state that this measure does not quantify the concept of turnover, 387 

but emphasize its uniqueness in community ecology and therefore further studies are 388 

needed to clarify its performance. 389 

We examined the relationship between turnover and nestedness in two-site situations using 390 

both random parameter approaches (Fig. 3). All combinations of nestedness measures and 391 

random parameter approaches showed that high turnover associates mostly with low 392 

nestedness. However, low turnover values can be associated with a wide range of 393 

nestedness values, suggesting that turnover and nestedness are not necessarily opposing 394 

patterns. Although under specific conditions we can assume that high turnover predicts low 395 

nestedness, this is not always the case (see Random parameter approach 2). On the other 396 

hand, low turnover does not necessarily predict high nestedness. 397 
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We studied the relationship between turnover and nestedness using all possible 4-by-4 398 

matrices. When nestedness was quantified by the relativized nestedness measure, we found 399 

a relatively strong negative relationship between the two variables (r = -0.860, Fig. 4). 400 

Although low turnover values indicate high relative nestedness, high turnover does not 401 

necessarily indicate low relativized nestedness. When nestedness was quantified by 402 

NODFmax, the negative relationship with turnover was lower than with relativized nestedness 403 

(r = -0.641, Fig 5), and a low turnover value may be indicative of low nestedness.  404 

We used null model tests on 10-by-10 matrices to examine whether significantly high 405 

turnover is associated with significantly low nestedness, and whether significantly low 406 

turnover with high nestedness. Null model tests indicated 421 matrices with high turnover 407 

and 433 matrices with low nestedness when the latter is measured by the relativized 408 

measure. The agreement between the two assessments was 23.59% (i.e. Jaccard similarity = 409 

163/691). When nestedness was quantified by NODFmax, 296 matrices showed low 410 

nestedness. The agreement between high turnover and nestedness (NODFmax) was only 411 

5.60% (Jaccard similarity = 38/679). None of our null model tests indicated significantly low 412 

turnover, high relativized nestedness and high NODFmax. These results suggest that high 413 

turnover is not necessarily associated with low nestedness in the null model tests. In 414 

agreement with these findings, Ulrich and Gotelli (2013) and Ulrich et al. (2017) have already 415 

published similar results. 416 

 417 

7. Boundary clumping test 418 

Our starting point is that Clementsian, Gleasonian and evenly spaced patterns can only be 419 

interpreted along an actual (real) environmental gradient (Clements, 1916, Gleason 1926, 420 

Tilman 1982, Shipley and Keddy 1987). We argue that "within matrix data structure" 421 

revealed by CoA is inadequate for this purpose. Although user defined site ordering might 422 

allow testing real environmental gradients, difficulties associated with the coherence test 423 

(number of embedded absences is influenced by species ordering, unclear interpretation of 424 

coherence) strongly limit this possibility. All of these suggest that no boundary clumping test 425 

can be performed within the context of the EMS framework. 426 

 427 

8. Series of tests 428 

The EMS framework includes a well-defined sequence of three tests (coherence, turnover 429 

and boundary clumping). If we assume that these tests indicate orthogonal and independent 430 

properties of matrices then all these tests could be performed independently from the 431 

results of tests made earlier in the series. Although Leibold and Mikkelson (2002, p. 239) 432 

argue that "turnover and clumping are most meaningful in the context of reasonably 433 

coherent ranges", the application of a series of tests has strong consequences. First, a test 434 

performed in a series or alone has different statistical and ecological meanings. For instance, 435 

the turnover test alone indicates the concept where species are replaced by one another, 436 

while within the EMS framework it indicates the existence of replacement in positively 437 
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coherent metacommunity patterns. Second, some patterns should be more frequently 438 

detected than others because earlier tests restrict the possible outputs (i.e. turnover test 439 

can only be performed if coherence is high and cannot be performed when coherence is 440 

random or negative). Consequently, if we perform a two-tailed statistical test with 5% 441 

significance level, then about 2.5% of the examined random matrices should show 442 

checkerboard pattern, 95% random pattern, 0.0625% (2.5% × 2.5%) nested pattern, 2.375% 443 

(2.5% × 95%) quasi pattern, 0.0015625% (2.5% × 2.5% × 2.5%) evenly spaced and 444 

Clementsian pattern, and 0.05937% (2.5% × 2.5% × 95%) Gleasonian pattern in a series of 445 

tests suggested by the EMS framework. 446 

If we assume that the tests are not orthogonal and not independent then a series of tests 447 

may have a clear ecological meaning. In this case, however, the output of an earlier test 448 

should predict the output of a later test, or the ecological meaning of the output of an 449 

earlier test suggests that there is no need for further ecological information. The argument 450 

of Leibold and Mikkelson (2002, p. 239) that "turnover and clumping are most meaningful in 451 

the context of reasonably coherent ranges" suggests that the EMS framework considers 452 

coherence as primary feature of metacommunity organization. However, we see no strong 453 

theoretical support for the priority of coherence in metacommunity structuring. 454 

 455 

9. Noise test 456 

The noise test showed that the reliability of the method to identify idealized structures is 457 

different at the same level of noise (Fig. 6, Electronic Appendix 5). For example, the noise 458 

level at which the idealized structure was detected at least with 50% reliability was below 459 

only 5%, 5%, 10% and 20% for the evenly spaced, Gleasonian, nested and Clementsian 460 

gradients, respectively. These results may explain why Clementsian (or quasi-Clementsian) 461 

and nested patterns are identified most frequently in actual data sets and why Gleasonian 462 

pattern is identified relatively infrequently. Further, identification of the evenly spaced 463 

gradient was not possible in all cases even at zero noise. As low as 5% noise in the data 464 

already yielded that the EMS method identified either Clementsian or Gleasonian structure. 465 

Above 15% (nested), 20% (evenly spaced), 25% (Gleasonian) or 30 % (Clementsian) noise 466 

levels, the EMS method identified random metacommunity structure in more than 50% of 467 

cases, which further proves the sensitivity of the method to the characterization of idealized 468 

structures at different noise levels.  469 

 470 

10. The importance of environmental factors in shaping metacommunity patterns: current 471 

practice 472 

We found fifty papers citing Presley et al. (2010). Twenty-six papers, each of them ordering 473 

sites and species by correspondence analysis, applied the EMS framework. We found that 474 

only four papers out of these 26 attempted to provide information on the variance explained 475 

by CoA in some way. Three of these 4 papers provided eigenvalues of the first two axes of 476 

CoA. However, these two eigenvalues by themselves do not quantify the percentage of 477 
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variance they explained. There was a single paper of the 26 (3.8%) that provided information 478 

on the variance explained by CoA. This paper showed also that the first axis of CoA 479 

accounted for 17.7% to 24.0% community variation depending on the metacommunity 480 

studied and that environmental variables explained 47.9% to 77.4% variance of the first axis 481 

of CoA (Erős et al. 2014). Although this single study does not allow general conclusions to be 482 

drawn, it implies that metacommunity patterns are detected based on a limited amount of 483 

community variation and that this limited community variation is correlated only at an 484 

intermediate-level with multiple environmental variables. In most studies, the variance 485 

explained by CoA is not given at all, only the relationship between the site position in 486 

ordination axis and environmental variables (80.8%). In some cases, CoA is used in the EMS 487 

framework, but environmental variables are related to canonical correspondence analysis by 488 

the reasoning that canonical correspondence analysis is related to CoA (de la Sancha et al. 489 

2014), or can be regarded as a constrained extension of CoA (Heino et al. 2015). These 490 

studies ignore the fact that CoA and canonical correspondence analysis need not result in 491 

the same ordering of sites along any ordination axis. Overall, our literature survey shows 492 

that essential information, including at least some hints on the reliability of the identification 493 

of idealized metacommunity structures remains completely hidden in almost all studies 494 

which used the EMS framework.  495 

 496 

11. Conclusions 497 

Our theoretical and statistical considerations show that the EMS framework has to be used 498 

with caution for the identification of idealized metacommunity patterns. While it is 499 

appealing to identify the best-fit metacommunity structure under a single analytical 500 

framework, the reliability of the test to distinguish among the idealized structures is strongly 501 

case dependent. 502 

We showed that although user-defined site-ordering allows testing the response of 503 

community to an actual environmental gradient, its application is problematic due to the 504 

dependence of the coherence test upon the order of species. Unfortunately, this 505 

dependence strongly limits the performance of the EMS framework in testing the response 506 

of communities to real environmental gradients. Even if CoA is used for the ordering of sites, 507 

the EMS framework is relatively unreliable for separating evenly spaced, Gleasonian and 508 

Clementsian patterns. Our results demonstrate that the coherence test is the most critical 509 

step of the EMS framework. We found that it is not necessarily adequate for separating 510 

checkerboard pattern and its ecological meaning is not clearly defined. Our observations are 511 

in strong agreement with the findings of Gotelli and Ulrich (2012) in that the turnover test is 512 

not necessarily adequate for detecting a nested pattern. 513 

We concluded that the application of a series of tests requires further considerations and 514 

that the detection of some idealized patterns is prone to type II error. Our literature survey 515 

clearly indicated that the documentation of the results of the EMS framework analysis is 516 

insufficient and thus information is extremely limited on the amount of community variation 517 

used for detecting idealized metacommunity patterns and also on the relationship between 518 
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this variation and environmental drivers. These findings call for reconsidering the analytical 519 

steps of the EMS framework, and for careful interpretation of its results. 520 
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 611 

Fig. 1: Diagrammatic representation of the Elements of Metacommunity Structure (EMS) 612 

framework following Leibold and Mikkelson (2002) and Presley et al. (2010). 613 

 614 
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 615 

Fig. 2: The relationship of the number of embedded absences and the number of 616 

checkerboard species pairs when incidence matrices with 4 sites and 4 species were 617 

examined. 618 

 619 
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 620 

Fig. 3: The relationship between turnover (horizontal axes) and nestedness (vertical axes) 621 

when pairs of sites were examined. Upper subfigures show when nestedness was quantified 622 

as Nrel, while lower subfigures show when nestedness was quantified as NODFmax. Left 623 

subfigures show the results of the Random parameter approach 1, while right subfigures 624 

those of the Random parameter approach 2. 625 

 626 
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 627 

Fig. 4: The relationship between turnover and nestedness ((Nrel) when incidence matrices 628 

with 4 sites and 4 species were examined. 629 

 630 
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 631 

Fig. 5: Relationship between turnover and nestedness (NODFmax) when incidence matrices 632 

with 4 sites and 4 species were examined. 633 
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 635 

Fig. 6: Bar plot showing the frequency of idealized metacommunity patterns (vertical axis) 636 

detected by the Elements of Metacommunity Structure (EMS) framework when evenly 637 

spaced pattern was exposed to increasing noise (horizontal axis). 638 
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THE MANUSCRIPT CONTAINS ALSO THE FOLLOWING ELECTRONIC APPENDICES 643 
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Electronic Appendix 1: Idealized metacommunity patterns used in the noise test. 645 
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Electronic Appendix 2: R script used for calculating indices. 647 
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Electronic Appendix 3: The ordering of an incidence matrix with sites with single and unique 649 

species. R scripts. 650 
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Electronic Appendix 4: Visualization of 4-by-4 incidence matrices with the largest number of 652 

checkerboard species pairs. 653 
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