If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

A practical manual for Vissim COM
programming in Matlab

3rd edition for Vissim version 9 and 10

Tamas Tettamanti, Marton Tamas Horvath

Budapest University of Technology and Economics
Dept. for Control of Transportation and Vehicle Systems
www.traffic.bome.hu

2018

https://doi.org/10.3311/pp.ci.2012-1.05
http://www.traffic.bme.hu/

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

1. Vissim traffic simulation via COM interface programming

1.1. The purpose of Vissim-COM programming

Vissim is a microscopic road traffic simulator based on the individual behavior of vehicles.
The goal of the microscopic modeling approach is the accurate description of the traffic
dynamics. Thus, the simulated traffic network may be analyzed in detail. The simulator uses
the so-called psycho-physical driver behavior model developed originally by Wiedemann
(1974). Vissim is widely used for diverse problems by traffic engineers in practice as well as
by researchers for developments related to road traffic. Vissim offers a user friendly graphical
interface (GUI) through of which one can design the geometry of any type of road networks
and set up simulations in a simple way. However, for several problems the GUI is not
satisfying. This is the case, for example, when the user aims to access and manipulate Vissim
objects during the simulation dynamically. For this end, an additional interface is offered
based on the COM which is a technology to enable interprocess communication between
software (Box, 1998). The Vissim COM interface defines a hierarchical model in which the
functions and parameters of the simulator originally provided by the GUI can be manipulated
by programming. It can be programmed in any type of languages which is able to handle
COM objects (e.g. C++, Visual Basic, Java, etc.). Through Vissim COM the user is able to
manipulate the attributes of most of the internal objects dynamically.

1.2. The basic steps of Vissim-COM programming

The following steps formulate a general synthesis for the realization of any adaptive control
logic through Vissim-COM interface:

1. One generates the overall traffic network through the Vissim GUI (geometry, signal
heads, detectors, vehicle inputs, etc.).

2. After choosing a programming language which allows COM interface programming,
one creates the COM Client.

3. Programming of the simulation via Vissim COM with specific commands, e.g.
e simulation setting (multiple and automated runs),
e vehicle behavior,
e evaluation during simulation run (online),
e traffic-responsive signal control logic.

4. Simulation running form COM program.

To understand the Vissim-COM concept, see the figure below which depicts a part of the
Vissim-COM object model. The Vissim-COM is based on a strict object hierarchy with two
kinds of object types:

e collections (array, list): store individual objects, references to the objects; the
collection names in the Vissim-COM object model are always in plural, e.g. ‘Links’.
The interface for this object is the ‘ILinks’ interface. References to the objects can be
accessed via the ‘ILinkCollection’ interface.

e containers: store a single object, the objects themselves; the container names are
always in singular, e.g. ‘Link’. The interface for this object is the ‘ILink’ interface.
The objects themselves can be accessed via the ‘ILinkContainer’ interface.

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

“This distinction between containers and collections is needed because objects are linked to
one another. Adding new objects or deleting objects is only possible in the container.” (PTV,
2017)

The letter ‘I’ always represents the interface for the object.

The objects are in a hierarchical structure of which the head is the main Vissim object. [Vissim
is the interface representing the Vissim object. Only one main object can be defined and all
other objects belong to the main object.

ISimulation
|Evaluation

IGraphics

[Vissim]
|Areas M |Area |
ILinks M ILink |
! ILanes |
I IPoints3D |
—{ ISimulation]
—{ [Evaluation]
—{Graphics |

1. The Vissim-COM object hierarchy (PTV, 2017)

The full Vissim-COM object hierarchy model is described in the Online Help of Vissim that
can be accessed via the Vissim GUI Click on Help\Online Help...\Vissim-COM\Objects. To
access the [Vissim interface, representing the Vissim object, click on IVissim (see fig. 2). Under
the Public Properties headline you can see five properties that return object instances. These are
Evaluation, Graphics, Net, Presentation and Simulation. Thus IEvaluation, IGraphics, INet,
[Presentation and ISimulation interfaces, representing the Evaluation, Graphics, Net,
Presentation and Simulation objects, are available.

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

Conterts llgdex | Search | Fat |+ || VY

@ IvehicleRoutin
@ IVehicleRoutin
@ IVehicleRoutin
@ IvehicleRoutin < Summary
@ IVehicleRoutin
@ IvehicleRoutin

@ IVehicleTravel Public Methods

@ IvehicleTravel ¥ Public Properties
@ IvehicleTravel

@ IVehicleType

IVissim
vExpand All

Interface representing a PTV Vissim instance

= AttValue Set attribute value
@ IVehicleTypeC '
@ IVehicleTypeC 5 Evaluation Returns an Evaluation object instance.
= [vissim) i o
[7] Overvew = Graphics Returns a Graphics object instance.
[7] Attributes 5 Net Returns a Met object instance.
Relations
[7] Referencex 2 Presentation Returns a Presentation object instance.
@ Wethods ™ ScenarioManagement Returns a ScenarioManagement object instance.
g g]
% Properies
@ IWalkingBeha P Simulation Returns a Simulation object instance.
@ IWalkingBeha =
@ IWalkingBeha See Also

@ IWeightDistribi

@ (WeightDistrib

IWeightDistrib

: IWTTFile Copyright ® 2015 PTV AG

@ IWTTFileColle v
< >

IWissim | IVissim Aftributes

2. Accessing the objects of Vissim (Vissim online help)

To understand the object model, consider the following example, which represents the access
to a given road link:

1. Below the main interface ‘IVissim’ (representing the ‘Vissim’ object, see fig. 1) you
can find the ‘INet’ interface (representing the ‘Net’ object), which compasses all
network functionalities.

2. Collections are situated below object ‘Net’ (of which the interface is ‘INet’).

3. Collection ‘Links’ (of which the interface is ‘ILinkContainer’) contains the references
to the links of the network (previously defined via Vissim GUI). ‘Links’ is a Public
Property of ‘INet’. The Link objects themselves are contained in the Links object for
which ‘ILinkCollection’ is the interface (The same is valid for e.g. ‘Areas’ and
‘IAreaCollection’).

4. Toaccess a given ‘Link’ object, one needs to define ‘Vissim’, ‘Net’, and ‘Links’ objects.
‘ILinkContainer’ (and containers generally) has a Public Property called ‘ItemByKey’
that makes it possible to access the ‘ILink’ interface for a specific Link object

5. After accessing the given ‘Link’, one may apply Vissim-COM methods (e.g.
‘RecalculateSpline’), as well as query or set attributes (e.g. ‘NAME”).

This example is presented now by Visual Basic Script language. This practically shows the
access to Link 10 (after the apostrophe character you can read comments):

Set vis = CreateObject(‘Vissim.Vissim’) 'define Vissim main object
Set vnet = vis.Net 'define Net object
vis.LoadNet(‘D:\Example\test.inpx”) 'Load the traffic network
Set links = vnet.Links 'define Links collection

Set link 10 = links.ItemByKey(10) 'Query Link 10 as an object

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

1.3. How to use Matlab for Vissim-COM programming?

In the following chapters the Vissim-COM programming is introduced by using Matlab Script
language. For this the Vissim-COM interface manual (PTV, 2017) used to provide a detailed
help until Vissim version 5 but since then the official offline help is significantly less detailed.
Instead of that you can use the online help (in the Vissim GUI click on Help\Online Help...)
or the official examples provided for Vissim. Although the examples of this official manual
are basically written in Visual Basic, the document also provides a short help so that we can
transform the scripts into other programming languages (therefore into Matlab environment)
as well. The principle of COM programming is the same written in any language.

One of the main advantages of using Matlab is the simplicity of the Matlab Script language.
Another very important aspect is that Matlab (as a mathematical software package for
practical purposes) has a lot of built-in functions. For example, optimization tasks can be
solved with the help of simple Matlab commands, statistical functions can be called freely or
simple matrix usage can be achieved. With the functions provided by Matlab a lot of time and
energy can be spared compared to other programming languages. Therefore, if you are
programming the Vissim traffic simulator via COM, but you also want to perform special
operations (e.g. optimization), it is highly recommended to choose the Matlab Script as the
basic language for programming Vissim-COM.

Important technical information is that before creating a Vissim-COM program, you must
register the Vissim as a COM-server in your operating system (so that other applications can
access Vissim-COM objects). You can do the registration after the installation of Vissim by
clicking on menu ‘Help/Register COM server’.

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

2. Creating Vissim-COM server in Matlab

User may create a script file (extension ‘.m’) in Matlab with the ‘File/New/Script’ menu or
with the white paper icon located in the toolbar (see figure below).

File Edit Debug Parallel Desktop Window Help
% I% E@ 9 & Eﬁ ;’] @ | Current Folder:| D:\Vissim_Com_Matlab v . E
Shortcuts (2] How T8 2

Current Folder o] T Editor - D:AVissim_Com_Matlab\test.m w0 2 x| Workspace -0oa2x
@ % | « Vissim_Com_Matlab 'P'):(" hﬂﬁg *%E@,‘](‘! ;:;!':E_?'“«b' O v ax Em@ﬁ@k“' =
Name « BB -0+ 211 x| | @ Mame « Value

|| testinO @ This file uses Cell Mode, For information, see the rapid code iteration video, the puk X
EB:ES:‘"F' 1 % Vissim-COM programozas L
esLm
teszt.bgr 2 - clear all;
(= tesztpg g|= close all;
& | vissim.ini
(Command Window ... |
Details v =
@) New to MATLAB? Watch this Video, see Demos, or read Getting Started. X
fe>> |
Select a file to view details
< >
4\ Start OVR

3. Creating Matlab Script file (extension ‘.m’)

In the Matlab Script code you can write comments after the % sign.
It is useful to start *.m’ files with two basic commands:

clear all;

close all;

The first deletes the contents of the Matlab workspace, i.e. the currently used variables and
their values. Delete is very useful to avoid errors, e.g. the remained values of the variables in
the previous executing may cause confusion. The second command closes all of the opened
Matlab windows (e.g. diagrams) in one step.

Creating a new COM server (other name ActiveX) is possible with the use of the Matlab
command ‘actxserver’:

vis=actxserver('VISSIM.vissim.900")

For detailed information about a Matlab command use the Command Window and write the
‘help’ before the command e.g.

help actxserver

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

3. Vissim-COM methods

Object methods created via the Vissim-COM server are also accessible in the Command
Window. The list of the objects can be found in the Vissim-COM Interface Manual (PTV,
2017). We can access the method list of each object if we type the object’s name and the
‘methods’ command with a dot between them into the Command Window:

{Vissim-COM object name}.methods

The method above can only be used if the object written between the curly braces was defined
beforehand. For example take a look at the following figure, which can be used for the object
‘vis’ (main object predefined in the previous chapter), and shows the list of all methods.

Command Window @
»» vis.methods 2
Methods for class COM.VISSIM vissim 900:
hpplyModelTransferFile LoadProject deleteproperty
AttValue New events
BringToFront PlaceUnderScenarioManagement get
CaleculateVisumAssignment ResumelUpdateGUIL interfaces
Exit SaveLayout invoke
ExportVisum SavelNet load
GenerateModelTransferFile SaveNetls move
GenerateModelTransferFileBetweenFiles SetResultsFolder propedit
InportANM SuspendUpdateGUI release
ImportResults VissimTestc save
ImportSynchro addpropercy send
LoadLayout constructorargs zet

f{ LoadNet delete v

4. Getting the method list of the object ‘vis’ in Matlab

From the method list above the ‘invoke’ is shown below as an example.

Command Window @
>» vis.invoke ~
AttValue = Variant AttValue (handle, ustring)
Hew = woid New (handle)
LoadNet = wvoid LoadNet (handle, Variant (Optional))
LoadProject = void LoadProject (handle, ustring)
PlaceUnderScenarioManagement = woid PlaceUnderScenarioManagement (handle, ustring, ustring)
SaveNet = void SaveNet (handle)
SaveNetis = vold SaveMNetis (handle, Variant (Optional))
LoadLayout = woid LoadLayout (handle, Variant (Optional))
Savelayout = wvoid Sawvelayout (handle, Variant (Optional))
InportANM = wvoid ImportANM (handle, Variant (Optional))
BringToFront = woid BringToFront (handle)
Exit = woid Exict (handle)
ImportSynchro = wvoid ImportSynchro(handle, ustring, Variant (Optional))
ExportVisum = void ExportVisum(handle, ustring, Variant (Cptional))
ImportResults = void ImportResults (handle, Variant (Cptional))
VissimTest = void VissimTest (handle, int32, ustring, ustring, ustring)
SuspendUpdateGUI = woid SuspendUpdateGUI (handle)
ResumeUpdateGUI = woid ResumeUpdateGUI (handle, Variant (Optional))
CalculateVisumfissignment = vold CalculateVisumidssignment (handle)
GenerateModelTransferFile = void GenerateModelTransferFile (handle, ustring, ustring, Variant (Cptional))
GenerateModelTransferFileBetweenFiles = woid GenerateModelTransferFileBetweenFiles (handle, ustring, ustring, ustring)
ApplyModelTransferFile = woid ApplyModelTransferFile (handle, ustring)
SetResultsFolder = woid SetResultsFolder (handle, ustring)

fo v

5. The answer of Matlab Command Window to the ‘invoke’ command of a Vissim-
COM object

As it can be seen, the list shows the available methods with the return value types and
arguments. The ‘variant’ is a variable type which involves several types. ‘void’ means that
the method does not have any return values.

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

Similarly, the methods concerning any other Vissim-COM object can be listed analogously.

Another useful Matlab command is applicable to reveal the properties of an object. This can
be done by ’fields’ command:

{Vissim-COM object name}.fields

Command Window
>» vis.fields ~

ans =
B&x1 cell array

"Net'

"Simulation’'
'"Evaluation’'
'Graphics'
'ScenarioManagement’
"Presentation’

e v

6. The answer of Matlab Command Window to the ‘fields’ command of a Vissim-COM
object

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

4. Loading of Vissim network

In case of Vissim-COM programming you must create the simulation network and its
elements on the graphic interface of the Vissim. You will get a project file that has an .inpx
extension, and a ‘Layout’ file with .layx extension. Then, you can infuse them from the COM
program with ‘LoadNet’ and ‘LoadLayout’ methods. While you use them you can give them
to the Vissim files with their direct access path that shows the destination of the files with the
letter of the driver and name of the containing folders, i.e.

vis.LoadNet('D:\Vissim Com_Matlab\test.inpx');
vis.LoadLayout('D:\Vissim_Com_Matlab\test.layx');

But there is also a possibility to give a relative access path, and that is the better solution. You
should only use the ‘pwd’ command from Matlab, and it shows the access path of the current
folder (see figure below).

4 MATLAB 7.10.0 (R2010a)

File Edit Debug Parallel Desktop Window Help

S| s B2 0| &dR @@Vissim_tom_l\datlab)

Shortcuts (2] How to Add (2] What's New

urrent Folder O

& % | || < Vissim_Com_Matlab (@) New to MATLAR? Watch this Video, see Demos, or read Getting Started. x
Name = >> pwd
|| test.ind
@test.inp ans =
|| teszt.bgr
| teszt.jpg ..
& vissim.ini D:\Vissim Com Matlab
Details v fx 3 |

7. Using the ‘pwd’ command in Matlab command line

You can load the network with relative access path as follows:
access_path=pwd;

vis.LoadNet([access path "\test.inpx']);
vis.LoadLayout([access_path "\test.layx']);

Using the relative access path is very useful if you wish to run the Vissim project on different
computers. You should only copy the project folder onto the current computer and open the
Matlab Script file from there. Thus, there is no need to refresh the whole path of the Vissim
project folder before running the code.

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

5. General simulation adjustments in Vissim-COM program

Hereinafter we introduce the setting of object properties and attributes. We describe the
simulation adjustments as a specific example, but of course the method is the same with other
objects as well.

For simulation settings first you must define the ‘ISimulation’ object that can be found under
the main object in the hierarchy-model of Vissim-COM (see below). We can do that via the
previously defined main object called ‘vis’:

sim=vis.Simulation;

| IVissim | (vis)

I—{ ISimulation | (sim)

8. ‘Simulation’ is below the main object ‘Vissim’ in hierarchy; between the round
brackets you can read the name of the object used in the sample code

1. Object properties

Every Vissim-COM object has properties (‘Property’). We can query the properties of the
objects with the ‘get” method. In case of the ‘Simulation’ object there is only one, it can be
seen in the figure below.

[Command Window ...
} query of all the properties of the given object

SimulationSecond: 24.6667

9. Query of the ‘Simulation’ object with ‘get’ command

2. Object attributes

Objects have so-called attributes (‘Attribute’) as well. To reach them you must use the
‘AttValue’ method.

The attributes can be found in the Vissim Online Help via the Vissim GUI (click on
Help\Online Help...).

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

== Wigsim - COM = |Simulation

ISimulation Attributes
Overview |[MCollapse All

= Summary
[dentifier Short name
Comment Comment
IsRunning IsRunning

MesoSectsForMicroSim | MesoSectsForMicroSim

MumCares MumCores
MumRuns MumRuns
RandSeed RandSeed
RandSeedincr RandSeedincr
RetroSync RetroSync
SimBreakAt SimBreakAt
SimMode SimMode
SimPeriod SimPeriod
SimRes SimHes
SimSec SimSec
SimSpeed SimSpeed
SimTmOfDay SimTmODay
StartDate StartDate

Long name
Comment
Is running

Meso - sections for microscopic
simulation

Mumber of cores

Mumber of runs

Random seed

Random seed increment
Retrospective synchronization
Simulation break at
Simulation mode

Simulation period

Simulation resolution
Simulation second
Simulation speed

Simulation time (time of day)

Start date

10. Part of the attribute table of the ‘Simulation’ object (PTV Online Help)

There are read-only and editable attributes. By clicking on the name of the identifier the
‘Type’ and ‘Editable’ fields show you whether the attribute is editable or not, and if it is
whether you can edit its value during the simulation or not. For an example see the figure

below.

10

https://doi.org/10.3311/pp.ci.2012-1.05

If you fi

nd this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

= simPeriod
Value type durationinSeconds
=] SimRes Editable True
Simulation Behavior ReadOnlyDuringSim
WValue type unsigned int32 = Optional
ype iona
Editable True .
Minimum 1
Simulation Behavior EditableDuringSim Default val 2600
efault value
Type Optional
Minimum 1 "
= simSec
Maximum 20
Dletult vakie 10 WValue type preciseDurationinSeconds
Editable False
Simulation Behavior ReadOnlyDuringSim
Type Calculated
Minimum 0

11. Editable and not editable attributes of ‘Simulation’

Syntax of the usage of the ‘AttValue’ method in the case of readout (‘get’) and for change
(‘set’) is as follows:

sim.get('AttValue', {'attribute'});

sim.set('AttValue', {'attribute'}, {adjustable value});

In connection with the figure above:

sim.get("AttValue', 'SimSec'); %(SimSec is read-only, so the ‘set’
command is not allowed.)

Another example to set the length of the simulation in Matlab Script file:
period_time=3600;

sim.set('AttValue', 'SimPeriod', period_time); %(You can edit it only outside the
simulation.)
sim.get("AttValue', 'SimPeriod') %(The answer will be 3600.)

As another example, we mention the ‘Simulation Resolution’ property. This represents
how many times the Vissim traffic model runs in a second during the simulation. We
can change it with the following code:

step_time=3;

sim.set('AttValue', 'SimRes', step _time); %(The ‘SimRes’ attribute can only
be set at full simulation seconds)
sim.set('AttValue', 'SimRes') %(The answer will be 3.)

There is an alternate syntax for reading Vissim attributes which is entirely equivalent to the

“get”

method:

sim.AttValue({'attribute'});

An example is given below:

sim.AttValue('SimPeriod') & sim.get('AttValue', 'SimPeriod")

11

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

6. Running a simulation

Using Vissim there are three ways to run a simulation:

e ‘RunContinuous’: continuous running,

e ‘RunSingleStep’: running step-by-step, i.e. the time interval between steps will be
simulated according to the ‘Simulation Resolution’ setting,

e ‘RunMulti’: multiple simulations in a row.

We point out the ‘RunSingleStep’ method since this way makes it easy to manipulate the
simulation ‘online’, i.e. during the simulation run (for example changing the traffic demands
continuously).

‘RunSingleStep’ is recommended to use with a ‘for’ loop. In the following example we run a
simulation which shows the elapsed simulation time at each step (‘period time’ and
‘step_time’ variables are defined previously).

for i=0:(period_time* step time)
sim.RunSingleStep;
sim.get('AttValue', 'SimSec');

end

While using ‘RunSingleStep’, the ‘Simulation Speed’ setting has no effect on the running
speed of the simulation. In this case, the simulation runs step by step according to the ‘for’
loop, by running each ‘time step’ on the maximum speed is possible. Therefore, using the
above method the simulation speed can be controlled by Matlab ‘pause’ command (e.g. to
slow down the simulation for visual observation). In the following example, a 500 ms long
pause is inserted after each simulated time step:

for i=0:(period_time*step time)
sim.RunSingleStep;
pause(0.5);

end

It must be noted that the ‘Snapshot’ functionality (for warm simulation start) has been totally
removed from version 7 of Vissim. The last version was Vissim 5 where ‘SaveSnapshot” and
‘LoadSnapshot’ methods were included. The official site of PTV reports that this functionality
will be available in one of the future version of Vissim.

12

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

7. Traffic generation

Vissim-COM makes it possible to dynamically change traffic demands, which is very useful,
for example in the following cases:
e to run several simulations with different traffic demands (possibly by ‘MultiRun’
method),
e to generate varying traffic demand by following the traffic changes of a day (during
the simulation run).

First of all, the ‘Net’ object has to be created, which is located below the main object in the
Vissim-COM hierarchy model (see figure below). This can be achieved through the main
object ‘vis’ (already defined above):

vnet=vis.Net;

-

_| Vehiclelnputs I_ll"..n"el"ridelnput |

12. ‘VehicleInput’ object in the Vissim-COM hierarchy (on the basis of PTV, 2017)

Next the ‘Vehiclelnputs’ collection has to be created which contains all vehicle inputs
(‘Vehiclelnput’), defined in the Vissim GUI:

vehins=vnet.Vehiclelnputs;

Via the ‘VehicleInputs’ collection any ‘VehicleInput’ object becomes accessible by using the
‘ItemByKey’ method, e.g.:

vehin _1=vehins.IltemByKey(1);

The given ‘VehicleInput’ object is easily editable through ‘AttValue’ method (by using the
attributes in figure below).

13

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

= Wissim - COM = NWehiclelnput

IVehiclelnput Attributes

Owverview [#Collapse All

= Summary
|[dentifier Short name Long name
Cont Cont Continued
LabPosRelPt LabFosRelPt Label position relative

LabPosRelWktPaint

LabPosRelWktPaoint

WHKT Label position relative

LabPosRelX LabFosRelX Label position relative (x)
LabPosRelY LabPosRelY Label position relative (y)
Link Link Link

Mame MName Mame

Mo Mo MNumber

ShowlLabel ShowLabel Show label

WehComp WehComp Vehicle composition
VaolType VolType Volume type

Volume Volume Volume

13. The attribute table of the ‘VehicleInput’ object (PTV Vissim Online Help)

An example for the modification of a traffic volume attribute in the first time interval of

vehicle inputs:

vehin_1.set("AttValue', "Volume(1)', 600);

%(in Volume(1) the ‘1° stands for the first

time interval)

14

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

8. Traffic signal control, detectors

Traffic light control can be programmed via COM interface as well. However, the previously
mentioned VisVAP module (flow chart based programming) or Signal Controller API
interface (on C++ language) can also be applied for traffic signal programming.

The traffic signal control within Vissim-COM object model is shown in the figure below.

]
I —

| [TSignaiControllers |— |sum?wuu |
t: |Detectors E—| | Detector |
|SignalGroups [— |SignalGroup |

—— |SignalHeads |— ISignaHead |

14. Components of traffic signal control within Vissim-COM object model (on the
basis of PTV, 2017)

Now, a simple example is provided to demonstrate traffic signal control via Vissim-COM.

A simple signalized intersection is given (see the figure below), where two one-way roads (a
main road and a side street) meet. There are two signal groups operating in the junction. By
default, the main road is operated by a constant green time signal. At the same time, the signal
group of the side road only gets green time when the loop detector is activated. This is the so-
called demand-actuated traffic signaling. The system checks the loop detector’s availability
in every 20 seconds. The demand-actuated stage has 20 seconds.

15. Simple intersection in Vissim with traffic demand actuated control

15

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

First you must create the necessary elements in the Vissim GUI:

e define signal control system in ‘Signal Control/Edit Controllers’ menu, by choosing
‘Fixed time’ controller (later it will be operated as a traffic-responsive controller from
COM program);

e create signal groups (‘Signal Group’) with a given signal program (shown in the figure
below);

-~

File Edit
B HYA E EE

< Name: |Signa| program 1 ‘

E-a My signal control 1 Intergreens: Cycle time: Offset: Switch point: |0
-[@] si ! Signal
A el reus No _ Signal group cenurence 30 40 so oo I I O O

rﬂ 1: Signal group 1
‘ rﬂ 2: Signal group,
é E Intergreen matrices »
‘ E 1t Intergreen matrix
EE Signal programs

HP 1: Signal program 1

-3 Signal group based

Signal group 2 | [l 3B -]

16. Create ‘Signal Group’ in Vissim GUI with signal plan

e locate signal heads (‘Signal Head”) on the main and side roads;
e Jocate demand detector on the side street (‘Detector’).

Then, the signal controller should be defined through Vissim-COM ‘SignalControllers’
collection:

scs=vnet.SignalControllers;

sc=scs.ItemByKey(1); %(Signal Controller 1)
Create signal group objects through ‘SignalGroups’ collection:
sgs=sc.SGs;

sg 1=sgs. ItemByKey (1); %(Signal Group 1)
sg_2=sgs. ItemByKey (2); %(Signal Group 2)

Additionally, define a loop detector object for traffic demand sensing:
dets=sc.Detectors;

det all=dets.GetAll; %(All detectors are queried first)

det I=det all{1}; %(The first detector of the detectors)

The signals of the signal groups can be controlled by ‘State’ attribute of ‘SignalGroup’ object
with the correct codes (see figure below), e.g. setting red signal for State 1:

sg l.set('AttValue', 'State', 1);

16

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

== Wissim - COM = SignalizationState Enumeration

SignalizationState Enumeration
*Collapse All

= Members

Member Value Summary

SignalizationStateAlternatingRedGreen 10

SignalizationStateAmber 4
SignalizationStateFlashingAmber 7
SignalizationStateFlashingGreen 9
SignalizationStateFlashingRed B8
SignalizationStateGreen 3
SignalizationStateGreenAmber il
SignalizationStateOff 5
SignalizationStateRed 1
SignalizationStateRedAmber 2
SignalizationStatelndefined 6
Copyright @ 2015 PTV AG

17. ‘State’ attribute codes of ‘SignalGroup’ (PTV Vissim Online Help)

Status of the loop detector 1s queried also through the ‘AttValue’ method by various attributes
e.g.

det 1.get('AttValue', 'Detection');

det 1.get('AttValue', 'Impulse');

det 1.get('AttValue', 'Occup'); %(Occupancy)

det_1.get('AttValue', 'Presence');

In addition to the above, the traffic-responsive logic is created by ‘rem’ command of Matlab
(which gives back the remainder after a division of two numbers):

for i=0:(period_time*step time)

sim.RunSingleStep;

if rem(i/step_time,20)==0 % verifying at every 20 seconds
demand=det 1.get('AttValue', 'Presence'); % verifying detector occupancy: 0/1
if demand== % demand -> demand-actuated stage
sg l.set('AttValue','State',1); % main road red (1)
sg_2.set('AttValue','State',3); % side street green (3)
else % no demand -> main road is green

17

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

sg_1.set('AttValue', 'State', 3);
sg 2.set('AttValue', 'State', 1);
end
end

end

So that it is easier to understand the logic, in the example above we neglected the intergreen
times between the two phases and we did not use transition signals (red-amber, amber). To
create them, further programming is necessary.

18

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

9. Evaluation while the program is running

An important advantage of the Vissim-COM is the possibility of evaluation while the program
is running. The following example is shown from the numerous evaluation options. We
consider the evaluation of data collection points through ‘DataCollectionMeasurements’.

Data Collection Points can be used effectively with the Vissim GUI. They can be positioned
on any link in the road network, furthermore they are suitable for measuring several
parameters in the given cross section (e.g. acceleration, number of vehicles, occupancy).

You can reach the measurements of the given data collection point through the ‘Data
Collection Measurements’ field and the ‘ItemByKey’ method:
datapoints=vnet.DataCollectionMeasurements;

datapoint1=datapoints.ItemByKey(1);

For the evaluation of the data collection points via Vissim-COM (even while the program is

running) the ‘IDataCollectionMeasurement’ attributes can be used with the appropriate
parameters (see figure below).

== Wissim - COM = IDataCollectionieasurement

IDataCollectionMeasurement Attributes

Overview [MCollapse All

= Summary
Identifier Short name Long name
Acceleration Acceleration Acceleration
DataCollectionPoints DataCollectionPoints Data collection points
Dist Dist Distance
Length Length Length
MName MName MName
Mo No Number
OccupRate OccupRate Occupancy rate
Pers Pers Persons
QueueDelay QueueDelay Queue delay
SpeedAvgArith SpeedAvgArith Speed (arithmetic average)
SpeedAvgHarm SpeedAvgHarm Speed (harmonic average)
WVehs Vehs Vehicles

18. The ‘IDataCollectionMeasurement’ attributes that can be queried (PTV Vissim
Online Help)

The following code is an example for it:
datapointl.get('AttValue', 'Speed(19, 2, All)");
where the elements in brackets are:

e parameter to query;

e the number of the simulation run (now: 19);

e the number of the time interval (now: 2);

e Vehicle Class, where ‘All’ value includes all vehicle classes.

19

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

Result attributes can be saved for multiple simulation runs, time intervals and different
vehicle classes. It is possible to access all saved result values by COM. To access these
values three sub attributes are required given in the figure below. You can replace the
constant (19 and 2 in the example above) sub-attributes with periodic inputs.

Fors o

1 SimulationRun 1,2,3, ..or number according to the attribute No of simulation runs (see

Current Simulation Runs list) or Current for the simulation run
currently running
Avg, StdDewv, aggregated value of all simulations runs
Min, Max
2 Timelnterval 1,2,3..0r index of one specific time interval (the index for time intervals
Last always starts at 1 which refers to the first time interval) or
Last to reference to the last completed time interval.
Avg, StdDev, aggregated value of all time intervals of one simulation
Min, Max
Total sum over all time intervals of one simulation
3 VehicleClass 10,20, ...or one or more vehicle class numbers (according to the attribute
All No of Vehicle Classes) or 211. Data is shown only for the

vehicle classes defined here.

19. Sub-attributes’ table (PTV, 2017)

However, generally sub-attributes ‘Current’ and ‘Last’ (see their meaning in Fig. 19.) are
suggested to be used only, e.g. datapointl.get('AttValue', 'Speed(Current, Last, All)");

An indispensable condition of measurement by data collection points is (even by using
Vissim-COM) that the option of ‘Data Collections\Collect data’ is flagged (and well
configured) in ‘Evaluation\Configuration...\Result Attributes’ menu in the Vissim GUI. The
time interval of data collections is also important. You will get an average value for the
measured factors in each time interval. The shorter the interval is the more sophisticated
results you get. The adjustment and the evaluation results are depicted in the figure below.

Network Editor

-
Select layout... CPBOUORE R HAEAQ e (WE R —_—
Evaluation output directory: d:\Marci\KSK_unia\PublikaciokVissm?_COM\Vissm_v7.0_Com_M [-] ¢
Result Management | Result Attributes | Direct Output |
Additionally collect data for these classes
Vehicle Classes Pedestrian Classes
10: Car 1: People
20: HGV
30: Bus
40: Tram
50: Pedestrian
6D: Bike
Collect data Fromtime Totime Interval
Area measurements E 0| 99999 99999
Areas & ramps ,g\ 0| 99999 9930 More.,]
Data collections (=) o sose| (20
50 m Delays " 0| 99900| 00359
Links [&] 0 99999 20 More.. |
—_—
Data Collection Results Nodes A 0| 99999 99999 More., | 2 x
Select layout.. - M EE R <Single List -REAR IO Pedestrian Network Performance | [7] 0| 99993 | 99999
Pedestrian travel t 0| 09990 | 99009
Count: 288| SimRun | Timelnt | DataCollectionMeasurement | Speed(All) Acceleration(All) | Distcal || | | |- oo or e HMES 0 -
T IEE: 0 1 1 1| | || Queve counters] 0| 90999 99999 [Mere.. |]
217 2040 |1 3292 138 25.60)| | || Vehicle Network Performance [&] 0| 99990 | 99009
3|17 |40-60 |1 54.95 032 30.10|| | || Vehicle travel times [0 99999 99999 [Mere.. |
417 l60-80 |1 37.19 178 2338
517 |8o-100 |1 |
6[17 |100-120 |1
8|17 [120-1601 26.61 131 25.30]
Data Collection Results Data Collection Points

20. Evaluation configuration and evaluation results

20

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

10. A complete sample code for Vissim-COM programming

A sample code for Vissim-COM programming (written in Matlab) is presented below based
on the examples introduced in this manual.

%% Vissim-COM programming - example code %%
clear all;

close all;

clc; % Clears the command window

%% Create Vissim-COM server

vis=actxserver ('VISSIM.vissim.900"'") ;

%% Loading the traffic network
access_path=pwd;

vis.LoadNet ([access_path '\test.inpx']);
vis.LoadLayout([access path '\test.layx']);
%% Simulation settings

sim=vis.Simulation;

period_time=3600;

sim.set ('AttValue', 'SimPeriod', period_ time);
step_time=3;
sim.set ('AttValue', 'SimRes', step_time);

%% Define the network object
vnet=vis.Net;
%% Setting the traffic demands of the network
vehins=vnet.VehicleInputs;
vehin_l=vehins.ItemByKey (1) ;
vehin 1l.set('AttValue', 'Volume(l)',6 1500); % main road
vehin 2=vehins.ItemByKey (2) ;
vehin 2.set('AttValue', 'Volume(l)',6 100); % side street
%% The objects of the traffic signal control
scs=vnet.SignalControllers;
sc=scs.ItemByKey (1) ;
sgs=sc.SGs; % SGs=SignalGroups
sg_l=sgs.ItemByKey (1) ;
sg_2=sgs.ItemByKey (2) ;
dets=sc.Detectors;
det_all=dets.GetAll;
det_l=det all{1l};
%% Access to DataCollectionPoint object
datapoints=vnet.DataCollectionMeasurements;
datapointl=datapoints.ItemByKey (1) ;
%% Access to Link object
links=vnet.Links;
link_l=links.ItemByKey (1) ;

%% Running the simulation
verify=20; % verifying at every 20 seconds
$Evaluation\Configuration...\Interval in the Vissim GUI
for i=0: (period_time*step_time)

sim.RunSingleStep;

if rem(i/step_time, verify)== % verifying at every 20 seconds
demand=det_1l.get('AttValue',6 'Presence'); %get detector occupancy:0/1
if demand== % demand -> demand-actuated stage
sg_l.set('AttValue',6 'State', 1); % main road red (1)
sg_2.set('Attvalue', 'State', 3); % side street green (3)
else % no demand on loop -> main road's signal is green

sg_l.set('AttValue', 'State',6 3);
sg_2.set('AttValue',6 'State', 1);
end
% Query the avg. speed and vehicle number at the end of each eval. interval:
datapointl.get('AttValue', 'Vehs (Current, Last, All)')
datapointl.get('AttValue', 'Speed(Current, Last, All)"')
end
end
%% Delete Vissim-COM server (also closes the Vissim GUI)
vis.release;
disp('The end')

21

https://doi.org/10.3311/pp.ci.2012-1.05

If you find this manual useful, please, cite this paper: https://doi.org/10.3311/pp.ci.2012-1.05

11. Bibliography
Box D. Essential COM, Addison-Wesley, ISBN 0-201-63446-5, 1998

PTV, Introduction to the PTV Vissim 9 COM API, PTV Planung Transport Verkehr AG,
Germany, 2017

Wiedemann R. Simulation des Stra3enverkehrsflusses Schriftenreihe des Instituts fiir
Verkehrswesen der Universitit Karlsruhe, Heft 8, 1974

22

https://doi.org/10.3311/pp.ci.2012-1.05

