Classes and equivalence of linear sets in $PG(1, q^n)$

Bence Csajbók, Giuseppe Marino and Olga Polverino^{*}

Abstract

The equivalence problem of \mathbb{F}_q -linear sets of rank n of $\mathrm{PG}(1,q^n)$ is investigated, also in terms of the associated variety, projecting configurations, \mathbb{F}_q -linear blocking sets of Rédei type and MRD-codes. We call an \mathbb{F}_q -linear set L_U of rank n in $\mathrm{PG}(W,\mathbb{F}_{q^n}) = \mathrm{PG}(1,q^n)$ simple if for any n-dimensional \mathbb{F}_q -subspace V of W, L_V is $\mathrm{P\GammaL}(2,q^n)$ -equivalent to L_U only when U and V lie on the same orbit of $\mathrm{\GammaL}(2,q^n)$. We prove that $U = \{(x, \mathrm{Tr}_{q^n/q}(x)) : x \in \mathbb{F}_{q^n}\}$ defines a simple \mathbb{F}_q -linear set for each n. We provide examples of non-simple linear sets not of pseudoregulus type for n > 4 and we prove that all \mathbb{F}_q -linear sets of rank 4 are simple in $\mathrm{PG}(1,q^4)$.

1 Introduction

Linear sets are natural generalizations of subgeometries. Let $\Lambda = \operatorname{PG}(W, \mathbb{F}_{q^n})$ = $PG(r-1, q^n)$, where W is a vector space of dimension r over \mathbb{F}_{q^n} . A point set L of Λ is said to be an \mathbb{F}_q -linear set of Λ of rank k if it is defined by the non-zero vectors of a k-dimensional \mathbb{F}_q -vector subspace U of W, i.e.

$$L = L_U = \{ \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \colon \mathbf{u} \in U \setminus \{\mathbf{0}\} \}.$$

The maximum field of linearity of an \mathbb{F}_q -linear set L_U is \mathbb{F}_{q^t} if $t \mid n$ is the largest integer such that L_U is an \mathbb{F}_{q^t} -linear set. In the recent years, starting from the paper [20] by Lunardon, linear sets have been used to construct or characterize various objects in finite geometry, such as blocking sets and multiple blocking sets in finite projective spaces, two-intersection sets in finite

^{*}The research was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). The first author was partially supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by OTKA Grant No. K 124950.

projective spaces, translation spreads of the Cayley Generalized Hexagon, translation ovoids of polar spaces, semifield flocks and finite semifields. For a survey on linear sets we refer the reader to [27], see also [16].

One of the most natural questions about linear sets is their equivalence. Two linear sets L_U and L_V of $\mathrm{PG}(r-1,q^n)$ are said to be PFL -equivalent (or simply equivalent) if there is an element φ in $\mathrm{PFL}(r,q^n)$ such that $L_U^{\varphi} = L_V$. In the applications it is crucial to have methods to decide whether two linear sets are equivalent or not. For $f \in \mathrm{FL}(r,q^n)$ we have $L_{Uf} = L_U^{\varphi_f}$, where φ_f denotes the collineation of $\mathrm{PG}(W,\mathbb{F}_{q^n})$ induced by f. It follows that if Uand V are \mathbb{F}_q -subspaces of W belonging to the same orbit of $\mathrm{FL}(r,q^n)$, then L_U and L_V are equivalent. The above condition is only sufficient but not necessary to obtain equivalent linear sets. This follows also from the fact that \mathbb{F}_q -subspaces of W with different ranks can define the same linear set, for example \mathbb{F}_q -linear sets of $\mathrm{PG}(r-1,q^n)$ of rank $k \geq rn-n+1$ are all the same: they coincide with $\mathrm{PG}(r-1,q^n)$. As it was showed recently in [7], if r = 2, then there exist \mathbb{F}_q -subspaces of W of the same rank n but on different orbits of $\mathrm{\GammaL}(2,q^n)$ defining the same linear set of $\mathrm{PG}(1,q^n)$.

This observation motivates the following definition. An \mathbb{F}_q -linear set L_U of $\mathrm{PG}(W, \mathbb{F}_{q^n}) = \mathrm{PG}(r-1, q^n)$ with maximum field of linearity \mathbb{F}_q is called *simple* if for each \mathbb{F}_q -subspace V of W, $L_U = L_V$ only if U and V are in the same orbit of $\mathrm{\GammaL}(r, q^n)$ or, equivalently, if for each \mathbb{F}_q -subspace V of W, L_V is $\mathrm{P\GammaL}(r, q^n)$ -equivalent to L_U only if U and V are in the same orbit of $\mathrm{\GammaL}(r, q^n)$.

Natural examples of simple linear sets are the subgeometries (cf. [19, Theorem 2.6] and [15, Section 25.5]). In [6] it was proved that \mathbb{F}_q -linear sets of rank n + 1 of $PG(2, q^n)$ admitting (q + 1)-secants are simple. This allowed the authors to translate the question of equivalence to the study of the orbits of the stabilizer of a subgeometry on subspaces and hence to obtain the complete classification of \mathbb{F}_q -linear blocking sets in $PG(2, q^4)$. Until now, the only known examples of non-simple linear sets are those of pseudoregulus type of $PG(1, q^n)$ for $n \geq 5$ and $n \neq 6$, see [7].

In this paper we focus on linear sets of rank n of $PG(1, q^n)$. We first introduce a method which can be used to find non-simple linear sets of rank n of $PG(1, q^n)$. Let L_U be a linear set of rank n of $PG(W, \mathbb{F}_{q^n}) = PG(1, q^n)$ and let β be a non-degenerate alternating form of W. Denote by \perp the orthogonal complement map induced by $Tr_{q^n/q} \circ \beta$ on W (considered as an \mathbb{F}_q -vector space). Then U and U^{\perp} defines the same linear set (cf. Result 2.1) and if U and U^{\perp} lie on different orbits of $\Gamma L(W, \mathbb{F}_{q^n})$, then L_U is nonsimple. Using this approach we show that there are non-simple linear sets of rank n of $PG(1, q^n)$ for $n \ge 5$, not of pseudoregulus type (cf. Proposition 3.10). Contrary to what we expected initially, simple linear sets are harder to find than non-simple linear sets. We prove that the linear set of $PG(1, q^n)$ defined by the trace function is simple (cf. Theorem 3.7). We also show that linear sets of rank n of $PG(1, q^n)$ are simple for $n \le 4$ (cf. Theorem 4.5).

Moreover, in $PG(1, q^n)$ we extend the definition of simple linear sets and introduce the $\mathcal{Z}(\Gamma L)$ -class and the ΓL -class for linear sets of rank n. In Section 5 we point out the meaning of these classes in terms of equivalence of the associated blocking sets, MRD-codes and projecting configurations.

2 Definitions and preliminary results

2.1 Dual linear sets with respect to a symplectic polarity of a line

For $\alpha \in \mathbb{F}_{q^n}$ and a divisor h of n we will denote by $\operatorname{Tr}_{q^n/q^h}(\alpha)$ the trace of α over the subfield \mathbb{F}_{q^h} , that is, $\operatorname{Tr}_{q^n/q^h}(\alpha) = \alpha + \alpha^{q^h} + \ldots + \alpha^{q^{n-h}}$. By $\operatorname{N}_{q^n/q^h}(\alpha)$ we will denote the norm of α over the subfield \mathbb{F}_{q^h} , that is, $\operatorname{N}_{q^n/q^h}(\alpha) = \alpha^{1+q^h+\ldots+q^{n-h}}$. Since in the paper we will use only norms over \mathbb{F}_q , the function $\operatorname{N}_{q^n/q}$ will be denoted simply by N.

Starting from a linear set L_U of $\mathrm{PG}(r, q^n)$ and using a polarity τ of the space it is always possible to construct another linear set, which is called *dual* linear set of L_U with respect to the polarity τ (see [27]). In particular, let L_U be an \mathbb{F}_q -linear set of rank n of a line $\mathrm{PG}(W, \mathbb{F}_{q^n})$ and let $\beta : W \times W \longrightarrow \mathbb{F}_{q^n}$ be a non-degenerate reflexive \mathbb{F}_{q^n} -sesquilinear form on the 2-dimensional vector space W over \mathbb{F}_{q^n} determining a polarity τ . The map $\mathrm{Tr}_{q^n/q} \circ \beta$ is a non-degenerate reflexive \mathbb{F}_q -sesquilinear form on W, when W is regarded as a 2n-dimensional vector space over \mathbb{F}_q (see [14]).

Let \perp_{β} and \perp'_{β} be the orthogonal complement maps defined by β and $\operatorname{Tr}_{q^n/q} \circ \beta$ on the lattices of the \mathbb{F}_{q^n} -subspaces and \mathbb{F}_q -subspaces of W, respectively. The dual linear set of L_U with respect to the polarity τ is the \mathbb{F}_q -linear set of rank n of $\operatorname{PG}(W, \mathbb{F}_{q^n})$ defined by the orthogonal complement $U^{\perp'_{\beta}}$ and it will be denoted by L_U^{τ} . Also, up to projective equivalence, such a linear set does not depend on τ [27, Proposition 2.5].

For a point $P = \langle \mathbf{z} \rangle_{\mathbb{F}_{q^n}} \in \mathrm{PG}(W, \mathbb{F}_{q^n})$ the *weight* of P with respect to the linear set L_U is $w_{L_U}(P) := \dim_q(\langle \mathbf{z} \rangle_{\mathbb{F}_{q^n}} \cap U).$

Result 2.1. From [27, Property 2.6] (with r = 2, s = 0 and t = n) it can be easily seen that if L_U is an \mathbb{F}_q -linear set of rank n of a line $PG(1, q^n)$ and L_U^{τ}

is its dual linear set with respect to a polarity τ , then $w_{L_U^{\tau}}(P^{\tau}) = w_{L_U}(P)$ for each point $P \in \mathrm{PG}(1, q^n)$. If τ is a symplectic polarity of a line $\mathrm{PG}(1, q^n)$, then $P^{\tau} = P$ and hence $L_U = L_U^{\tau} = L_{U^{\perp_{\beta}}}$.

2.2 \mathbb{F}_q -linear sets of $PG(1, q^n)$ of class r

In this paper we investigate the equivalence of \mathbb{F}_q -linear sets of rank n of the projective line $\mathrm{PG}(W, \mathbb{F}_{q^n}) = \mathrm{PG}(1, q^n)$. The first step is to determine the \mathbb{F}_q -vector subspaces of W defining the same linear set. This motivates the definition of the $\mathcal{Z}(\Gamma L)$ -class and ΓL -class of a linear set L_U of $\mathrm{PG}(1, q^n)$ (cf. Definitions 2.4 and 2.5). The next proposition relies on the characterization of functions over \mathbb{F}_q determining few directions. It states that the \mathbb{F}_q -rank of L_U of $\mathrm{PG}(1, q^n)$ is uniquely defined when the maximum field of linearity of L_U is \mathbb{F}_q . This will allow us to state our definitions and results without further conditions on the rank of the corresponding \mathbb{F}_q -subspaces.

For an \mathbb{F}_q to \mathbb{F}_q function f, the set of directions determined by f is

$$D_f := \left\{ \frac{f(x) - f(y)}{x - y} \colon x, y \in \mathbb{F}_{q^n}, \, x \neq y \right\}.$$

Theorem 2.2 (Ball et al. [3] and Ball [1]). Let f be a function from \mathbb{F}_q to \mathbb{F}_q , $q = p^h$, and let N be the number of directions determined by f. Let $s = p^e$ be maximal such that any line with a direction determined by f that is incident with a point of the graph of f is incident with a multiple of spoints of the graph of f. Then one of the following holds.

- 1. s = 1 and $(q+3)/2 \le N \le q+1$,
- 2. $e|h, q/s + 1 \le N \le (q-1)/(s-1),$
- 3. s = q and N = 1.

Moreover if s > 2, then the graph of f is \mathbb{F}_s -linear.

Proposition 2.3. Let L_U be an \mathbb{F}_q -linear set of $PG(W, \mathbb{F}_{q^n}) = PG(1, q^n)$ of rank n. The maximum field of linearity of L_U is \mathbb{F}_{q^d} , where

$$d = \min\{w_{L_U}(P) \colon P \in L_U\}.$$

If the maximum field of linearity of L_U is \mathbb{F}_q , then the rank of L_U as an \mathbb{F}_q linear set is uniquely defined, i.e. for each \mathbb{F}_q -subspace V of W if $L_U = L_V$, then $\dim_q(V) = n$. *Proof.* We first note that since L_U is an \mathbb{F}_q -linear set of $\mathrm{PG}(1,q^n)$ of rank n, then $|L_U| \leq (q^n - 1)/(q - 1)$ and hence $L_U \neq \mathrm{PG}(1,q^n)$.

Since the action of $\Gamma L(2, q^n)$ preserves the maximum field of linearity and the weight of points, we can assume, up to the action of $\Gamma L(2, q^n)$, that $U = \{(x, f(x)) : x \in \mathbb{F}_{q^n}\}$ for some q-polynomial f over \mathbb{F}_{q^n} . Since f is linear, $|L_U|$ is the size of the set of directions determined by f. Also, a line ℓ with slope m meets the graph of f in q^t points, where $t = w_{L_U}(\langle (1, m) \rangle_{\mathbb{F}_{q^n}})$, i.e. $|\{z \in \mathbb{F}_{q^n}^* : f(z)/z = m\}| = q^t - 1$.

Let $d = \min\{w_{L_U}(P): P \in L_U\}$. If $q = p^e$, p prime, then p^{de} is the largest p-power such that every line with a determined direction that meets the graph of f meets the graph of f in a multiple of $s = p^{de}$ points. Then Theorem 2.2 yields that either $s = q^n$ and $f(x) = \lambda x$ for some $\lambda \in \mathbb{F}_{q^n}$, or \mathbb{F}_{q^d} is a proper subfield of \mathbb{F}_{q^n} and

$$q^{n-d} + 1 \le |L_U| \le \frac{q^n - 1}{q^d - 1}.$$
(1)

Moreover, if $q^d > 2$, then f is \mathbb{F}_{q^d} -linear. In our case we already know that f is \mathbb{F}_q -linear, so even in the case $q^d = 2$ it follows that U is an \mathbb{F}_{q^d} -subspace of W and hence L_U is an \mathbb{F}_{q^d} -linear set.

We show that \mathbb{F}_{q^d} is the maximum field of linearity of L_U . Suppose, contrary to our claim, that L_U is \mathbb{F}_{q^r} -linear of rank z for some r > d. Then L_U is also \mathbb{F}_q -linear of rank rz. It follows that $rz \leq n$ since otherwise $L_U = \mathrm{PG}(1, q^n)$. Then for the size of L_U we get $|L_U| \leq (q^{rz} - 1)/(q^r - 1) \leq (q^n - 1)/(q^r - 1)$, and this number is less than the lower bound in (1). This shows r = d.

Now suppose that \mathbb{F}_q is the maximum field of linearity of L_U and let V be an r-dimensional \mathbb{F}_q -subspace of W such that $L_U = L_V$. We cannot have r > n since $L_U \neq \mathrm{PG}(1, q^n)$. Suppose, contrary to our claim, that $r \leq n-1$. Then $|L_U| \leq (q^{n-1}-1)/(q-1)$ contradicting (1) which gives $q^{n-1}+1 \leq |L_U|$. This concludes the proof.

Now we can give the following definitions of classes of an \mathbb{F}_q -linear set of a line.

Definition 2.4. Let L_U be an \mathbb{F}_q -linear set of $PG(W, \mathbb{F}_{q^n}) = PG(1, q^n)$ of rank n with maximum field of linearity \mathbb{F}_q . We say that L_U is of $\mathcal{Z}(\Gamma L)$ -class r if r is the largest integer such that there exist \mathbb{F}_q -subspaces U_1, U_2, \ldots, U_r of W with $L_{U_i} = L_U$ for $i \in \{1, 2, \ldots, r\}$ and $U_i \neq \lambda U_j$ for each $\lambda \in \mathbb{F}_{q^n}^*$ and for each $i \neq j, i, j \in \{1, 2, \ldots, r\}$. **Definition 2.5.** Let L_U be an \mathbb{F}_q -linear set of $\mathrm{PG}(W, \mathbb{F}_{q^n}) = \mathrm{PG}(1, q^n)$ of rank n with maximum field of linearity \mathbb{F}_q . We say that L_U is of ΓL -class s if s is the largest integer such that there exist \mathbb{F}_q -subspaces U_1, U_2, \ldots, U_s of W with $L_{U_i} = L_U$ for $i \in \{1, 2, \ldots, s\}$ and there is no $f \in \Gamma L(2, q^n)$ such that $U_i = U_i^f$ for each $i \neq j$, $i, j \in \{1, 2, \ldots, s\}$.

Simple linear sets (cf. Section 1) of $PG(1, q^n)$ are exactly those of Γ Lclass one. The next proposition is easy to show.

Proposition 2.6. Let L_U be an \mathbb{F}_q -linear set of $\mathrm{PG}(1, q^n)$ of rank n with maximum field of linearity \mathbb{F}_q and let φ be a collineation of $\mathrm{PG}(1, q^n)$. Then L_U and L_U^{φ} have the same $\mathcal{Z}(\Gamma L)$ -class and ΓL -class.

Remark 2.7. Let L_U be an \mathbb{F}_q -linear set of rank n of $PG(1, q^n)$ with ΓL class s and let U_1, U_2, \ldots, U_s be \mathbb{F}_q -subspaces belonging to different orbits of $\Gamma L(2, q^n)$ and defining L_U . The $P\Gamma L(2, q^n)$ -orbit of L_U is the set

$$\bigcup_{i=1}^s \{L_{U_i^f} \colon f \in \Gamma \mathrm{L}(2,q^n)\}$$

3 Examples of simple and non-simple linear sets of $PG(1, q^n)$

Let L_U be an \mathbb{F}_q -linear set of rank n of $\mathrm{PG}(1,q^n)$. We can always assume (up to a projectivity) that L_U does not contain the point $\langle (0,1) \rangle_{\mathbb{F}_{q^n}}$. Then $U = U_f = \{(x, f(x)) \colon x \in \mathbb{F}_{q^n}\}$, for some q-polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ over \mathbb{F}_{q^n} . For the sake of simplicity we will write L_f instead of L_{U_f} to denote the linear set defined by U_f .

According to Result 2.1 and using the same notations as in Section 2.1 if L_U is an \mathbb{F}_q -linear set of rank n of $\mathrm{PG}(1, q^n)$ and τ is a symplectic polarity, then $U^{\perp'_{\beta}}$ defines the same linear set as U. Since in general $U^{\perp'_{\beta}}$ and U are not equivalent under the action of the group $\Gamma L(2, q^n)$, simple linear sets of a line are harder to find than non-simple linear sets.

Consider the non-degenerate symmetric bilinear form of \mathbb{F}_{q^n} over \mathbb{F}_q defined by the following rule

$$\langle x, y \rangle := \operatorname{Tr}_{q^n/q}(xy). \tag{2}$$

Then the adjoint map \hat{f} of an \mathbb{F}_q -linear map $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ of \mathbb{F}_{q^n} (with

respect to the bilinear form \langle,\rangle) is

$$\hat{f}(x) := \sum_{i=0}^{n-1} a_i^{q^{n-i}} x^{q^{n-i}}.$$
(3)

Let $\eta \colon \mathbb{F}_{q^n}^2 \times \mathbb{F}_{q^n}^2 \to \mathbb{F}_{q^n}$ be the non-degenerate alternating bilinear form of $\mathbb{F}_{q^n}^2$ defined by

$$\eta((x,y),(u,v)) = xv - yu. \tag{4}$$

Then η induces a symplectic polarity on the line $PG(1, q^n)$ and

$$\eta'((x,y),(u,v)) = \operatorname{Tr}_{q^n/q}(\eta((x,y),(u,v)))$$
(5)

is a non-degenerate alternating bilinear form on $\mathbb{F}_{q^n}^2$, when $\mathbb{F}_{q^n}^2$ is regarded as a 2*n*-dimensional vector space over \mathbb{F}_q . We will always denote in the paper by \perp and \perp' the orthogonal complement maps defined by η and η' on the lattices of the \mathbb{F}_{q^n} -subspaces and the \mathbb{F}_q -subspaces of $\mathbb{F}_{q^n}^2$, respectively. Direct calculation shows that

$$U_f^{\perp'} = U_{\hat{f}}.\tag{6}$$

Result 2.1 and (6) allow us to slightly reformulate [4, Lemma 2.6].

Lemma 3.1 ([4]). Let $L_f = \{\langle (x, f(x)) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}$ be an \mathbb{F}_q -linear set of $\mathrm{PG}(1, q^n)$ of rank n, with f(x) a q-polynomial over \mathbb{F}_{q^n} , and let \hat{f} be the adjoint of f with respect to the bilinear form (2). Then for each point $P \in \mathrm{PG}(1, q^n)$ we have $w_{L_f}(P) = w_{L_{\hat{f}}}(P)$. In particular, $L_f = L_{\hat{f}}$ and the maps defined by f(x)/x and $\hat{f}(x)/x$ have the same image.

Lemma 3.2. Let φ be an \mathbb{F}_q -linear map of \mathbb{F}_{q^n} and for $\lambda \in \mathbb{F}_{q^n}^*$ let φ_{λ} denote the \mathbb{F}_q -linear map: $x \mapsto \varphi(\lambda x)/\lambda$. Then for each point $P \in \mathrm{PG}(1, q^n)$ we have $w_{L_{\varphi}}(P) = w_{L_{\varphi_{\lambda}}}(P)$. In particular, $L_{\varphi} = L_{\varphi_{\lambda}}$.

Proof. The statements follow from $\lambda U_{\varphi_{\lambda}} = U_{\varphi}$.

Remark 3.3. The results of Lemmas 3.1 and 3.2 can also be obtained via Dickson matrices. For a q-polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ over \mathbb{F}_{q^n} let D_f denote the associated Dickson matrix (or q-circulant matrix)

$$D_f := \begin{pmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1}^q & a_0^q & \dots & a_{n-2}^q \\ \vdots & \vdots & \vdots & \vdots \\ a_1^{q^{n-1}} & a_2^{q^{n-1}} & \dots & a_0^{q^{n-1}} \end{pmatrix}.$$

When $f(x) = \lambda x$ for some $\lambda \in \mathbb{F}_{q^n}$ we will simply write D_{λ} . The rank of the matrix D_f equals the rank of the \mathbb{F}_q -linear map f, see for example [29]. We will denote the point $\langle (1, \lambda) \rangle_{q^n}$ by P_{λ} .

Transposition preserves the rank of matrices and $D_f^T = D_{\hat{f}}, D_{\lambda}^T = D_{\lambda}$. It follows that

 $\dim_q \ker(D_f - D_\lambda) = \dim_q \ker(D_f - D_\lambda)^T = \dim_q \ker(D_{\hat{f}} - D_\lambda),$

and hence for each $\lambda \in \mathbb{F}_{q^n}$ we have $w_{L_f}(P_{\lambda}) = w_{L_{\hat{f}}}(P_{\lambda})$.

Let $f_{\mu}(x) = f(x\mu)/\mu$. It is easy to see that $D_{1/\mu}D_f D_{\mu} = D_{f_{\mu}}$ and

 $\dim_q \ker(D_f - D_\lambda) = \dim_q \ker D_{1/\mu}(D_f - D_\lambda)D_\mu = \dim_q \ker(D_{f\mu} - D_\lambda),$ and hence $w_{L_f}(P_\lambda) = w_{L_{f\mu}}(P_\lambda)$ for each $\lambda \in \mathbb{F}_{q^n}$.

From the previous arguments it follows that linear sets L_f with $f(x) = \hat{f}(x)$ are good candidates for being simple. In the next section we show that the trace function, which has the previous property, defines a simple linear set. We are going to use the following lemmas which will also be useful later.

Lemma 3.4. Let f and g be two linearized polynomials. If $L_f = L_g$, then for each positive integer d the following holds

$$\sum_{x \in \mathbb{F}_{q^n}^*} \left(\frac{f(x)}{x}\right)^d = \sum_{x \in \mathbb{F}_{q^n}^*} \left(\frac{g(x)}{x}\right)^d$$

Proof. If $L_f = L_g =: L$, then $\{f(x)/x : x \in \mathbb{F}_{q^n}^*\} = \{g(x)/x : x \in \mathbb{F}_{q^n}^*\} =: H$. For each $h \in H$ we have $|\{x : f(x)/x = h\}| = q^i - 1$, where *i* is the weight of the point $\langle (1,h) \rangle_{q^n} \in L$ w.r.t. U_f , and similarly $|\{x : g(x)/x = h\}| = q^j - 1$, where *j* is the weight of the point $\langle (1,h) \rangle_{q^n} \in L$ w.r.t. U_g . Because of the characteristic of \mathbb{F}_{q^n} , we obtain:

$$\sum_{x \in \mathbb{F}_{q^n}^*} \left(\frac{f(x)}{x}\right)^d = -\sum_{h \in H} h^d = \sum_{x \in F_{q^n}^*} \left(\frac{g(x)}{x}\right)^d.$$

For the sake of completeness we give a proof of the following well-known result.

Lemma 3.5. For any prime power q and integer d we have $\sum_{x \in \mathbb{F}_q^*} x^d = -1$ if $q - 1 \mid d$ and $\sum_{x \in \mathbb{F}_q^*} x^d = 0$ otherwise. *Proof.* Let g denote a primitive element of \mathbb{F}_q and put $s = \sum_{j=0}^{n-2} g^{id}$. Then $sg^d = s$ and hence either s = 0, or $g^d = 1$. In the latter case $q - 1 \mid d$ since g was a primitive element and hence $x^d = 1$ for each $x \in \mathbb{F}_q^*$.

Lemma 3.6. Let $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ and $g(x) = \sum_{i=0}^{n-1} b_i x^{q^i}$ be two q-polynomials over \mathbb{F}_{q^n} , such that $L_f = L_g$. Then

$$a_0 = b_0, \tag{7}$$

and for $k = 1, 2, \ldots, n-1$ it holds that

$$a_k a_{n-k}^{q^k} = b_k b_{n-k}^{q^k}, (8)$$

for $k = 2, 3, \ldots, n-1$ it holds that

$$a_1 a_{k-1}^q a_{n-k}^{q^k} + a_k a_{n-1}^q a_{n-k+1}^{q^k} = b_1 b_{k-1}^q b_{n-k}^{q^k} + b_k b_{n-1}^q b_{n-k+1}^{q^k}.$$
 (9)

Proof. We are going to use Lemma 3.5 together with Lemma 3.4 with different choices of d.

With d = 1 we have

$$\sum_{x \in \mathbb{F}_{q^n}^*} \sum_{i=0}^{n-1} a_i x^{q^i - 1} = \sum_{x \in \mathbb{F}_{q^n}^*} \sum_{i=0}^{n-1} b_i x^{q^i - 1}$$

and hence

$$\sum_{i=0}^{n-1} a_i \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i-1} = \sum_{i=0}^{n-1} b_i \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i-1}.$$

Since $q^n - 1$ cannot divide $q^i - 1$ with i = 1, 2, ..., n - 1, $a_0 = b_0 =: c$ follows. Let φ denote the \mathbb{F}_{q^n} -linear map which fixes (0, 1) and maps (1, 0) to (1, -c). Then $U_f^{\varphi} = U_{f'}$ and $U_g^{\varphi} = U_{g'}$ with $f' = \sum_{i=1}^{n-1} a_i x^{q^i}$, $g' = \sum_{i=1}^{n-1} b_i x^{q^i}$ and of course with $L_{f'} = L_{g'}$. It follows that we may assume c = 0.

First we show that (8) holds. With $d = q^k + 1$, $1 \le k \le n - 1$ we obtain

$$\sum_{1 \le i,j \le n-1} a_i a_j^{q^k} \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i - 1 + q^{j+k} - q^k} = \sum_{1 \le i,j \le n-1} b_i b_j^{q^k} \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i - 1 + q^{j+k} - q^k}.$$

 $\sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i - 1 + q^{j+k} - q^k} = -1 \text{ if and only if } q^i + q^{j+k} \equiv q^k + 1 \pmod{q^n - 1},$ and zero otherwise. Suppose that the former case holds.

First consider $j + k \leq n - 1$. Then $q^i + q^{j+k} \leq q^{n-1} + q^{n-1} < q^k + 1 + 2(q^n - 1)$ hence one of the following holds.

- If $q^i + q^{j+k} = q^k + 1$, then the right hand side is not divisible by q, a contradiction.
- If $q^i + q^{j+k} = q^k + 1 + (q^n 1) = q^n + q^k$, then j + k = n, a contradiction.

Now consider the case $j + k \ge n$. Then $q^i + q^{j+k} \equiv q^i + q^{j+k-n} \equiv q^k + 1$ (mod $q^n - 1$). Since $j + k \le 2(n - 1)$, we have $q^i + q^{j+k-n} \le q^{n-1} + q^{n-2} < q^k + 1 + 2(q^n - 1)$, hence one of the following holds.

- If $q^i + q^{j+k-n} = q^k + 1$, then j + k = n and i = k.
- If $q^i + q^{j+k-n} = q^k + 1 + (q^n 1) = q^n + q^k$, then there is no solution since $j + k n \notin \{k, n\}$.

Hence (8) follows. Now we show that (9) also holds. Note that in this case $n \ge 3$, otherwise there is no k with $2 \le k \le n-1$. With $d = q^k + q + 1$, we obtain

$$\sum_{1 \le i,j,m \le n-1} a_i a_j^q a_m^{q^k} \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i - 1 + q^{j+1} - q + q^{m+k} - q^k} = \sum_{1 \le i,j,m \le n-1} b_i b_j^q b_m^{q^k} \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i - 1 + q^{j+1} - q + q^{m+k} - q^k}.$$

 $\sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i - 1 + q^{j+1} - q + q^{m+k} - q^k} = -1 \text{ if and only if } q^i + q^{j+1} + q^{m+k} \equiv q^k + q + 1 \pmod{q^n - 1}, \text{ and zero otherwise. Suppose that the former case holds.}$

First consider $m+k \leq n-1$. Then $q^i + q^{j+1} + q^{m+k} \leq q^{n-1} + q^n + q^{n-1} < q^k + q + 1 + 2(q^n - 1)$ hence one of the following holds.

- If $q^i + q^{j+1} + q^{m+k} = q^k + q + 1$, then the right hand side is not divisible by q, a contradiction.
- If $q^i + q^{j+1} + q^{m+k} = q^k + q + 1 + (q^n 1) = q^n + q^k + q$, then m + k = n, j + 1 = k and i = 1, a contradiction.

Now consider the case $m + k \ge n$. Then $q^i + q^{j+1} + q^{m+k} \equiv q^i + q^{j+1} + q^{m+k-n} \equiv q^k + q + 1 \pmod{q^n - 1}$. We have $q^i + q^{j+1} + q^{m+k-n} \le q^{n-1} + q^n + q^{n-2} < q^k + q + 1 + 2(q^n - 1)$ hence one of the following holds.

- If $q^i + q^{j+1} + q^{m+k-n} = q^k + q + 1$, then j+1 = k, i = 1 and m+k = n.
- If $q^i + q^{j+1} + q^{m+k-n} = q^k + q + 1 + (q^n 1) = q^n + q^k + q$, then j+1=n, i=k and m+k=n+1.

This concludes the proof.

3.1 Linear sets defined by the trace function

We show that there exists at least one simple \mathbb{F}_q -linear set in $\mathrm{PG}(1, q^n)$ for each q and n. Let $V = \{(x, \mathrm{Tr}_{q^n/q}(x)) : x \in \mathbb{F}_{q^n}\}$. We show that $L_U = L_V$ occurs for an \mathbb{F}_q -subspace U of W if and only if $V = \lambda U$ for some $\lambda \in \mathbb{F}_{q^n}^*$, i.e. L_V is of $\mathcal{Z}(\Gamma L)$ -class one and hence simple.

Theorem 3.7. Let $V = \{(x, \operatorname{Tr}_{q^n/q}(x)) : x \in \mathbb{F}_{q^n}\}$, then the \mathbb{F}_q -linear set L_V of $\operatorname{PG}(1, q^n)$ is of $\mathcal{Z}(\Gamma L)$ -class one.

Proof. Suppose $L_{U_f} = L_V$ with $U_f = \{(x, f(x)) \colon x \in \mathbb{F}_{q^n}\}$ and $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$. We are going to use Lemma 3.6 with $g(x) = \operatorname{Tr}_{q^n/q}(x)$. The coefficients $b_0, b_1, \ldots, b_{n-1}$ of g(x) are 1, hence $a_0 = 1$, and for $k = 1, 2, \ldots, n-1$

$$a_k a_{n-k}^{q^k} = 1, (10)$$

for $k = 2, 3, \ldots, n - 1$

$$a_1 a_{k-1}^q a_{n-k}^{q^k} + a_k a_{n-1}^q a_{n-k+1}^{q^k} = 2.$$
(11)

Note that (10) implies $a_i \neq 0$ for i = 1, 2, ..., n - 1. First we prove

$$a_i = a_1^{1+q+\dots+q^{i-1}} \tag{12}$$

by induction on *i* for each 0 < i < n. The assertion holds for i = 1. Suppose that it holds for some integer i - 1 with 1 < i < n. We prove that it also holds for *i*. Then (11) with k = i gives

$$a_1 a_{i-1}^q a_{n-i}^{q^i} + a_i a_{n-1}^q a_{n-i+1}^{q^i} = 2.$$
(13)

Also, (10) with k = i, k = i - 1 and k = 1, respectively, gives

$$a_{n-i}^{q^{i}} = 1/a_{i},$$

$$a_{n-i+1}^{q^{i}} = 1/a_{i-1}^{q},$$

$$a_{n-1}^{q} = 1/a_{1}.$$

Then (13) gives

$$a_1 a_{i-1}^q / a_i + a_i / \left(a_1 a_{i-1}^q \right) = 2.$$
(14)

It follows that $a_1 a_{i-1}^q / a_i = 1$ and hence the induction hypothesis on a_{i-1} yields $a_i = a_1^{1+q+\ldots+q^{i-1}}$.

Finally we show $N(a_1) = 1$. First consider n even. Then (10) with k = n/2 gives $a_{n/2}^{q^{n/2}+1} = 1$. Applying (12) yields $N(a_1) = 1$. If n is odd, then (10) with k = (n-1)/2 gives $a_{(n-1)/2}a_{(n+1)/2}^{q^{(n-1)/2}} = 1$. Applying (12) yields $N(a_1) = 1$. It follows that $a_1 = \lambda^{q-1}$ for some $\lambda \in \mathbb{F}_{q^n}^*$ and hence $f(x) = \sum_{i=0}^{n-1} \lambda^{q^i-1} x^{q^i}$. Then $\lambda U_f = \{(x, \operatorname{Tr}_{q^n/q}(x)) : x \in \mathbb{F}_{q^n}^*\}$. \Box

Remark 3.8. We point out that in the above theorem we do not have any assumption on the weight of points of L_U . In the special case when $L_U = L_V$ and L_U has a point of weight n-1, then the $GL(2, q^n)$ -equivalence of U and V can be deduced also from [8, Theorem 2.3].

3.2 Non-simple linear sets

An \mathbb{F}_q -linear set of *pseudoregulus type* of $\mathrm{PG}(1, q^n)$ is any linear set equivalent to $\{\langle (x, x^q) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}$. In [7] it was proved that the Γ L-class of such linear sets is $\varphi(n)/2$, hence they are non-simple for n = 5 and n > 6. So far, these are the only known non-simple linear sets of $\mathrm{PG}(1, q^n)$. Here we show that \mathbb{F}_q -linear sets L_f of $\mathrm{PG}(1, q^n)$ introduced by Lunardon and Polverino, which are not of pseudoregulus type ([23, Theorems 2 and 3]), are non-simple as well. Let us start by proving the following preliminary result.

Proposition 3.9. Let $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$. There is an \mathbb{F}_{q^n} -semilinear map between U_f and $U_{\hat{f}}$ if and only if the following system of n equations has a solution $A, B, C, D \in \mathbb{F}_{q^n}$, $AD - BC \neq 0$, $\sigma = p^k$:

$$C + Da_0^{\sigma} - a_0 A = \sum_{i=0}^{n-1} (Ba_i a_i^{\sigma})^{q^{n-i}},$$

...
$$Da_m^{\sigma} - (a_{n-m}A)^{q^m} = \sum_{i=0}^{n-1} (Ba_i a_{i+m}^{\sigma})^{q^{n-i}}, \text{ with } m = 1, \dots, n-2,$$

...
$$Da_{n-1}^{\sigma} - (a_1 A)^{q^{n-1}} = \sum_{i=0}^{n-1} (Ba_i a_{i+n-1}^{\sigma})^{q^{n-i}},$$

where the indices are taken modulo n.

Proof. Because of cardinality reasons the condition $AD - BC \neq 0$ is necessary. Then

$$\left\{ \begin{pmatrix} x \\ \hat{f}(x) \end{pmatrix} : x \in \mathbb{F}_{q^n} \right\} = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} x^{\sigma} \\ f(x)^{\sigma} \end{pmatrix} : x \in \mathbb{F}_{q^n} \right\}$$

holds if and only if

$$Cx^{\sigma} + D\sum_{j=0}^{n-1} a_{j}^{\sigma} x^{\sigma q^{j}} = \sum_{i=0}^{n-1} a_{n-i}^{q^{i}} \left(Ax^{\sigma} + B\sum_{j=0}^{n-1} a_{j}^{\sigma} x^{\sigma q^{j}} \right)^{q^{i}}$$

for each $x \in \mathbb{F}_{q^n}$. After reducing modulo $x^{q^n} - x$, this is a polynomial equation of degree at most q^{n-1} in the variable x^{σ} . It follows that it holds for each $x \in \mathbb{F}_{q^n}$ if and only if it is the zero polynomial. Comparing coefficients on both sides yields the assertion.

We are able to prove the following.

Proposition 3.10. Consider a polynomial of the form $f(x) = \delta x^q + x^{q^{n-1}}$, where q > 4 is a power of the prime p. If n > 4, then for each generator δ of the multiplicative group of \mathbb{F}_{q^n} the linear set L_f is not simple.

Proof. Lemma 3.1 yields $L_f = L_{\hat{f}}$ thus it is enough to show the existence of δ such that there is no \mathbb{F}_{q^n} -semilinear map between U_f and $U_{\hat{f}}$. In the equations of Proposition 3.9 we have $a_1 = \delta$, $a_{n-1} = 1$ and $a_0 = a_2 =$ $\dots = a_{n-2} = 0$. If n > 4 then the first two and the last two equations of Proposition 3.9 give

$$C = (B\delta^{\sigma+1})^{q^{n-1}} + B^q,$$

$$D\delta^{\sigma} - A^q = 0,$$

$$0 = (B\delta)^{q^{n-1}},$$

$$D - (\delta A)^{q^{n-1}} = 0,$$

where $\sigma = p^k$ for some integer k. If there is a solution, then B = C = 0 and $(\delta A)^{q^{n-1}} \delta^{\sigma} = A^q$. Taking q-th powers on both sides yield

$$\delta^{\sigma q+1} = A^{q^2 - 1} \tag{15}$$

and hence

$$\delta^{\frac{(\sigma q+1)(q^n-1)}{q-1}} = 1.$$
(16)

For each σ let G_{σ} be the set of elements δ of \mathbb{F}_{q^n} satisfying (16). For each σ , G_{σ} is a subgroup of the multiplicative group M of \mathbb{F}_{q^n} . We show that these are proper subgroups of M. We have $G_{p^k} = M$ if and only if $q^n - 1$ divides $\frac{(p^k q+1)(q^n-1)}{q-1}$, i.e. when q-1 divides $p^k q + 1$. Since $\gcd(p^w + 1, p^v - 1)$ is always 1,2, or $p^{\gcd(w,v)} + 1$, it follows that for q > 4 we cannot have q-1 as a divisor of $p^k q + 1$.

It follows that for any generator δ of M we have $\delta \notin \bigcup_j G_{p^j}$ and hence $\delta^{\sigma q+1} \neq A^{q^2-1}$ for each σ and for each A.

Remark 3.11. If q = 4, then (15) with k = 2(n-1) + 1 asks for the solution of $\delta^3 = A^{15}$. When n is odd, then $\{x^3 : x \in \mathbb{F}_{4^n}\} = \{x^{15} : x \in \mathbb{F}_{4^n}\}$ and hence for each δ there exists A such that $\delta^3 = A^{15}$.

If q = 3, then (15) with k = n - 1 asks for the solution of $\delta^2 = A^8$. When n is odd, then $\{x^2 : x \in \mathbb{F}_{3^n}\} = \{x^8 : x \in \mathbb{F}_{3^n}\}$ and hence for each δ there exists A such that $\delta^2 = A^8$.

If q = 2, then (15) with k = 0 asks for the solution of $\delta^3 = A^3$. This equation always has a solution.

4 Linear sets of rank 4 of $PG(1, q^4)$

 \mathbb{F}_q -linear sets of rank two of $\mathrm{PG}(1,q^2)$ are the Baer sublines, which are equivalent. As we have mentioned in the introduction, subgeometries are simple linear sets, in fact they have $\mathcal{Z}(\Gamma \mathrm{L})$ -class one (cf. [19, Theorem 2.6] and [15, Section 25.5]). There are two non-equivalent \mathbb{F}_q -linear sets of rank 3 of $\mathrm{PG}(1,q^3)$, the linear sets of size $q^2 + q + 1$ and those of size $q^2 + 1$. Linear sets in both families are equivalent, since the stabilizer of a q-order subgeometry Σ of $\Sigma^* = \mathrm{PG}(2,q^3)$ is transitive on the set of those points of $\Sigma^* \setminus \Sigma$ which are incident with a line of Σ and on the set of points of Σ^* not incident with any line of Σ (cf. Section 5.2 and [18]). In the first case we have the linear sets of pseudoregulus type with $\Gamma \mathrm{L}$ -class 1 and $\mathcal{Z}(\Gamma \mathrm{L})$ -class 2 (cf. Remark 5.6 and Example 5.1). In the second case we have the linear sets defined by $\mathrm{Tr}_{q^3/q}$ with $\Gamma \mathrm{L}$ -class and $\mathcal{Z}(\Gamma \mathrm{L})$ -class 1 (cf. Theorem 3.7, see also [12, Corollary 6]).

From [6, Proposition 2.3] it follows that \mathbb{F}_q -linear sets of rank 5 in $\mathrm{PG}(W, q^4) = \mathrm{PG}(2, q^4)$ are simple. The orbits of 5-dimensional \mathbb{F}_q -subspaces of W under $\mathrm{\GammaL}(3, q^4)$ are also determined (cf. [6, pg. 54]). The results related to Rédei type blocking sets allow to determine all the orbits of 4-dimensional \mathbb{F}_q -subspaces of a two-dimensional \mathbb{F}_{q^4} -space under the group $\mathrm{\GammaL}(2, q^4)$. The aim of this section is to prove that \mathbb{F}_q -linear sets of rank 4 in

 $PG(1, q^4)$, with maximum field of linearity \mathbb{F}_q , are simple (cf. Theorem 4.5), since this does not follow from the above mentioned simplicity of \mathbb{F}_q -linear blocking sets. As a corollary, a list of orbits under $P\Gamma L(2, q^4)$ of \mathbb{F}_q -linear sets of rank 4 in $PG(1, q^4)$ can be deduced from [6, pg. 54].

4.1 Subspaces defining the same linear set

Lemma 4.1. Let $f(x) = \sum_{i=0}^{3} a_i x^{q^i}$ and $g(x) = \sum_{i=0}^{3} b_i x^{q^i}$ be two q-polynomials over \mathbb{F}_{q^4} , such that $L_f = L_g$. Then

$$N(a_{1}) + N(a_{2}) + N(a_{3}) + a_{1}^{1+q^{2}} a_{3}^{q+q^{3}} + a_{1}^{q+q^{3}} a_{3}^{1+q^{2}} + \operatorname{Tr} q^{4} / q \left(a_{1} a_{2}^{q+q^{2}} a_{3}^{q^{3}} \right) = N(b_{1}) + N(b_{2}) + N(b_{3}) + b_{1}^{1+q^{2}} b_{3}^{q+q^{3}} + b_{1}^{q+q^{3}} b_{3}^{1+q^{2}} + \operatorname{Tr} q^{4} / q \left(b_{1} b_{2}^{q+q^{2}} b_{3}^{q^{3}} \right).$$

Proof. We are going to follow the proof of Lemma 3.6. As in that proof, we may assume $a_0 = b_0 = 0$. In Lemma 3.4 take $d = 1 + q + q^2 + q^3$. We obtain

$$\begin{split} \sum_{1 \leq i, j, k, m \leq 3} a_i a_j^q a_k^{q^2} a_m^{q^3} \sum_{x \in \mathbb{F}_{q^4}^*} x^{q^i - 1 + q^{j+1} - q + q^{k+2} - q^2 + q^{m+3} - q^3} = \\ \sum_{1 \leq i, j, k, m \leq 3} b_i b_j^q b_k^{q^2} b_m^{q^3} \sum_{x \in \mathbb{F}_{q^4}^*} x^{q^i - 1 + q^{j+1} - q + q^{k+2} - q^2 + q^{m+3} - q^3}. \\ \sum_{x \in \mathbb{F}_{q^4}^*} x^{q^i - 1 + q^{j+1} - q + q^{k+2} - q^2 + q^{m+3} - q^3} = -1 \text{ if and only if} \\ q^i + q^{j+1} + q^{k+2} + q^{m+3} \equiv q^i + q^{j+1} + q^{k+2} + q^{m-1} \equiv 1 + q + q^2 + q^3 \pmod{q^4 - 1}, \end{split}$$

and zero otherwise. Suppose that the former case holds.

First consider k = 1. Then $q^i + q^{j+1} + q^{k+2} + q^{m-1} \le q^3 + q^4 + q^3 + q^2 < 1 + q + q^2 + q^3 + 2(q^4 - 1)$ hence one of the following holds.

- If $q^i + q^{j+1} + q^{k+2} + q^{m-1} = 1 + q + q^2 + q^3$, then m = i = j = k = 1.
- If $q^i + q^{j+1} + q^{k+2} + q^{m-1} = 1 + q + q^2 + q^3 + q^4 1 = q + q^2 + q^3 + q^4$, then $\{i, j + 1, k + 2, m - 1\} = \{1, 2, 3, 4\}$, hence one of the following holds

$$i = 1, j = 3, k = 1, m = 3,$$

 $i = 2, j = 3, k = 1, m = 2.$

Now consider the case $k \ge 2$. Then $q^i + q^{j+1} + q^{k+2} + q^{m-1} \equiv q^i + q^{j+1} + q^{k-2} + q^{m-1} \le q^3 + q^4 + q + q^2 < 1 + q + q^2 + q^3 + 2(q^4 - 1)$ hence one of the following holds.

• If $q^i + q^{j+1} + q^{k-2} + q^{m-1} = 1 + q + q^2 + q^3$, then $\{i, j+1, k-2, m-1\} = \{0, 1, 2, 3\}$, hence one of the following holds

$$i = 1, j = 2, k = 2, m = 3,$$

 $i = 2, j = 2, k = 2, m = 2,$
 $i = 2, j = 2, k = 3, m = 1,$
 $i = 3, j = 1, k = 2, m = 2,$
 $i = 3, j = 1, k = 3, m = 1.$

• If $q^i + q^{j+1} + q^{k-2} + q^{m-1} = 1 + q + q^2 + q^3 + q^4 - 1 = q + q^2 + q^3 + q^4$, then i = j = k = m = 3.

Proposition 4.2. Let f(x) and g(x) be two q-polynomials over \mathbb{F}_{q^4} such that $L_f = L_g$. If the maximum field of linearity of f is \mathbb{F}_q , then

$$g(x) = f(\lambda x) / \lambda,$$

or

$$g(x) = \hat{f}(\lambda x) / \lambda.$$

Proof. By Proposition 2.3, the maximum field of linearity of g is also \mathbb{F}_q . First note that $L_g = L_f$ when g is as in the assertion (cf. Lemmas 3.1 and 3.2). Let $f(x) = \sum_{i=0}^{3} a_i x^{q^i}$ and $g(x) = \sum_{i=0}^{3} b_i x^{q^i}$. First we are going to use Lemma 3.6. From (7) we have $a_0 = b_0$. From (8)

First we are going to use Lemma 3.6. From (7) we have $a_0 = b_0$. From (8) with n = 4 and k = 1, 2 we have $a_1 a_3^q = b_1 b_3^q$ and $a_2^{1+q^2} = b_2^{1+q^2}$, respectively. From (9) with n = 4 and k = 2 we obtain

$$a_1^{q+1}a_2^{q^2} + a_2a_3^{q+q^2} = b_1^{q+1}b_2^{q^2} + b_2b_3^{q+q^2}.$$
 (17)

Note that $a_1a_3^q = b_1b_3^q$ implies

$$N(b_1) N(b_3) = N(a_1) N(a_3).$$
 (18)

Multiplying (17) by b_2 and applying $a_2^{1+q^2} = b_2^{1+q^2}$ yields:

$$b_2^2 b_3^{q^2+q} - b_2 (a_1^{q+1} a_2^{q^2} + a_2 a_3^{q^2+q}) + b_1^{q+1} a_2^{q^2+1} = 0.$$
(19)

First suppose $b_1b_2b_3 \neq 0$. Then (19) is a second degree polynomial in b_2 . Applying $a_1a_3^q = b_1b_3^q$ it is easy to see that the roots of (19) are

$$b_{2,1} = \frac{a_1^{q+1}a_2^{q^2}}{b_3^{q^2+q}},$$
$$b_{2,2} = \frac{a_2a_3^{q^2+q}}{b_3^{q^2+q}}.$$

First we consider $b_2 = b_{2,1}$. Then $a_2^{1+q^2} = b_2^{1+q^2}$ yields $N(a_1) = N(b_3)$ and hence $N(b_1) = N(a_3)$. In particular, $N(b_1/a_3^q) = 1$ and hence $b_1 = a_3^q \lambda^{q-1}$ for some $\lambda \in \mathbb{F}_{q^4}^*$. From $a_1 a_3^q = b_1 b_3^q$ we obtain $b_3 = a_1^{q^3} a_3/b_1^{q^3} = a_1^{q^3} \lambda^{q^3-1}$. Applying this we get $b_2 = a_1^{q+1} a_2^{q^2}/b_3^{q^2+q} = a_2^{q^2} \lambda^{q^2-1}$ and hence

$$g(x) = a_0 x + a_3^q \lambda^{q-1} x^q + a_2^{q^2} \lambda^{q^2-1} x^{q^2} + a_1^{q^3} \lambda^{q^3-1} x^{q^3} = f(\lambda x) / \lambda.$$

as we claimed.

Now consider $b_2 = b_{2,2}$. Then $a_2^{1+q^2} = b_2^{1+q^2}$ yields $N(a_3) = N(b_3)$ and hence $N(a_1) = N(b_1)$. Hence $b_1 = a_1\lambda^{q-1}$ for some $\lambda \in \mathbb{F}_{q^4}^*$. From $a_1a_3^q = b_1b_3^q$ we obtain $b_3 = a_1^{q^3}a_3/b_1^{q^3} = a_3\lambda^{q^3-1}$. Applying this we obtain $b_2 = a_2a_3^{q^2+q}/b_3^{q^2+q} = a_2\lambda^{q^2-1}$ and hence

$$g(x) = a_0 x + a_1 \lambda^{q-1} x^q + a_2^{q^2} \lambda^{q^2-1} x^{q^2} + a_3^{q^3} \lambda^{q^3-1} x^{q^3} = \hat{f}(\lambda x) / \lambda.$$

If $b_1 = b_3 = 0$, then either $b_2 = 0$ and the maximum field of linearity of g(x) is \mathbb{F}_{q^4} , or $b_2 \neq 0$ and the maximum field of linearity of g(x) is \mathbb{F}_{q^2} . Thus we may assume $b_1 \neq 0$ or $b_3 \neq 0$.

First assume $b_2 \neq 0$ and $b_1 = 0$. Then $b_3 \neq 0$ and (19) gives

$$b_2 b_3^{q^2+q} = a_1^{q+1} a_2^{q^2} + a_2 a_3^{q^2+q}$$

Then $a_1a_3^q = b_1b_3^q$ yields either $a_1 = 0$ and $b_2b_3^{q^2+q} = a_2a_3^{q^2+q}$, or $a_3 = 0$ and $b_2b_3^{q^2+q} = a_1^{q+1}a_2^{q^2}$. Taking (q^2+1) -powers on both sides gives $b_2^{q^2+1} \operatorname{N}(b_3) = a_2^{q^2+1} \operatorname{N}(a_3)$, or $b_2^{q^2+1} \operatorname{N}(b_3) = \operatorname{N}(a_1)a_2^{q^2+1}$, respectively. Applying $b_2^{q^2+1} = a_2^{q^2+1}$ we get $\operatorname{N}(b_3) = \operatorname{N}(a_3)$, or $\operatorname{N}(b_3) = \operatorname{N}(a_1)$, respectively. Note that the set of elements with norm 1 in \mathbb{F}_{q^4} is $\{x^{q^3-1}: x \in \mathbb{F}_{q^4}^*\}$, thus in the first case there exists $\lambda \in \mathbb{F}_{q^4}^*$ such that $b_3 = a_3\lambda^{q^3-1}$. Then $b_2b_3^{q^2+q} = a_2a_3^{q^2+q}$ yields $b_2 = a_2\lambda^{q^2-1}$ and hence $g(x) = a_0x + a_2\lambda^{q^2-1}x^{q^2} + a_3\lambda^{q^3-1}x^{q^3}$.

In the second case the same reasoning yields $g(x) = a_0 x + a_2^{q^2} \lambda^{q^2-1} x^{q^2} + a_1^{q^3} \lambda^{q^3-1} x^{q^3}$.

If $b_2 \neq 0$ and $b_3 = 0$, then the coefficient of x^q in $\hat{g}(x)$ is zero and the assertion follows from the above arguments applied to \hat{g} instead of g.

Now assume $b_2 = 0$ and $b_1b_3 = 0$. Then $L_g = L_f$ is a linear set of pseudoregulus type and hence the assertion also follows from [17]. For the sake of completeness we present a proof also in this case. Equation $b_2^{q^2+1} = a_2^{q^2+1}$ yields $a_2 = 0$ and equation $a_1a_3^q = b_1b_3^q$ yields $a_1a_3 = 0$. Then from Lemma 4.1 we have

$$N(a_1) + N(a_3) = N(b_1) + N(b_3).$$
(20)

If $b_1 = 0$, then $b_3 \neq 0$ and either $a_1 = 0$ and $N(a_3) = N(b_3)$, or $a_3 = 0$ and $N(a_1) = N(b_3)$. In the first case $g(x) = a_0x + a_3\lambda^{q^3-1}x^{q^3}$, in the second case $g(x) = a_0x + a_1^q\lambda^{q^3-1}x^{q^3}$. If $b_3 = 0$, then $b_1 \neq 0$ and either $a_1 = 0$ and $N(a_3) = N(b_1)$, or $a_3 = 0$ and $N(a_1) = N(b_1)$. In the first case $g(x) = a_0x + a_3^q\lambda^{q-1}x^q$, in the second case $g(x) = a_0x + a_1\lambda^{q-1}x^q$.

There is only one case left, when $b_2 = 0$ and $b_1b_3 \neq 0$. Then from Lemma 4.1 and from $a_1a_3^q = b_1b_3^q$ it follows that

$$N(a_1) + N(a_3) = N(b_1) + N(b_3).$$
(21)

Together with (18) it follows that either $N(a_1) = N(b_1)$ and $N(a_3) = N(b_3)$, or $N(a_1) = N(b_3)$ and $N(a_3) = N(b_1)$. In the first case $g(x) = a_0x + a_1\lambda^{q-1}x^q + a_3\lambda^{q^{3-1}}x^{q^3}$, in the second case $g(x) = a_0x + a_3^q\lambda^{q-1}x^q + a_1^{q^3}\lambda^{q^{3-1}}x^{q^3}$, for some $\lambda \in \mathbb{F}_{q^4}^*$.

Now we are able to prove the following.

Theorem 4.3. Let L_U be an \mathbb{F}_q -linear set of a line $\operatorname{PG}(W, \mathbb{F}_{q^4})$ of rank 4, with maximum field of linearity \mathbb{F}_q , and let β be any non-degenerate alternating form of W over \mathbb{F}_{q^4} . If V is an \mathbb{F}_q -vector subspace of W such that $L_U = L_V$, then either

$$V = \mu U,$$

or

$$V = \mu U^{\perp'_{\beta}}$$

for some $\mu \in \mathbb{F}_{q^4}^*$, where \perp'_{β} is the orthogonal complement map induced by $\operatorname{Tr}_{q^4/q} \circ \beta$ on the lattice of the \mathbb{F}_q -subspaces of W.

Proof. Assume w.l.o.g. that $L_U = L_V$ does not contain the point $\langle (0,1) \rangle_{\mathbb{F}_{q^4}}$. Then $U = U_f$ and $V = V_g$ for some q-polynomials f and g over \mathbb{F}_{q^4} . By Proposition 4.2, taking also (6) into account, it follows that there exists $\lambda \in \mathbb{F}_{q^4}^*$ such that either $\lambda V = U$ or $\lambda V = U^{\perp'}$, where \perp' is the orthogonal complement map induced by the non-degenerate alternating form $\eta' = \operatorname{Tr}_{q^4/q} \circ \eta$, with η defined in (4). In the first case we have that $V = \mu U$, where $\mu = \frac{1}{\lambda}$. In the second case we have $V = \frac{1}{\lambda}U^{\perp'}$. Since β and η are two non-denegerate alternating forms of the 2-dimensional \mathbb{F}_{q^4} -space W, it follows that there exists $a \in \mathbb{F}_{q^4}^*$ such that $\beta(\mathbf{x}, \mathbf{y}) = a\eta(\mathbf{x}, \mathbf{y})$ for each $\mathbf{x}, \mathbf{y} \in W$. Hence, straightforward computations show that $U^{\perp'} = aU^{\perp'_{\beta}}$.

4.2 Semilinear maps between U_f and $U_{\hat{f}}$

The next result is just Proposition 3.9 with n = 4.

Corollary 4.4. Let $f(x) = a_0 x + a_1 x^q + a_2 x^{q^2} + a_3 x^{q^3}$. There is an \mathbb{F}_{q^4} semilinear map between U_f and $U_{\hat{f}}$ if and only if the following system of
four equations has a solution $A, B, C, D \in \mathbb{F}_{q^4}$, $AD - BC \neq 0$, $\sigma = p^k$.

$$C + Da_0^{\sigma} - a_0 A = Ba_0 a_0^{\sigma} + (Ba_1 a_1^{\sigma})^{q^3} + (Ba_2 a_2^{\sigma})^{q^2} + (Ba_3 a_3^{\sigma})^q,$$

$$Da_1^{\sigma} - (a_3 A)^q = Ba_0 a_1^{\sigma} + (Ba_1 a_2^{\sigma})^{q^3} + (Ba_2 a_3^{\sigma})^{q^2} + (Ba_3 a_0^{\sigma})^q,$$

$$Da_2^{\sigma} - (a_2 A)^{q^2} = Ba_0 a_2^{\sigma} + (Ba_1 a_3^{\sigma})^{q^3} + (Ba_2 a_0^{\sigma})^{q^2} + (Ba_3 a_1^{\sigma})^q,$$

$$Da_3^{\sigma} - (a_1 A)^{q^3} = Ba_0 a_3^{\sigma} + (Ba_1 a_0^{\sigma})^{q^3} + (Ba_2 a_1^{\sigma})^{q^2} + (Ba_3 a_2^{\sigma})^q.$$

Theorem 4.5. Linear sets of rank 4 of $PG(1, q^4)$, with maximum field of linearity \mathbb{F}_q , are simple.

Proof. Let $f = \sum_{i=0}^{3} a_i x^{q^i}$. After a suitable projectivity we may assume $a_0 = 0$. We will use Corollary 4.4 with $\sigma \in \{1, q^2\}$. We may assume that $a_1 = 0$ and $a_3 = 0$ do not hold at the same time since otherwise f is \mathbb{F}_{q^2} -linear.

First consider the case when $N(a_1) = N(a_3)$. Let B = C = 0, $D = A^{q^2}$ and take A such that $A^{q-1} = a_3/a_1^q$. This can be done since $N(a_3/a_1^q) = 1$. Then Corollary 4.4 with $\sigma = q^2$ provides the existence of an \mathbb{F}_{q^4} -semilinear map between U_f and $U_{\hat{f}}$.

From now on we assume $N(a_1) \neq N(a_3)$.

If $a_2 = a_1 = 0$, then let $\sigma = 1$, A = D = 0, B = 1 and $C = a_3^{2q}$. If $a_2 = a_3 = 0$, then let $\sigma = 1$, A = D = 0, B = 1 and $C = a_1^{2q^3}$.

Now consider the case $a_2 = 0$ and $a_1a_3 \neq 0$. Let A = D = 0. Then the equations of Corollary 4.4 with $\sigma = 1$ yield

$$C = B^{q^3} a_1^{2q^3} + B^q a_3^{2q}, (22)$$

$$0 = B^q a_1^q a_3^q + B^{q^3} a_1^{q^3} a_3^{q^3}.$$
 (23)

(23) is equivalent to $0 = (Ba_1a_3)^{q^2} + Ba_1a_3$. Since $X^{q^2} + X = 0$ has q^2 solutions in \mathbb{F}_{q^4} , for any a_1 and a_3 we can find $B \in \mathbb{F}_{q^4}^*$ such that (23) is satisfied. If $B^{q^3}a_1^{2q^3} + B^q a_3^{2q} \neq 0$, then let *C* be this field element. We show that this is always the case. Suppose, contrary to our claim, that $B^{q^3-q} = -a_3^{2q}/a_1^{2q^3}$. Because of the choice of *B* (23) yields $B^{q^3-q} = -a_1^{q-q^3}a_3^{q-q^3}$. Since $B \neq 0$ this implies

$$-a_3^{2q}/a_1^{2q^3} = -a_1^{q-q^3}a_3^{q-q^3},$$

and hence $a_1^{q^2+1} = a_3^{q^2+1}$. A contradiction since $N(a_1) \neq N(a_3)$. From now on we assume $a_2 \neq 0$, we may also assume $a_2 = 1$ after a suitable projectivity.

Corollary 4.4 with $\sigma = 1$ yields

$$C = (Ba_1^2)^{q^3} + B^{q^2} + (Ba_3^2)^q,$$
(24)

$$Da_1 - (a_3 A)^q = (Ba_1)^{q^3} + (Ba_3)^{q^2},$$
(25)

$$D - A^{q^2} = (Ba_1a_3)^{q^3} + (Ba_3a_1)^q,$$
(26)

$$Da_3 - (a_1 A)^{q^3} = (Ba_1)^{q^2} + (Ba_3)^q.$$
(27)

The right hand side of (25) is the q-th power of the right hand side of (27) and hence $D^q a_3^q - a_1 A = D a_1 - a_3^q A^q$, i.e.

$$a_3^q (D+A)^q = a_1 (D+A).$$

Since a_1 or a_3 is non-zero, we have either D = -A, or $(D + A)^{q-1} = a_1/a_3^q$. The latter case can be excluded since in that case $N(a_1) = N(a_3)$. Let D = -A. Then the left hand side of (25) is $w(A) := -Aa_1 - a_3^q A^q$. The kernel of w is trivial and hence B uniquely determines A. The inverse of w is

$$w^{-1}(x) = \frac{-xa_1^{q+q^2+q^3} + x^q a_1^{q^2+q^3} a_3^q - x^{q^2} a_1^{q^3} a_3^{q+q^2} + x^{q^3} a_3^{q+q^2+q^3}}{\mathcal{N}(a_1) - \mathcal{N}(a_3)}$$

Denote the right hand side of (25) by r(B), the right hand side of (26) by t(B). Then B has to be in the kernel of

$$K(x) := w^{-1}(r(x)) + (w^{-1}(r(x)))^{q^2} + t(x).$$

If B = 0, then A = B = D = 0 and hence this is not a suitable solution. It is easy to see that $Im t \subseteq \mathbb{F}_{q^2}$ and hence also $Im K \subseteq \mathbb{F}_{q^2}$, so the kernel of K has at least dimension 2.

Let $B \in \ker K$, $B \neq 0$, $A := w^{-1}(r(B))$ and $C := (Ba_1^2)^{q^3} + B^{q^2} + (Ba_3^2)^q$ (we recall D = -A). This gives a solution. We have to check that B can be chosen such that $AD - BC \neq 0$, i.e.

$$Q(B) := \left(w^{-1}(r(B))\right)^2 + B\left((Ba_1^2)^{q^3} + B^{q^2} + (Ba_3^2)^q\right),$$

is non-zero. We have $w^{-1}(r(x))(N(a_1) - N(a_3)) = \sum_{i=0}^{3} c_i x^{q^i}$, where

$$c_{0} = a_{1}^{1+q^{2}+q^{3}}a_{3}^{q} - a_{1}^{q^{3}}a_{3}^{1+q+q^{2}},$$

$$c_{1} = a_{3}^{2q+q^{2}+q^{3}} - a_{1}^{q+q^{3}}a_{3}^{q+q^{2}},$$

$$c_{2} = a_{3}^{q+q^{2}+q^{3}}a_{1}^{q^{2}} - a_{1}^{q+q^{2}+q^{3}}a_{3}^{q^{2}},$$

$$c_{3} = a_{1}^{q^{2}+q^{3}}a_{3}^{q+q^{3}} - a_{1}^{q+q^{2}+2q^{3}}.$$

If X_0, X_1, X_2, X_3 denote the coordinate functions in $PG(3, q^4)$ and Q(B) = 0for some $B \in \mathbb{F}_{q^4}$, then the point $\langle (B, B^q, B^{q^2}, B^{q^3}) \rangle_{q^4}$ is contained in the the quadric \mathcal{Q} of $PG(3, q^4)$ defined by the equation

$$\left(\sum_{i=0}^{3} c_i X_i\right)^2 + X_0 (X_1 a_3^{2q} + X_2 + X_3 a_1^{2q^3}) (N(a_1) - N(a_3))^2 = 0.$$

We can see that the equation of Q is the linear combination of the equations of two degenerate quadrics, a quadric of rank 1 and a quadric of rank 2. It follows that Q is always singular and it has rank 2 or 3. In particular, the rank of Q is 2 when the intersection of the planes $\mathcal{A} : X_0 = 0$ and $\mathcal{B} : X_1 a_3^{2q} + X_2 + X_3 a_1^{2q^3} = 0$ is contained in the plane $\mathcal{C} : \sum_{i=0}^{3} c_i X_i = 0$. Straightforward calculations show that under our hypothesis $(a_1 \neq 0 \text{ or} a_3 \neq 0, N(a_1) \neq N(a_3))$ this happens if and only if $1 = a_1^q a_3$. We recall that the kernel of K has dimension at least two. Let

$$H = \{ \langle (x, x^q, x^{q^2}, x^{q^3}) \rangle_{q^4} \colon K(x) = 0 \}.$$

Our aim is to prove that H has points not belonging to the quadric \mathcal{Q} , i.e. $H \nsubseteq \mathcal{Q}$.

Note that $x \in \mathbb{F}_{q^4} \mapsto (x, x^q, x^{q^2}, x^{q^3}) \in \mathbb{F}_{q^4}^4$ is a vector-space isomorphism between \mathbb{F}_{q^4} and the 4-dimensional \mathbb{F}_q -space $\{(x, x^q, x^{q^2}, x^{q^3}) : x \in \mathbb{F}_{q^4}\} \subset \mathbb{F}_{q^4}^4$. Denote by \overline{H} the \mathbb{F}_{q^4} -extension of H, i.e. the projective subspace of PG(3, q^4) generated by the points of H. Then the projective dimension of \overline{H} is dim ker K - 1. Let ξ denotes the collineation $(X_0, X_1, X_2, X_3) \mapsto (X_3^q, X_0^q, X_1^q, X_2^q)$ of PG(3, q^4). Then the points of H are fixed points of ξ and hence ξ fixes the subspace \overline{H} . Note that the subspace of singular points of \mathcal{Q} is always disjoint from H since it is contained in \mathcal{A} , while H is disjoint from it.

First of all note that if dim ker K = 4, i.e. K is the zero polynomial, then H is a subgeometry of $PG(3, q^4)$ isomorphic to PG(3, q), which clearly cannot be contained in Q. It follows that dim ker K is either 3 or 2, i.e. His either a q-order subplane or a q-order subline.

First assume $1 \neq a_1^q a_3$, i.e. the case when \mathcal{Q} has rank 3. If H is a q-order subplane, then H cannot be contained in \mathcal{Q} . To see this, suppose the contrary and take three non-concurrent q-order sublines of H. The \mathbb{F}_{q^4} -extensions of these sublines are also contained in \mathcal{Q} , but there is at least one of them which does not pass through the singular point of \mathcal{Q} , a contradiction. Now assume that H is a q-order subline. The singular point of \mathcal{Q} is the intersection of the planes \mathcal{A}, \mathcal{B} and \mathcal{C} . Straightforward calculations show that this point is $V = \langle (v_0, v_1, v_2, v_3) \rangle_{q^4}$, where

$$v_0 = 0,$$

$$v_1 = a_1^{q^2 + q^3} (a_1^{q^3} a_3^{q^2} - 1),$$

$$v_2 = a_1^{q^3} a_3^q (a_1^{q^2} a_3^q - a_1^{q^3} a_3^{q^2}),$$

$$v_3 = a_3^{q + q^2} (1 - a_1^{q^2} a_3^q).$$

Suppose, contrary to our claim, that H is contained in \mathcal{Q} . Then \overline{H} passes through the singular point V of \mathcal{Q} . Since \overline{H} is fixed by ξ , it follows that the points $V, V^{\xi}, V^{\xi^2}, V^{\xi^3}$ have to be collinear ($v_0 = 0$ yields that these four points cannot coincide). Let M denote the 4×4 matrix, whose *i*-th row consists of the coordinates of $V^{\xi^{i-1}}$ for i = 1, 2, 3, 4. The rank of M is two, thus each of its minors of order three is zero. Let $M_{i,j}$ denote the submatrix of M obtained by deleting the *i*-th row and *j*-th column of M. Then

$$\det M_{1,2} = a_1^{q+1} (a_1^q a_3 - 1)^{q^3 + 1} \alpha,$$

$$\det M_{1,4} = a_3^{q^3+1} (a_1^q a_3 - 1)^{q^3+1} \beta$$

where

$$\alpha = \mathcal{N}(a_1)(a_1^{q^2}a_3^q - 1) + \mathcal{N}(a_3)(1 - a_1^q a_3 - a_1^{q^3}a_3^{q^2} + a_1a_3^{q^3}),$$

$$\beta = \mathcal{N}(a_1)(a_1a_3^{q^3} + a_1^{q^2}a_3^q - a_1^q a_3 - 1) + \mathcal{N}(a_3)(1 - a_1^{q^3}a_3^{q^2}).$$

Since a_1 and a_3 cannot be both zeros and $a_1^q a_3 - 1 \neq 0$, we have $\alpha = \beta = 0$. But $\alpha - \beta = (N(a_1) - N(a_3))(a_1^q a_3 - a_1 a_3^{q^3})$. It follows that $a_1^q a_3 \in \mathbb{F}_q$ and hence α can be written as $(N(a_1) - N(a_3))(a_1^q a_3 - 1)$, which is non-zero. This contradiction shows that V cannot be contained in a line fixed by ξ and hence \bar{H} cannot pass through V. It follows that $H \nsubseteq Q$ and hence we can choose B such that $AD - BC \neq 0$.

Now consider the case $1 = a_1^q a_3$. Then \mathcal{Q} is the union of two planes meeting each other in $\ell := \mathcal{A} \cap \mathcal{B}$. It is easy to see that $R := \langle (0, 1, -a_3^{2q}, 0) \rangle_{q^4}$ and R^{ξ} are two distinct points of ℓ . Since $N(a_1) \neq N(a_3)$ and $N(a_1) N(a_3) =$ 1, det $\{R, R^{\xi}, R^{\xi^2}, R^{\xi^3}\} = N(a_3)^2 - 1$ cannot be zero and hence $R \notin H$, otherwise dim $\langle R, R^{\xi}, R^{\xi^2}, R^{\xi^3} \rangle \leq \dim \overline{H} \leq 2$. Suppose, contrary to our claim, that H is contained in one of the two planes of \mathcal{Q} . Since $R \notin H$, such a plane can be written as $\langle H, R \rangle$ and since H is fixed by ξ and $\ell \subseteq \langle H, R \rangle$, we have $\langle H, R \rangle^{\xi} = \langle H, R^{\xi} \rangle = \langle H, R \rangle$. Thus $R, R^{\xi}, R^{\xi^2}, R^{\xi^3}$ are coplanar, a contradiction. \Box

5 Different aspects of the classes of a linear set

5.1 Class of a linear set and the associated variety

Let L_U be an \mathbb{F}_q -linear set of rank k of $\operatorname{PG}(W, \mathbb{F}_{q^n}) = \operatorname{PG}(r-1, q^n)$. Consider the projective space $\Omega = \operatorname{PG}(W, \mathbb{F}_q) = \operatorname{PG}(rn - 1, q)$. For each point $P = \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}}$ of $\operatorname{PG}(W, \mathbb{F}_{q^n})$ there corresponds a projective (n-1)-subspace $X_P := \operatorname{PG}(\langle \mathbf{u} \rangle_{q^n}, \mathbb{F}_q)$ of Ω . The variety of Ω associated to L_U is

$$\mathcal{V}_{r,n,k}(L_U) = \bigcup_{P \in L_U} X_P.$$
(28)

This variety was already used in [2] and [17], see Example 5.1. The question of determining whether a linear set is simple or not is related to the existence of so-called *irregular subspaces* (see [17]). The case of irregular sublines was already studied in [11].

A (k-1)-space $\mathcal{H} = \mathrm{PG}(V, \mathbb{F}_q)$ of Ω is said to be a *transversal* space of $\mathcal{V}(L_U)$ if $\mathcal{H} \cap X_P \neq \emptyset$ for each point $P \in L_U$, i.e. $L_U = L_V$.

The $\mathcal{Z}(\Gamma L)$ -class of an \mathbb{F}_q -linear set L_U of rank n of $\mathrm{PG}(W, \mathbb{F}_{q^n}) = \mathrm{PG}(1, q^n)$, with maximum field of linearity \mathbb{F}_q , is the number of transversal spaces of $\mathcal{V}_{2,n,n}(L_U)$ up to the action of the subgroup G of $\mathrm{PGL}(2n-1,q)$ induced by the maps $\mathbf{x} \in W \mapsto \lambda \mathbf{x} \in W$, with $\lambda \in \mathbb{F}_{q^n}^*$. Note that G fixes X_P for each point $P \in \mathrm{PG}(1,q^n)$ and hence fixes the variety.

The maximum size of an \mathbb{F}_q -linear set L_U of rank n of $\mathrm{PG}(1,q^n)$ is $(q^n - 1)/(q - 1)$. If this bound is attained (hence each point of L_U has weight one), then L_U is a maximum scattered linear set of $\mathrm{PG}(1,q^n)$. For maximum scattered linear sets, the number of transversal spaces through $Q \in \mathcal{V}(L_U)$ does not depend on the choice of Q and this number is the $\mathcal{Z}(\Gamma L)$ -class of L_U .

Example 5.1. Let $U = \{(x, x^q) : x \in \mathbb{F}_{q^n}\}$ and consider the linear set L_U . In [17] the variety $\mathcal{V}_{2,n,n}(L_U)$ was studied, and the transversal spaces were determined. It follows that the $\mathcal{Z}(\Gamma L)$ -class of L_U is $\varphi(n)$, where φ is the Euler's phi function.

5.2 Classes of linear sets as projections of subgeometries

Let $\Sigma = \operatorname{PG}(k-1,q)$ be a canonical subgeometry of $\Sigma^* = \operatorname{PG}(k-1,q^n)$. Let $\Gamma \subset \Sigma^* \setminus \Sigma$ be a (k-r-1)-space and let $\Lambda \subset \Sigma^* \setminus \Gamma$ be an (r-1)-space of Σ^* . The projection of Σ from *center* Γ to *axis* Λ is the point set

$$L = p_{\Gamma,\Lambda}(\Sigma) := \{ \langle \Gamma, P \rangle \cap \Lambda \colon P \in \Sigma \}.$$
⁽²⁹⁾

In [24] Lunardon and Polverino characterized linear sets as projections of canonical subgeometries. They proved the following.

Theorem 5.2 ([24, Theorems 1 and 2]). Let Σ^* , Σ , Λ , Γ and $L = p_{\Gamma,\Lambda}(\Sigma)$ be defined as above. Then L is an \mathbb{F}_q -linear set of rank k and $\langle L \rangle = \Lambda$. Conversely, if L is an \mathbb{F}_q -linear set of rank k of $\Lambda = PG(r-1, q^n) \subset \Sigma^*$ and $\langle L \rangle = \Lambda$, then there is a (k-r-1)-space Γ disjoint from Λ and a canonical subgeometry $\Sigma = PG(r-1,q)$ disjoint from Γ such that $L = p_{\Gamma,\Lambda}(\Sigma)$.

Let L_U be an \mathbb{F}_q -linear set of rank k of $\mathbb{P} = \mathrm{PG}(W, \mathbb{F}_{q^n}) = \mathrm{PG}(r-1, q^n)$ such that for each k-dimensional \mathbb{F}_q -subspace V of W if $\mathrm{PG}(V, \mathbb{F}_q)$ is a transversal space of $\mathcal{V}_{r,n,k}(L_U)$, then there exists $\gamma \in \mathrm{P\GammaL}(W, \mathbb{F}_q)$, such that γ fixes the Desarguesian spread $\{X_P \colon P \in \mathbb{P}\}$ and $\mathrm{PG}(U, \mathbb{F}_q)^{\gamma} = \mathrm{PG}(V, \mathbb{F}_q)$. This is condition (A) from [7], and it is equivalent to say that L_U is a simple linear set. Then the main results of [7] can be formalized as follows.

Theorem 5.3 ([7]). Let $L_1 = p_{\Gamma_1, \Lambda_1}(\Sigma_1)$ and $L_2 = p_{\Gamma_2, \Lambda_2}(\Sigma_2)$ be two linear sets of rank k. If L_1 and L_2 are equivalent and one of them is simple, then there is a collineation mapping Γ_1 to Γ_2 and Σ_1 to Σ_2 .

Theorem 5.4 ([7]). If L is a non-simple linear set of rank k in $\Lambda = \langle L \rangle$, then there are a subspace $\Gamma = \Gamma_1 = \Gamma_2$ disjoint from Λ , and two q-order canonical subgeometries Σ_1, Σ_2 such that $L = p_{\Gamma,\Lambda}(\Sigma_1) = p_{\Gamma,\Lambda}(\Sigma_2)$, and there is no collineation fixing Γ and mapping Σ_1 to Σ_2 .

Now we interpret the classes of linear sets, hence we are going to consider \mathbb{F}_q -linear sets of rank n of $\Lambda = \mathrm{PG}(1, q^n) = \mathrm{PG}(W, \mathbb{F}_{q^n})$, with maximum field of linearity \mathbb{F}_q . Arguing as in the proof of [7, Theorem 7], if L_U is non-simple, then for any pair U, V of n-dimensional \mathbb{F}_q -subspaces of W with $L_U = L_V$ such that $U^f \neq V$ for each $f \in \Gamma L(2, q^n)$ we can find a q-order subgeometry Σ of $\Sigma^* = \mathrm{PG}(n-1,q^n)$ and two (n-3)-spaces Γ_1 and Γ_2 of Σ^* , disjoint from Σ and from Λ , lying on different orbits of $Stab(\Sigma)$. On the other hand, arguing as in [7, Theorem 6], if there exist two (n-3)-subspaces Γ_1 and Γ_2 of Σ^* , disjoint from Σ and from Λ , belonging to different orbits of $Stab(\Sigma)$ and such that $L = p_{\Lambda,\Gamma_1}(\Sigma) = p_{\Lambda,\Gamma_2}(\Sigma)$, then it is possible to construct two n-dimensional \mathbb{F}_q -subspaces U and V of W with $L_U = L_V$ such that $U^f \neq V$ for each $f \in \Gamma L(2, q^n)$. Hence we can state the following.

The Γ L-class of L_U is the number of orbits of $Stab(\Sigma)$ on (n-3)-spaces of Σ^* containing a Γ disjoint from Σ and from Λ such that $p_{\Lambda,\Gamma}(\Sigma)$ is equivalent to L_U .

5.3 Class of linear sets and linear blocking sets of Rédei type

A blocking set \mathcal{B} of $\mathrm{PG}(V, \mathbb{F}_{q^n}) = \mathrm{PG}(2, q^n)$ is a point set meeting every line of the plane. Blocking sets of size $q^n + N \leq 2q^n$ with an N-secant are called blocking sets of *Rédei type*, the N-secants of the blocking set are called *Rédei lines*. Let L_U be an \mathbb{F}_q -linear set of rank n of a line $\ell = \mathrm{PG}(W, \mathbb{F}_{q^n})$, $W \leq V$, and let $\mathbf{w} \in V \setminus W$. Then $\langle U, \mathbf{w} \rangle_{\mathbb{F}_q}$ defines an \mathbb{F}_q -linear blocking set of $\mathrm{PG}(2, q^n)$ with Rédei line ℓ . The following theorem tells us the number of inequivalent blocking sets obtained in this way.

Theorem 5.5. The Γ L-class of an \mathbb{F}_q -linear set L_U of rank n of $\mathrm{PG}(W, \mathbb{F}_{q^n}) = \mathrm{PG}(1, q^n)$, with maximum field of linearity \mathbb{F}_q , is the number of inequivalent \mathbb{F}_q -linear blocking sets of Rédei type of $\mathrm{PG}(V, \mathbb{F}_{q^n}) = \mathrm{PG}(2, q^n)$ containing L_U .

Proof. \mathbb{F}_q -linear blocking sets of $\mathrm{PG}(2, q^n)$ with more than one Rédei line are equivalent to those defined by $\mathrm{Tr}_{q^n/q^m}(x)$ for some divisor m of n, see [22, Theorem 5]. Suppose first that L_U is equivalent to L_T , where T = $\{(x, \mathrm{Tr}_{q^n/q}(x)): x \in \mathbb{F}_{q^n}\}$. According to Theorem 3.7 L_T , and hence also L_U , have $\mathcal{Z}(\Gamma L)$ -class and ΓL -class one and hence there exists a unique point $P \in L_U$ such that $w_{L_U}(P) = n - 1$. Then for each $\mathbf{v} \in V \setminus W$ the \mathbb{F}_{q^-} linear blocking set defined by $\langle U, \mathbf{v} \rangle_{\mathbb{F}_q}$ has more than one Rédei line, each of them incident with P, and hence it is equivalent to the Rédei type blocking set obtained from $\operatorname{Tr}_{q^n/q}(x)$.

Now let $\mathcal{B}_1 = L_{V_1}$ and $\mathcal{B}_2 = L_{V_2}$ be two \mathbb{F}_q -linear blocking sets of Rédei type with $\mathrm{PG}(W, \mathbb{F}_{q^n})$ the unique Rédei line. Denote by U_1 and U_2 the \mathbb{F}_q subspaces $W \cap V_1$ and $W \cap V_2$, respectively, and suppose $L_{U_1} = L_{U_2}$ with \mathbb{F}_q the maximum field of linearity. Then \mathcal{B}_1 and \mathcal{B}_2 have (q+1)-secants and we have $V_1 = U_1 \oplus \langle \mathbf{u}_1 \rangle_{\mathbb{F}_q}$ and $V_2 = U_2 \oplus \langle \mathbf{u}_2 \rangle_{\mathbb{F}_q}$ for some $\mathbf{u}_1, \mathbf{u}_2 \in V \setminus W$.

If $\mathcal{B}_1^{\varphi_f} = \mathcal{B}_2$, then [6, Proposition 2.3] implies $V_1^f = \lambda V_2$ for some $\lambda \in \mathbb{F}_{q^n}^*$. Such $f \in \Gamma L(3, q^n)$ has to fix W and it is easy to see that $U_1^f = \lambda U_2$, i.e. U_1 and U_2 are $\Gamma L(2, q^n)$ -equivalent.

Conversely, if there exists $f \in \Gamma L(W, \mathbb{F}_{q^n})$ such that $U_1^f = U_2$, then $\mathcal{B}_1^{\varphi_g} = \mathcal{B}_2$, where $g \in \Gamma L(V, \mathbb{F}_{q^n})$ is the extension of f mapping $\mathbf{u_1}$ to $\mathbf{u_2}$. \Box

5.4 Class of linear sets and MRD-codes

In [28, Section 4] Sheekey showed that maximum scattered \mathbb{F}_q -linear sets of $\mathrm{PG}(1,q^n)$ yield \mathbb{F}_q -linear maximum rank distance codes (MRD-codes) of dimension 2n and minimum distance n-1, that is, a set \mathcal{M} of $q^{2n} n \times n$ matrices over \mathbb{F}_q forming an \mathbb{F}_q -subspace of $\mathbb{F}_q^{n\times n}$ of dimension 2n such that the non-zero matrices of \mathcal{M} have rank at least n-1. It can be easily seen that these MRD-codes have the so-called middle nucleus isomorphic to \mathbb{F}_{q^n} . For definitions and properties on MRD-codes we refer the reader to [10] by Delsarte and [13] by Gabidulin. The kernel and the nuclei of MRD-codes are studied in [26].

For $n \times n$ matrices there are two different definitions of equivalence for MRD-codes in the literature. The arguments of [28, Section 4] yield the following interpretation of the Γ L-class:

- \mathcal{M} and \mathcal{M}' are equivalent if there are invertible matrices $A, B \in \mathbb{F}_q^{n \times n}$ and a field automorphism σ of \mathbb{F}_q such that $A\mathcal{M}^{\sigma}B = \mathcal{M}'$, see [28]. In this case the Γ L-class of L_U is the number of inequivalent MRD-codes obtained from the linear set L_U .
- \mathcal{M} and \mathcal{M}' are equivalent if there are invertible matrices $A, B \in \mathbb{F}_q^{n \times n}$ and a field automorphism σ of \mathbb{F}_q such that $A\mathcal{M}^{\sigma}B = \mathcal{M}'$, or $A\mathcal{M}^{T\sigma}B = \mathcal{M}'$, see [9]. In this case the number of inequivalent MRD-codes obtained from the linear set L_U is between $\lceil s/2 \rceil$ and s, where s is the Γ L-class of L_U .

We summarize here the known non-equivalent families of MRD-codes arising from maximum scattered linear sets.

- 1. $L_{U_1} := \{ \langle (x, x^q) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}$ ([5]) gives Gabidulin codes,
- 2. $L_{U_2} := \{ \langle (x, x^{q^s}) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}, \text{gcd}(s, n) = 1$ ([5]) gives generalized Gabidulin codes,
- 3. $L_{U_3} := \{ \langle (x, \delta x^q + x^{q^{n-1}}) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}$ ([23]) gives MRD-codes found by Sheekey in [28],
- 4. $L_{U_4} := \{ \langle (x, \delta x^{q^s} + x^{q^{n-s}}) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}, N(\delta) \neq 1, \gcd(s, n) = 1$ gives MRD-codes found by Sheekey in [28] and studied by Lunardon, Trombetti and Zhou in [25].

Remark 5.6. The linear sets L_{U_1} and L_{U_2} coincide, but when $s \notin \{1, n-1\}$, there is no $f \in \Gamma L(2, q^n)$ such that $U_1^f = U_2$. These linear sets are of pseudoregulus type, [21] (see also Example 5.1), and in [7] it was proved that the ΓL -class of these linear sets is $\varphi(n)/2$, hence they are examples of non-simple linear sets for n = 5 and n > 6.

It can be proved that the family L_{U_4} contains linear sets non-equivalent to those from the other families. We will report on this elsewhere.

References

- S. BALL: The number of directions determined by a function over a finite field, J. Combin. Theory Ser. A 104 (2003), 341–350.
- [2] S. BALL, A. BLOKHUIS, M. LAVRAUW: Linear (q+1)-fold blocking sets in $PG(2, q^4)$, Finite Fields Appl., **6** (2000), 294–301.
- [3] S. BALL, A. BLOKHUIS, A.E. BROUWER, L. STORME AND T. SZŐNYI: On the number of slopes of the graph of a function definied over a finite field, J. Combin. Theory Ser. A 86 (1999), 187–196.
- [4] D. BARTOLI, M. GIULIETTI, G. MARINO AND O. POLVERINO: Maximum scattered linear sets and complete caps in Galois spaces, to appear in Combinatorica. DOI: 10.1007/s00493-016-3531-6.
- [5] A. BLOKHUIS AND M. LAVRAUW: Scattered spaces with respect to a spread in PG(n,q), Geom. Dedicata **81** (2000), 231–243.

- [6] G. BONOLI AND O. POLVERINO: \mathbb{F}_q -linear blocking sets in $\mathrm{PG}(2, q^4)$, Innov. Incidence Geom. **2** (2005), 35–56.
- B. CSAJBÓK AND C. ZANELLA: On the equivalence of linear sets, Des. Codes Cryptogr. 81 (2016), 269–281.
- [8] M. DE BOECK AND G. VAN DE VOORDE: A linear set view on KM-arcs, J. Algebr. Comb. 44, n.1 (2016), 131–164.
- [9] J. DE LA CRUZ, M. KIERMAIER, A. WASSERMAN AND W. WILLIEMS: Algebraic structures of MRD Codes, Adv. Math. Commun. 10 (2016), 499–510.
- [10] P. DELSARTE: Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A 25 (1978), 226–241.
- [11] G. DONATI AND N. DURANTE: Scattered linear sets generated by collineations between pencils of lines, J. Algebr. Comb. 40, n. 4 (2014), 1121–1131.
- [12] SZ. FANCSALI AND P. SZIKLAI: Description of the clubs, Annales Univ. Sci. Sect. Mat. 51 (2008), 141–146.
- [13] E. GABIDULIN: Theory of codes with maximum rank distance, Problems of information transmission, **21**(3) (1985), 3–16.
- [14] N. GILL: Polar spaces and embeddings of classical groups, N. Z. J. Math., 36 (2007), 175–184.
- [15] J.W.P. HIRSCHFELD AND J.A. THAS: General Galois Geometries. Ofxord University Press, 1991.
- [16] M. LAVRAUW: Scattered spaces in Galois Geometry, Contemporary Developments in Finite Fields and Applications, 2016, 195–216.
- [17] M. LAVRAUW, J. SHEEKEY AND C. ZANELLA: On embeddings of minimum dimension of $PG(n,q) \times PG(n,q)$, Des. Codes Cryptogr. **74**. n.2 (2015), 427–440.
- [18] M. LAVRAUW AND G. VAN DE VOORDE: On linear sets on a projective line, Des. Codes Cryptogr. 56 (2010), 89–104.
- [19] M. LAVRAUW AND G. VAN DE VOORDE: Field reduction and linear sets in finite geometry, in: Gohar Kyureghyan, Gary L. Mullen,

Alexander Pott (Eds.), Topics in Finite Fields, Contemp. Math. AMS (2015).

- [20] G. LUNARDON: Normal spreads, Geom. Dedicata 75 (1999), 245– 261.
- [21] G. LUNARDON, G. MARINO, O. POLVERINO AND R. TROMBETTI: Maximum scattered linear sets of pseudoregulus type and the Segre Variety $S_{n,n}$, J. Algebr. Comb. **39** (2014), 807–831.
- [22] G. LUNARDON AND O. POLVERINO: Blocking Sets of Size $q^t + q^{t-1} + 1$, J. Combin. Theory Ser. A **90** (2000), 148–158.
- [23] G. LUNARDON AND O. POLVERINO: Blocking Sets and Derivable Partial Spreads, J. Algebraic Combin. 14 (2001), 49–56.
- [24] G. LUNARDON AND O. POLVERINO: Translation ovoids of orthogonal polar spaces, Forum Math. 16 (2004), 663–669.
- [25] G. LUNARDON, R. TROMBETTI AND Y. ZHOU: Generalized Twisted Gabidulin Codes, http://arxiv.org/abs/1507.07855.
- [26] G. LUNARDON, R. TROMBETTI AND Y. ZHOU: On kernels and nuclei of rank metric codes, J. Algebraic Combin. 46 (2017), 313– 340.
- [27] O. POLVERINO: Linear sets in finite projective spaces, Discrete Math. **310** (2010), 3096–3107.
- [28] J. SHEEKEY: A new family of linear maximum rank distance codes, Adv. Math. Commun. 10(3) (2016), 475–488.
- [29] B. WU AND Z. LIU:, Linearized polynomials over finite fields revisited, Finite Fields Appl. 22 (2013), 79–100.

Bence Csajbók

MTA-ELTE Geometric and Algebraic Combinatorics Research Group ELTE Eötvös Loránd University, Budapest, Hungary Department of Geometry 1117 Budapest, Pázmány P. stny. 1/C, Hungary csajbok.bence@gmail.com and Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli", Viale Lincoln 5, I-81100 Caserta, Italy

Giuseppe Marino, Olga Polverino Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli", Viale Lincoln 5, I-81100 Caserta, Italy giuseppe.marino@unicampania.it, olga.polverino@unicampania.it