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Abstract

The equivalence problem of Fq-linear sets of rank n of PG(1, qn) is
investigated, also in terms of the associated variety, projecting configu-
rations, Fq-linear blocking sets of Rédei type and MRD-codes. We call
an Fq-linear set LU of rank n in PG(W,Fqn) = PG(1, qn) simple if for
any n-dimensional Fq-subspace V of W , LV is PΓL(2, qn)-equivalent
to LU only when U and V lie on the same orbit of ΓL(2, qn). We
prove that U = {(x,Trqn/q(x)) : x ∈ Fqn} defines a simple Fq-linear
set for each n. We provide examples of non-simple linear sets not of
pseudoregulus type for n > 4 and we prove that all Fq-linear sets of
rank 4 are simple in PG(1, q4).

1 Introduction

Linear sets are natural generalizations of subgeometries. Let Λ = PG(W,Fqn)
= PG(r−1, qn), where W is a vector space of dimension r over Fqn . A point
set L of Λ is said to be an Fq-linear set of Λ of rank k if it is defined by the
non-zero vectors of a k-dimensional Fq-vector subspace U of W , i.e.

L = LU = {〈u〉Fqn : u ∈ U \ {0}}.

The maximum field of linearity of an Fq-linear set LU is Fqt if t | n is the
largest integer such that LU is an Fqt-linear set. In the recent years, starting
from the paper [20] by Lunardon, linear sets have been used to construct or
characterize various objects in finite geometry, such as blocking sets and mul-
tiple blocking sets in finite projective spaces, two-intersection sets in finite
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projective spaces, translation spreads of the Cayley Generalized Hexagon,
translation ovoids of polar spaces, semifield flocks and finite semifields. For
a survey on linear sets we refer the reader to [27], see also [16].

One of the most natural questions about linear sets is their equivalence.
Two linear sets LU and LV of PG(r−1, qn) are said to be PΓL-equivalent (or
simply equivalent) if there is an element ϕ in PΓL(r, qn) such that LϕU = LV .
In the applications it is crucial to have methods to decide whether two linear
sets are equivalent or not. For f ∈ ΓL(r, qn) we have LUf = L

ϕf
U , where ϕf

denotes the collineation of PG(W,Fqn) induced by f . It follows that if U
and V are Fq-subspaces of W belonging to the same orbit of ΓL(r, qn), then
LU and LV are equivalent. The above condition is only sufficient but not
necessary to obtain equivalent linear sets. This follows also from the fact
that Fq-subspaces of W with different ranks can define the same linear set,
for example Fq-linear sets of PG(r − 1, qn) of rank k ≥ rn − n + 1 are all
the same: they coincide with PG(r − 1, qn). As it was showed recently in
[7], if r = 2, then there exist Fq-subspaces of W of the same rank n but on
different orbits of ΓL(2, qn) defining the same linear set of PG(1, qn).

This observation motivates the following definition. An Fq-linear set LU
of PG(W,Fqn) = PG(r − 1, qn) with maximum field of linearity Fq is called
simple if for each Fq-subspace V of W , LU = LV only if U and V are in
the same orbit of ΓL(r, qn) or, equivalently, if for each Fq-subspace V of W ,
LV is PΓL(r, qn)-equivalent to LU only if U and V are in the same orbit of
ΓL(r, qn).

Natural examples of simple linear sets are the subgeometries (cf. [19,
Theorem 2.6] and [15, Section 25.5]). In [6] it was proved that Fq-linear
sets of rank n + 1 of PG(2, qn) admitting (q + 1)-secants are simple. This
allowed the authors to translate the question of equivalence to the study
of the orbits of the stabilizer of a subgeometry on subspaces and hence to
obtain the complete classification of Fq-linear blocking sets in PG(2, q4).
Until now, the only known examples of non-simple linear sets are those of
pseudoregulus type of PG(1, qn) for n ≥ 5 and n 6= 6, see [7].

In this paper we focus on linear sets of rank n of PG(1, qn). We first
introduce a method which can be used to find non-simple linear sets of rank
n of PG(1, qn). Let LU be a linear set of rank n of PG(W,Fqn) = PG(1, qn)
and let β be a non-degenerate alternating form of W . Denote by ⊥ the
orthogonal complement map induced by Trqn/q ◦β on W (considered as an

Fq-vector space). Then U and U⊥ defines the same linear set (cf. Result
2.1) and if U and U⊥ lie on different orbits of ΓL(W,Fqn), then LU is non-
simple. Using this approach we show that there are non-simple linear sets
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of rank n of PG(1, qn) for n ≥ 5, not of pseudoregulus type (cf. Proposition
3.10). Contrary to what we expected initially, simple linear sets are harder
to find than non-simple linear sets. We prove that the linear set of PG(1, qn)
defined by the trace function is simple (cf. Theorem 3.7). We also show that
linear sets of rank n of PG(1, qn) are simple for n ≤ 4 (cf. Theorem 4.5).

Moreover, in PG(1, qn) we extend the definition of simple linear sets and
introduce the Z(ΓL)-class and the ΓL-class for linear sets of rank n. In
Section 5 we point out the meaning of these classes in terms of equivalence
of the associated blocking sets, MRD-codes and projecting configurations.

2 Definitions and preliminary results

2.1 Dual linear sets with respect to a symplectic polarity of
a line

For α ∈ Fqn and a divisor h of n we will denote by Trqn/qh(α) the trace

of α over the subfield Fqh , that is, Trqn/qh(α) = α + αq
h

+ . . . + αq
n−h

.
By Nqn/qh(α) we will denote the norm of α over the subfield Fqh , that is,

Nqn/qh(α) = α1+qh+...+qn−h . Since in the paper we will use only norms over
Fq, the function Nqn/q will be denoted simply by N.

Starting from a linear set LU of PG(r, qn) and using a polarity τ of the
space it is always possible to construct another linear set, which is called dual
linear set of LU with respect to the polarity τ (see [27]). In particular, let LU
be an Fq–linear set of rank n of a line PG(W,Fqn) and let β : W×W −→ Fqn
be a non-degenerate reflexive Fqn–sesquilinear form on the 2-dimensional
vector space W over Fqn determining a polarity τ . The map Trqn/q ◦β is a
non-degenerate reflexive Fq–sesquilinear form on W , when W is regarded as
a 2n-dimensional vector space over Fq (see [14]).

Let ⊥β and ⊥′β be the orthogonal complement maps defined by β and
Trqn/q ◦β on the lattices of the Fqn-subspaces and Fq-subspaces of W , re-
spectively. The dual linear set of LU with respect to the polarity τ is the
Fq–linear set of rank n of PG(W,Fqn) defined by the orthogonal complement

U⊥
′
β and it will be denoted by L

τ

U . Also, up to projective equivalence, such
a linear set does not depend on τ [27, Proposition 2.5].

For a point P = 〈z〉Fqn ∈ PG(W,Fqn) the weight of P with respect to
the linear set LU is wLU (P ) := dimq(〈z〉Fqn ∩ U).

Result 2.1. From [27, Property 2.6] (with r = 2, s = 0 and t = n) it can be
easily seen that if LU is an Fq–linear set of rank n of a line PG(1, qn) and L

τ

U

3



is its dual linear set with respect to a polarity τ , then wLτU (P τ ) = wLU (P )
for each point P ∈ PG(1, qn). If τ is a symplectic polarity of a line PG(1, qn),
then P τ = P and hence LU = LτU = L

U
⊥′
β
.

2.2 Fq-linear sets of PG(1, qn) of class r

In this paper we investigate the equivalence of Fq-linear sets of rank n of the
projective line PG(W,Fqn) = PG(1, qn). The first step is to determine the
Fq-vector subspaces of W defining the same linear set. This motivates the
definition of the Z(ΓL)-class and ΓL-class of a linear set LU of PG(1, qn) (cf.
Definitions 2.4 and 2.5). The next proposition relies on the characterization
of functions over Fq determining few directions. It states that the Fq-rank
of LU of PG(1, qn) is uniquely defined when the maximum field of linearity
of LU is Fq. This will allow us to state our definitions and results without
further conditions on the rank of the corresponding Fq-subspaces.

For an Fq to Fq function f , the set of directions determined by f is

Df :=

{
f(x)− f(y)

x− y
: x, y ∈ Fqn , x 6= y

}
.

Theorem 2.2 (Ball et al. [3] and Ball [1]). Let f be a function from Fq
to Fq, q = ph, and let N be the number of directions determined by f . Let
s = pe be maximal such that any line with a direction determined by f that
is incident with a point of the graph of f is incident with a multiple of s
points of the graph of f . Then one of the following holds.

1. s = 1 and (q + 3)/2 ≤ N ≤ q + 1,

2. e|h, q/s+ 1 ≤ N ≤ (q − 1)/(s− 1),

3. s = q and N = 1.

Moreover if s > 2, then the graph of f is Fs-linear.

Proposition 2.3. Let LU be an Fq-linear set of PG(W,Fqn) = PG(1, qn) of
rank n. The maximum field of linearity of LU is Fqd, where

d = min{wLU (P ) : P ∈ LU}.

If the maximum field of linearity of LU is Fq, then the rank of LU as an Fq-
linear set is uniquely defined, i.e. for each Fq-subspace V of W if LU = LV ,
then dimq(V ) = n.
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Proof. We first note that since LU is an Fq-linear set of PG(1, qn) of rank
n, then |LU | ≤ (qn − 1)/(q − 1) and hence LU 6= PG(1, qn).
Since the action of ΓL(2, qn) preserves the maximum field of linearity and

the weight of points, we can assume, up to the action of ΓL(2, qn), that
U = {(x, f(x)) : x ∈ Fqn} for some q-polynomial f over Fqn . Since f is
linear, |LU | is the size of the set of directions determined by f . Also, a line `
with slope m meets the graph of f in qt points, where t = wLU (〈(1,m)〉Fqn ),

i.e.
∣∣{z ∈ F∗qn : f(z)/z = m

}∣∣ = qt − 1.

Let d = min{wLU (P ) : P ∈ LU}. If q = pe, p prime, then pde is the
largest p-power such that every line with a determined direction that meets
the graph of f meets the graph of f in a multiple of s = pde points. Then
Theorem 2.2 yields that either s = qn and f(x) = λx for some λ ∈ Fqn , or
Fqd is a proper subfield of Fqn and

qn−d + 1 ≤ |LU | ≤
qn − 1

qd − 1
. (1)

Moreover, if qd > 2, then f is Fqd-linear. In our case we already know that

f is Fq-linear, so even in the case qd = 2 it follows that U is an Fqd-subspace
of W and hence LU is an Fqd-linear set.

We show that Fqd is the maximum field of linearity of LU . Suppose,
contrary to our claim, that LU is Fqr -linear of rank z for some r > d. Then
LU is also Fq-linear of rank rz. It follows that rz ≤ n since otherwise
LU = PG(1, qn). Then for the size of LU we get |LU | ≤ (qrz − 1)/(qr − 1) ≤
(qn− 1)/(qr − 1), and this number is less than the lower bound in (1). This
shows r = d.

Now suppose that Fq is the maximum field of linearity of LU and let
V be an r-dimensional Fq-subspace of W such that LU = LV . We cannot
have r > n since LU 6= PG(1, qn). Suppose, contrary to our claim, that
r ≤ n − 1. Then |LU | ≤ (qn−1 − 1)/(q − 1) contradicting (1) which gives
qn−1 + 1 ≤ |LU |. This concludes the proof.

Now we can give the following definitions of classes of an Fq-linear set of
a line.

Definition 2.4. Let LU be an Fq-linear set of PG(W,Fqn) = PG(1, qn) of
rank n with maximum field of linearity Fq. We say that LU is of Z(ΓL)-class
r if r is the largest integer such that there exist Fq-subspaces U1, U2, . . . , Ur
of W with LUi = LU for i ∈ {1, 2, . . . , r} and Ui 6= λUj for each λ ∈ F∗qn
and for each i 6= j, i, j ∈ {1, 2, . . . , r}.

5



Definition 2.5. Let LU be an Fq-linear set of PG(W,Fqn) = PG(1, qn) of
rank n with maximum field of linearity Fq. We say that LU is of ΓL-class
s if s is the largest integer such that there exist Fq-subspaces U1, U2, . . . , Us
of W with LUi = LU for i ∈ {1, 2, . . . , s} and there is no f ∈ ΓL(2, qn) such

that Ui = Ufj for each i 6= j, i, j ∈ {1, 2, . . . , s}.

Simple linear sets (cf. Section 1) of PG(1, qn) are exactly those of ΓL-
class one. The next proposition is easy to show.

Proposition 2.6. Let LU be an Fq-linear set of PG(1, qn) of rank n with
maximum field of linearity Fq and let ϕ be a collineation of PG(1, qn). Then
LU and LϕU have the same Z(ΓL)-class and ΓL-class.

Remark 2.7. Let LU be an Fq-linear set of rank n of PG(1, qn) with ΓL-
class s and let U1, U2, . . . , Us be Fq-subspaces belonging to different orbits of
ΓL(2, qn) and defining LU . The PΓL(2, qn)-orbit of LU is the set

s⋃
i=1

{L
Ufi

: f ∈ ΓL(2, qn)}.

3 Examples of simple and non-simple linear sets
of PG(1, qn)

Let LU be an Fq–linear set of rank n of PG(1, qn). We can always assume
(up to a projectivity) that LU does not contain the point 〈(0, 1)〉Fqn . Then

U = Uf = {(x, f(x)) : x ∈ Fqn}, for some q-polynomial f(x) =
∑n−1

i=0 aix
qi

over Fqn . For the sake of simplicity we will write Lf instead of LUf to denote
the linear set defined by Uf .

According to Result 2.1 and using the same notations as in Section 2.1 if
LU is an Fq-linear set of rank n of PG(1, qn) and τ is a symplectic polarity,

then U⊥
′
β defines the same linear set as U . Since in general U⊥

′
β and U are

not equivalent under the action of the group ΓL(2, qn), simple linear sets of
a line are harder to find than non-simple linear sets.

Consider the non-degenerate symmetric bilinear form of Fqn over Fq
defined by the following rule

< x, y >:= Trqn/q(xy). (2)

Then the adjoint map f̂ of an Fq-linear map f(x) =
∑n−1

i=0 aix
qi of Fqn (with
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respect to the bilinear form 〈, 〉) is

f̂(x) :=
n−1∑
i=0

aq
n−i

i xq
n−i
. (3)

Let η : F2
qn × F2

qn → Fqn be the non-degenerate alternating bilinear form
of F2

qn defined by
η((x, y), (u, v)) = xv − yu. (4)

Then η induces a symplectic polarity on the line PG(1, qn) and

η′((x, y), (u, v)) = Trqn/q(η((x, y), (u, v))) (5)

is a non-degenerate alternating bilinear form on F2
qn , when F2

qn is regarded
as a 2n-dimensional vector space over Fq. We will always denote in the
paper by ⊥ and ⊥′ the orthogonal complement maps defined by η and η′ on
the lattices of the Fqn-subspaces and the Fq-subspaces of F2

qn , respectively.
Direct calculation shows that

U⊥
′

f = Uf̂ . (6)

Result 2.1 and (6) allow us to slightly reformulate [4, Lemma 2.6].

Lemma 3.1 ([4]). Let Lf = {〈(x, f(x))〉Fqn : x ∈ F∗qn} be an Fq–linear set

of PG(1, qn) of rank n, with f(x) a q-polynomial over Fqn, and let f̂ be
the adjoint of f with respect to the bilinear form (2). Then for each point
P ∈ PG(1, qn) we have wLf (P ) = wLf̂ (P ). In particular, Lf = Lf̂ and the

maps defined by f(x)/x and f̂(x)/x have the same image.

Lemma 3.2. Let ϕ be an Fq-linear map of Fqn and for λ ∈ F∗qn let ϕλ denote
the Fq-linear map: x 7→ ϕ(λx)/λ. Then for each point P ∈ PG(1, qn) we
have wLϕ(P ) = wLϕλ (P ). In particular, Lϕ = Lϕλ.

Proof. The statements follow from λUϕλ = Uϕ.

Remark 3.3. The results of Lemmas 3.1 and 3.2 can also be obtained via
Dickson matrices. For a q-polynomial f(x) =

∑n−1
i=0 aix

qi over Fqn let Df

denote the associated Dickson matrix (or q-circulant matrix)

Df :=


a0 a1 . . . an−1

aqn−1 aq0 . . . aqn−2
...

...
...

...

aq
n−1

1 aq
n−1

2 . . . aq
n−1

0

 .
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When f(x) = λx for some λ ∈ Fqn we will simply write Dλ. The rank of
the matrix Df equals the rank of the Fq-linear map f , see for example [29].
We will denote the point 〈(1, λ)〉qn by Pλ.

Transposition preserves the rank of matrices and DT
f = Df̂ , DT

λ = Dλ.
It follows that

dimq ker(Df −Dλ) = dimq ker(Df −Dλ)T = dimq ker(Df̂ −Dλ),

and hence for each λ ∈ Fqn we have wLf (Pλ) = wLf̂ (Pλ).

Let fµ(x) = f(xµ)/µ. It is easy to see that D1/µDfDµ = Dfµ and

dimq ker(Df −Dλ) = dimq kerD1/µ(Df −Dλ)Dµ = dimq ker(Dfµ −Dλ),

and hence wLf (Pλ) = wLfµ (Pλ) for each λ ∈ Fqn.

From the previous arguments it follows that linear sets Lf with f(x) =

f̂(x) are good candidates for being simple. In the next section we show that
the trace function, which has the previous property, defines a simple linear
set. We are going to use the following lemmas which will also be useful later.

Lemma 3.4. Let f and g be two linearized polynomials. If Lf = Lg, then
for each positive integer d the following holds

∑
x∈F∗qn

(
f(x)

x

)d
=
∑
x∈F∗qn

(
g(x)

x

)d
.

Proof. If Lf = Lg =: L, then {f(x)/x : x ∈ F∗qn} = {g(x)/x : x ∈ F∗qn} =: H.
For each h ∈ H we have |{x : f(x)/x = h}| = qi− 1, where i is the weight of
the point 〈(1, h)〉qn ∈ L w.r.t. Uf , and similarly |{x : g(x)/x = h}| = qj − 1,
where j is the weight of the point 〈(1, h)〉qn ∈ L w.r.t. Ug. Because of the
characteristic of Fqn , we obtain:

∑
x∈F∗qn

(
f(x)

x

)d
= −

∑
h∈H

hd =
∑
x∈F ∗qn

(
g(x)

x

)d
.

For the sake of completeness we give a proof of the following well-known
result.

Lemma 3.5. For any prime power q and integer d we have
∑

x∈F∗q x
d = −1

if q − 1 | d and
∑

x∈F∗q x
d = 0 otherwise.
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Proof. Let g denote a primitive element of Fq and put s =
∑n−2

j=0 g
id. Then

sgd = s and hence either s = 0, or gd = 1. In the latter case q − 1 | d since
g was a primitive element and hence xd = 1 for each x ∈ F∗q .

Lemma 3.6. Let f(x) =
∑n−1

i=0 aix
qi and g(x) =

∑n−1
i=0 bix

qi be two q-
polynomials over Fqn, such that Lf = Lg. Then

a0 = b0, (7)

and for k = 1, 2, . . . , n− 1 it holds that

aka
qk

n−k = bkb
qk

n−k, (8)

for k = 2, 3, . . . , n− 1 it holds that

a1a
q
k−1a

qk

n−k + aka
q
n−1a

qk

n−k+1 = b1b
q
k−1b

qk

n−k + bkb
q
n−1b

qk

n−k+1. (9)

Proof. We are going to use Lemma 3.5 together with Lemma 3.4 with dif-
ferent choices of d.

With d = 1 we have

∑
x∈F∗qn

n−1∑
i=0

aix
qi−1 =

∑
x∈F∗qn

n−1∑
i=0

bix
qi−1,

and hence
n−1∑
i=0

ai
∑
x∈F∗qn

xq
i−1 =

n−1∑
i=0

bi
∑
x∈F∗qn

xq
i−1.

Since qn−1 cannot divide qi−1 with i = 1, 2, . . . , n−1, a0 = b0 =: c follows.
Let ϕ denote the Fqn-linear map which fixes (0, 1) and maps (1, 0) to (1,−c).
Then Uϕf = Uf ′ and Uϕg = Ug′ with f ′ =

∑n−1
i=1 aix

qi , g′ =
∑n−1

i=1 bix
qi and

of course with Lf ′ = Lg′ . It follows that we may assume c = 0.
First we show that (8) holds. With d = qk + 1, 1 ≤ k ≤ n− 1 we obtain∑

1≤i,j≤n−1

aia
qk

j

∑
x∈F∗qn

xq
i−1+qj+k−qk =

∑
1≤i,j≤n−1

bib
qk

j

∑
x∈F∗qn

xq
i−1+qj+k−qk .

∑
x∈F∗qn

xq
i−1+qj+k−qk = −1 if and only if qi + qj+k ≡ qk + 1 (mod qn − 1),

and zero otherwise. Suppose that the former case holds.
First consider j + k ≤ n− 1. Then qi + qj+k ≤ qn−1 + qn−1 < qk + 1 +

2(qn − 1) hence one of the following holds.
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• If qi + qj+k = qk + 1, then the right hand side is not divisible by q, a
contradiction.

• If qi+qj+k = qk+1+(qn−1) = qn+qk, then j+k = n, a contradiction.

Now consider the case j + k ≥ n. Then qi + qj+k ≡ qi + qj+k−n ≡ qk + 1
(mod qn − 1). Since j + k ≤ 2(n− 1), we have qi + qj+k−n ≤ qn−1 + qn−2 <
qk + 1 + 2(qn − 1), hence one of the following holds.

• If qi + qj+k−n = qk + 1, then j + k = n and i = k.

• If qi + qj+k−n = qk + 1 + (qn − 1) = qn + qk, then there is no solution
since j + k − n /∈ {k, n}.

Hence (8) follows. Now we show that (9) also holds. Note that in this
case n ≥ 3, otherwise there is no k with 2 ≤ k ≤ n− 1. With d = qk + q+ 1,
we obtain ∑

1≤i,j,m≤n−1

aia
q
ja
qk

m

∑
x∈F∗qn

xq
i−1+qj+1−q+qm+k−qk =

∑
1≤i,j,m≤n−1

bib
q
jb
qk

m

∑
x∈F∗qn

xq
i−1+qj+1−q+qm+k−qk .

∑
x∈F∗qn

xq
i−1+qj+1−q+qm+k−qk = −1 if and only if qi+qj+1+qm+k ≡ qk+q+1

(mod qn − 1), and zero otherwise. Suppose that the former case holds.
First consider m+k ≤ n−1. Then qi+qj+1 +qm+k ≤ qn−1 +qn+qn−1 <

qk + q + 1 + 2(qn − 1) hence one of the following holds.

• If qi+qj+1 +qm+k = qk+q+1, then the right hand side is not divisible
by q, a contradiction.

• If qi+qj+1 +qm+k = qk+q+1+(qn−1) = qn+qk+q, then m+k = n,
j + 1 = k and i = 1, a contradiction.

Now consider the case m + k ≥ n. Then qi + qj+1 + qm+k ≡ qi +
qj+1 + qm+k−n ≡ qk + q + 1 (mod qn − 1). We have qi + qj+1 + qm+k−n ≤
qn−1 + qn + qn−2 < qk + q + 1 + 2(qn − 1) hence one of the following holds.

• If qi+qj+1 +qm+k−n = qk+q+1, then j+1 = k, i = 1 and m+k = n.

• If qi + qj+1 + qm+k−n = qk + q + 1 + (qn − 1) = qn + qk + q, then
j + 1 = n, i = k and m+ k = n+ 1.

This concludes the proof.
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3.1 Linear sets defined by the trace function

We show that there exists at least one simple Fq-linear set in PG(1, qn) for
each q and n. Let V = {(x,Trqn/q(x)) : x ∈ Fqn}. We show that LU = LV
occurs for an Fq-subspace U of W if and only if V = λU for some λ ∈ F∗qn ,
i.e. LV is of Z(ΓL)-class one and hence simple.

Theorem 3.7. Let V = {(x,Trqn/q(x)) : x ∈ Fqn}, then the Fq-linear set
LV of PG(1, qn) is of Z(ΓL)-class one.

Proof. Suppose LUf = LV with Uf = {(x, f(x)) : x ∈ Fqn} and f(x) =∑n−1
i=0 aix

qi . We are going to use Lemma 3.6 with g(x) = Trqn/q(x). The co-
efficients b0, b1, . . . , bn−1 of g(x) are 1, hence a0 = 1, and for k = 1, 2, . . . , n−
1

aka
qk

n−k = 1, (10)

for k = 2, 3, . . . , n− 1

a1a
q
k−1a

qk

n−k + aka
q
n−1a

qk

n−k+1 = 2. (11)

Note that (10) implies ai 6= 0 for i = 1, 2, . . . , n− 1. First we prove

ai = a1+q+...+qi−1

1 (12)

by induction on i for each 0 < i < n. The assertion holds for i = 1. Suppose
that it holds for some integer i − 1 with 1 < i < n. We prove that it also
holds for i. Then (11) with k = i gives

a1a
q
i−1a

qi

n−i + aia
q
n−1a

qi

n−i+1 = 2. (13)

Also, (10) with k = i, k = i− 1 and k = 1, respectively, gives

aq
i

n−i = 1/ai,

aq
i

n−i+1 = 1/aqi−1,

aqn−1 = 1/a1.

Then (13) gives
a1a

q
i−1/ai + ai/

(
a1a

q
i−1

)
= 2. (14)

It follows that a1a
q
i−1/ai = 1 and hence the induction hypothesis on ai−1

yields ai = a1+q+...+qi−1

1 .
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Finally we show N(a1) = 1. First consider n even. Then (10) with

k = n/2 gives aq
n/2+1
n/2 = 1. Applying (12) yields N(a1) = 1. If n is odd,

then (10) with k = (n − 1)/2 gives a(n−1)/2a
q(n−1)/2

(n+1)/2 = 1. Applying (12)

yields N(a1) = 1. It follows that a1 = λq−1 for some λ ∈ F∗qn and hence

f(x) =
∑n−1

i=0 λ
qi−1xq

i
. Then λUf = {(x,Trqn/q(x)) : x ∈ F∗qn}.

Remark 3.8. We point out that in the above theorem we do not have any
assumption on the weight of points of LU . In the special case when LU = LV
and LU has a point of weight n−1, then the GL(2, qn)-equivalence of U and
V can be deduced also from [8, Theorem 2.3].

3.2 Non-simple linear sets

An Fq-linear set of pseudoregulus type of PG(1, qn) is any linear set equiv-
alent to {〈(x, xq)〉Fqn : x ∈ F∗qn}. In [7] it was proved that the ΓL-class of
such linear sets is ϕ(n)/2, hence they are non-simple for n = 5 and n > 6.
So far, these are the only known non-simple linear sets of PG(1, qn). Here
we show that Fq-linear sets Lf of PG(1, qn) introduced by Lunardon and
Polverino, which are not of pseudoregulus type ([23, Theorems 2 and 3]),
are non-simple as well. Let us start by proving the following preliminary
result.

Proposition 3.9. Let f(x) =
∑n−1

i=0 aix
qi. There is an Fqn-semilinear map

between Uf and Uf̂ if and only if the following system of n equations has a

solution A,B,C,D ∈ Fqn, AD −BC 6= 0, σ = pk:

C +Daσ0 − a0A =
n−1∑
i=0

(Baia
σ
i )q

n−i
,

. . .

Daσm − (an−mA)q
m

=

n−1∑
i=0

(Baia
σ
i+m)q

n−i
,with m = 1, . . . , n− 2,

. . .

Daσn−1 − (a1A)q
n−1

=

n−1∑
i=0

(Baia
σ
i+n−1)q

n−i
,

where the indices are taken modulo n.

12



Proof. Because of cardinality reasons the condition AD −BC 6= 0 is neces-
sary. Then{(

x

f̂(x)

)
: x ∈ Fqn

}
=

{(
A B
C D

)(
xσ

f(x)σ

)
: x ∈ Fqn

}
holds if and only if

Cxσ +D

n−1∑
j=0

aσj x
σqj =

n−1∑
i=0

aq
i

n−i

Axσ +B
n−1∑
j=0

aσj x
σqj

qi

for each x ∈ Fqn . After reducing modulo xq
n − x, this is a polynomial

equation of degree at most qn−1 in the variable xσ. It follows that it holds for
each x ∈ Fqn if and only if it is the zero polynomial. Comparing coefficients
on both sides yields the assertion.

We are able to prove the following.

Proposition 3.10. Consider a polynomial of the form f(x) = δxq + xq
n−1

,
where q > 4 is a power of the prime p. If n > 4, then for each generator δ
of the multiplicative group of Fqn the linear set Lf is not simple.

Proof. Lemma 3.1 yields Lf = Lf̂ thus it is enough to show the existence
of δ such that there is no Fqn-semilinear map between Uf and Uf̂ . In the
equations of Proposition 3.9 we have a1 = δ, an−1 = 1 and a0 = a2 =
. . . = an−2 = 0. If n > 4 then the first two and the last two equations of
Proposition 3.9 give

C = (Bδσ+1)q
n−1

+Bq,

Dδσ −Aq = 0,

0 = (Bδ)q
n−1

,

D − (δA)q
n−1

= 0,

where σ = pk for some integer k. If there is a solution, then B = C = 0 and
(δA)q

n−1
δσ = Aq. Taking q-th powers on both sides yield

δσq+1 = Aq
2−1 (15)

and hence

δ
(σq+1)(qn−1)

q−1 = 1. (16)
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For each σ let Gσ be the set of elements δ of Fqn satisfying (16). For each σ,
Gσ is a subgroup of the multiplicative group M of Fqn . We show that these
are proper subgroups of M . We have Gpk = M if and only if qn − 1 divides
(pkq+1)(qn−1)

q−1 , i.e. when q − 1 divides pkq + 1. Since gcd(pw + 1, pv − 1) is

always 1,2, or pgcd(w,v) + 1, it follows that for q > 4 we cannot have q− 1 as
a divisor of pkq + 1.

It follows that for any generator δ of M we have δ /∈ ∪jGpj and hence

δσq+1 6= Aq
2−1 for each σ and for each A.

Remark 3.11. If q = 4, then (15) with k = 2(n − 1) + 1 asks for the
solution of δ3 = A15. When n is odd, then {x3 : x ∈ F4n} = {x15 : x ∈ F4n}
and hence for each δ there exists A such that δ3 = A15.

If q = 3, then (15) with k = n − 1 asks for the solution of δ2 = A8.
When n is odd, then {x2 : x ∈ F3n} = {x8 : x ∈ F3n} and hence for each δ
there exists A such that δ2 = A8.

If q = 2, then (15) with k = 0 asks for the solution of δ3 = A3. This
equation always has a solution.

4 Linear sets of rank 4 of PG(1, q4)

Fq-linear sets of rank two of PG(1, q2) are the Baer sublines, which are
equivalent. As we have mentioned in the introduction, subgeometries are
simple linear sets, in fact they have Z(ΓL)-class one (cf. [19, Theorem 2.6]
and [15, Section 25.5]). There are two non-equivalent Fq-linear sets of rank
3 of PG(1, q3), the linear sets of size q2 + q + 1 and those of size q2 + 1.
Linear sets in both families are equivalent, since the stabilizer of a q-order
subgeometry Σ of Σ∗ = PG(2, q3) is transitive on the set of those points of
Σ∗ \Σ which are incident with a line of Σ and on the set of points of Σ∗ not
incident with any line of Σ (cf. Section 5.2 and [18]). In the first case we
have the linear sets of pseudoregulus type with ΓL-class 1 and Z(ΓL)-class
2 (cf. Remark 5.6 and Example 5.1). In the second case we have the linear
sets defined by Trq3/q with ΓL-class and Z(ΓL)-class 1 (cf. Theorem 3.7, see
also [12, Corollary 6]).

From [6, Proposition 2.3] it follows that Fq-linear sets of rank 5 in
PG(W, q4) = PG(2, q4) are simple. The orbits of 5-dimensional Fq-subspaces
of W under ΓL(3, q4) are also determined (cf. [6, pg. 54]). The results
related to Rédei type blocking sets allow to determine all the orbits of 4-
dimensional Fq-subspaces of a two-dimensional Fq4-space under the group
ΓL(2, q4). The aim of this section is to prove that Fq-linear sets of rank 4 in
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PG(1, q4), with maximum field of linearity Fq, are simple (cf. Theorem 4.5),
since this does not follow from the above mentioned simplicity of Fq-linear
blocking sets. As a corollary, a list of orbits under PΓL(2, q4) of Fq-linear
sets of rank 4 in PG(1, q4) can be deduced from [6, pg. 54].

4.1 Subspaces defining the same linear set

Lemma 4.1. Let f(x) =
∑3

i=0 aix
qi and g(x) =

∑3
i=0 bix

qi be two q-
polynomials over Fq4, such that Lf = Lg. Then

N(a1) + N(a2) + N(a3) + a1+q2

1 aq+q
3

3 + aq+q
3

1 a1+q2

3 + Tr q4/q
(
a1a

q+q2

2 aq
3

3

)
=

N(b1) + N(b2) + N(b3) + b1+q2

1 bq+q
3

3 + bq+q
3

1 b1+q2

3 + Tr q4/q
(
b1b

q+q2

2 bq
3

3

)
.

Proof. We are going to follow the proof of Lemma 3.6. As in that proof, we
may assume a0 = b0 = 0. In Lemma 3.4 take d = 1 + q+ q2 + q3. We obtain∑

1≤i,j,k,m≤3

aia
q
ja
q2

k a
q3

m

∑
x∈F∗

q4

xq
i−1+qj+1−q+qk+2−q2+qm+3−q3 =

∑
1≤i,j,k,m≤3

bib
q
jb
q2

k b
q3

m

∑
x∈F∗

q4

xq
i−1+qj+1−q+qk+2−q2+qm+3−q3 .

∑
x∈F∗

q4
xq

i−1+qj+1−q+qk+2−q2+qm+3−q3 = −1 if and only if

qi+qj+1+qk+2+qm+3 ≡ qi+qj+1+qk+2+qm−1 ≡ 1+q+q2+q3 (mod q4−1),

and zero otherwise. Suppose that the former case holds.
First consider k = 1. Then qi + qj+1 + qk+2 + qm−1 ≤ q3 + q4 + q3 + q2 <

1 + q + q2 + q3 + 2(q4 − 1) hence one of the following holds.

• If qi + qj+1 + qk+2 + qm−1 = 1 + q + q2 + q3, then m = i = j = k = 1.

• If qi + qj+1 + qk+2 + qm−1 = 1 + q+ q2 + q3 + q4− 1 = q+ q2 + q3 + q4,
then {i, j + 1, k + 2,m − 1} = {1, 2, 3, 4}, hence one of the following
holds

i = 1, j = 3, k = 1, m = 3,

i = 2, j = 3, k = 1, m = 2.

Now consider the case k ≥ 2. Then qi+qj+1 +qk+2 +qm−1 ≡ qi+qj+1 +
qk−2 + qm−1 ≤ q3 + q4 + q + q2 < 1 + q + q2 + q3 + 2(q4 − 1) hence one of
the following holds.
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• If qi+qj+1 +qk−2 +qm−1 = 1+q+q2 +q3, then {i, j+1, k−2,m−1} =
{0, 1, 2, 3}, hence one of the following holds

i = 1, j = 2, k = 2, m = 3,

i = 2, j = 2, k = 2, m = 2,

i = 2, j = 2, k = 3, m = 1,

i = 3, j = 1, k = 2, m = 2,

i = 3, j = 1, k = 3, m = 1.

• If qi + qj+1 + qk−2 + qm−1 = 1 + q+ q2 + q3 + q4− 1 = q+ q2 + q3 + q4,
then i = j = k = m = 3.

Proposition 4.2. Let f(x) and g(x) be two q-polynomials over Fq4 such
that Lf = Lg. If the maximum field of linearity of f is Fq, then

g(x) = f(λx)/λ,

or
g(x) = f̂(λx)/λ.

Proof. By Proposition 2.3, the maximum field of linearity of g is also Fq.
First note that Lg = Lf when g is as in the assertion (cf. Lemmas 3.1 and

3.2). Let f(x) =
∑3

i=0 aix
qi and g(x) =

∑3
i=0 bix

qi .
First we are going to use Lemma 3.6. From (7) we have a0 = b0. From (8)

with n = 4 and k = 1, 2 we have a1a
q
3 = b1b

q
3 and a1+q2

2 = b1+q2

2 , respectively.
From (9) with n = 4 and k = 2 we obtain

aq+1
1 aq

2

2 + a2a
q+q2

3 = bq+1
1 bq

2

2 + b2b
q+q2

3 . (17)

Note that a1a
q
3 = b1b

q
3 implies

N(b1) N(b3) = N(a1) N(a3). (18)

Multiplying (17) by b2 and applying a1+q2

2 = b1+q2

2 yields:

b22b
q2+q
3 − b2(aq+1

1 aq
2

2 + a2a
q2+q
3 ) + bq+1

1 aq
2+1

2 = 0. (19)

16



First suppose b1b2b3 6= 0. Then (19) is a second degree polynomial in b2.
Applying a1a

q
3 = b1b

q
3 it is easy to see that the roots of (19) are

b2,1 =
aq+1

1 aq
2

2

bq
2+q

3

,

b2,2 =
a2a

q2+q
3

bq
2+q

3

.

First we consider b2 = b2,1. Then a1+q2

2 = b1+q2

2 yields N(a1) = N(b3) and
hence N(b1) = N(a3). In particular, N(b1/a

q
3) = 1 and hence b1 = aq3λ

q−1

for some λ ∈ F∗q4 . From a1a
q
3 = b1b

q
3 we obtain b3 = aq

3

1 a3/b
q3

1 = aq
3

1 λ
q3−1.

Applying this we get b2 = aq+1
1 aq

2

2 /b
q2+q
3 = aq

2

2 λ
q2−1 and hence

g(x) = a0x+ aq3λ
q−1xq + aq

2

2 λ
q2−1xq

2
+ aq

3

1 λ
q3−1xq

3
= f(λx)/λ.

as we claimed.
Now consider b2 = b2,2. Then a1+q2

2 = b1+q2

2 yields N(a3) = N(b3)
and hence N(a1) = N(b1). Hence b1 = a1λ

q−1 for some λ ∈ F∗q4 . From

a1a
q
3 = b1b

q
3 we obtain b3 = aq

3

1 a3/b
q3

1 = a3λ
q3−1. Applying this we obtain

b2 = a2a
q2+q
3 /bq

2+q
3 = a2λ

q2−1 and hence

g(x) = a0x+ a1λ
q−1xq + aq

2

2 λ
q2−1xq

2
+ aq

3

3 λ
q3−1xq

3
= f̂(λx)/λ.

If b1 = b3 = 0, then either b2 = 0 and the maximum field of linearity
of g(x) is Fq4 , or b2 6= 0 and the maximum field of linearity of g(x) is Fq2 .
Thus we may assume b1 6= 0 or b3 6= 0.

First assume b2 6= 0 and b1 = 0. Then b3 6= 0 and (19) gives

b2b
q2+q
3 = aq+1

1 aq
2

2 + a2a
q2+q
3 .

Then a1a
q
3 = b1b

q
3 yields either a1 = 0 and b2b

q2+q
3 = a2a

q2+q
3 , or

a3 = 0 and b2b
q2+q
3 = aq+1

1 aq
2

2 . Taking (q2 + 1)-powers on both sides gives

bq
2+1

2 N(b3) = aq
2+1

2 N(a3), or bq
2+1

2 N(b3) = N(a1)aq
2+1

2 , respectively. Ap-

plying bq
2+1

2 = aq
2+1

2 we get N(b3) = N(a3), or N(b3) = N(a1), respectively.

Note that the set of elements with norm 1 in Fq4 is {xq3−1 : x ∈ F∗q4}, thus

in the first case there exists λ ∈ F∗q4 such that b3 = a3λ
q3−1. Then b2b

q2+q
3 =

a2a
q2+q
3 yields b2 = a2λ

q2−1 and hence g(x) = a0x+a2λ
q2−1xq

2
+a3λ

q3−1xq
3
.
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In the second case the same reasoning yields g(x) = a0x + aq
2

2 λ
q2−1xq

2
+

aq
3

1 λ
q3−1xq

3
.

If b2 6= 0 and b3 = 0, then the coefficient of xq in ĝ(x) is zero and the
assertion follows from the above arguments applied to ĝ instead of g.

Now assume b2 = 0 and b1b3 = 0. Then Lg = Lf is a linear set of
pseudoregulus type and hence the assertion also follows from [17]. For the

sake of completeness we present a proof also in this case. Equation bq
2+1

2 =

aq
2+1

2 yields a2 = 0 and equation a1a
q
3 = b1b

q
3 yields a1a3 = 0. Then from

Lemma 4.1 we have

N(a1) + N(a3) = N(b1) + N(b3). (20)

If b1 = 0, then b3 6= 0 and either a1 = 0 and N(a3) = N(b3), or a3 = 0
and N(a1) = N(b3). In the first case g(x) = a0x + a3λ

q3−1xq
3
, in the

second case g(x) = a0x + aq1λ
q3−1xq

3
. If b3 = 0, then b1 6= 0 and either

a1 = 0 and N(a3) = N(b1), or a3 = 0 and N(a1) = N(b1). In the first case
g(x) = a0x+ aq3λ

q−1xq, in the second case g(x) = a0x+ a1λ
q−1xq.

There is only one case left, when b2 = 0 and b1b3 6= 0. Then from Lemma
4.1 and from a1a

q
3 = b1b

q
3 it follows that

N(a1) + N(a3) = N(b1) + N(b3). (21)

Together with (18) it follows that either N(a1) = N(b1) and N(a3) = N(b3),
or N(a1) = N(b3) and N(a3) = N(b1). In the first case g(x) = a0x +

a1λ
q−1xq+a3λ

q3−1xq
3
, in the second case g(x) = a0x+aq3λ

q−1xq+aq
3

1 λ
q3−1xq

3
,

for some λ ∈ F∗q4 .

Now we are able to prove the following.

Theorem 4.3. Let LU be an Fq–linear set of a line PG(W,Fq4) of rank
4, with maximum field of linearity Fq, and let β be any non–degenerate
alternating form of W over Fq4. If V is an Fq–vector subspace of W such
that LU = LV , then either

V = µU,

or
V = µU⊥

′
β ,

for some µ ∈ F∗q4, where ⊥′β is the orthogonal complement map induced by
Trq4/q ◦β on the lattice of the Fq–subspaces of W .
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Proof. Assume w.l.o.g. that LU = LV does not contain the point 〈(0, 1)〉Fq4 .
Then U = Uf and V = Vg for some q–polynomials f and g over Fq4 . By
Proposition 4.2, taking also (6) into account, it follows that there exists
λ ∈ F∗q4 such that either λV = U or λV = U⊥

′
, where ⊥′ is the or-

thogonal complement map induced by the non-degenerate alternating form
η′ = Trq4/q ◦η, with η defined in (4). In the first case we have that V = µU ,

where µ = 1
λ . In the second case we have V = 1

λU
⊥′ . Since β and η

are two non-denegerate alternating forms of the 2-dimensional Fq4-space W ,
it follows that there exists a ∈ F∗q4 such that β(x,y) = aη(x,y) for each

x,y ∈ W . Hence, straightforward computations show that U⊥
′

= aU⊥
′
β .

The assertion follows with µ = a
λ .

4.2 Semilinear maps between Uf and Uf̂

The next result is just Proposition 3.9 with n = 4.

Corollary 4.4. Let f(x) = a0x + a1x
q + a2x

q2 + a3x
q3. There is an Fq4-

semilinear map between Uf and Uf̂ if and only if the following system of

four equations has a solution A,B,C,D ∈ Fq4, AD −BC 6= 0, σ = pk.

C +Daσ0 − a0A = Ba0a
σ
0 + (Ba1a

σ
1 )q

3
+ (Ba2a

σ
2 )q

2
+ (Ba3a

σ
3 )q,

Daσ1 − (a3A)q = Ba0a
σ
1 + (Ba1a

σ
2 )q

3
+ (Ba2a

σ
3 )q

2
+ (Ba3a

σ
0 )q,

Daσ2 − (a2A)q
2

= Ba0a
σ
2 + (Ba1a

σ
3 )q

3
+ (Ba2a

σ
0 )q

2
+ (Ba3a

σ
1 )q,

Daσ3 − (a1A)q
3

= Ba0a
σ
3 + (Ba1a

σ
0 )q

3
+ (Ba2a

σ
1 )q

2
+ (Ba3a

σ
2 )q.

Theorem 4.5. Linear sets of rank 4 of PG(1, q4), with maximum field of
linearity Fq, are simple.

Proof. Let f =
∑3

i=0 aix
qi . After a suitable projectivity we may assume

a0 = 0. We will use Corollary 4.4 with σ ∈ {1, q2}. We may assume that
a1 = 0 and a3 = 0 do not hold at the same time since otherwise f is Fq2-
linear.

First consider the case when N(a1) = N(a3). Let B = C = 0, D = Aq
2

and take A such that Aq−1 = a3/a
q
1. This can be done since N(a3/a

q
1) = 1.

Then Corollary 4.4 with σ = q2 provides the existence of an Fq4-semilinear
map between Uf and Uf̂ .

From now on we assume N(a1) 6= N(a3).
If a2 = a1 = 0, then let σ = 1, A = D = 0, B = 1 and C = a2q

3 . If

a2 = a3 = 0, then let σ = 1, A = D = 0, B = 1 and C = a2q3

1 .
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Now consider the case a2 = 0 and a1a3 6= 0. Let A = D = 0. Then the
equations of Corollary 4.4 with σ = 1 yield

C = Bq3a2q3

1 +Bqa2q
3 , (22)

0 = Bqaq1a
q
3 +Bq3aq

3

1 a
q3

3 . (23)

(23) is equivalent to 0 = (Ba1a3)q
2

+ Ba1a3. Since Xq2 + X = 0 has q2

solutions in Fq4 , for any a1 and a3 we can find B ∈ F∗q4 such that (23) is

satisfied. If Bq3a2q3

1 +Bqa2q
3 6= 0, then let C be this field element. We show

that this is always the case. Suppose, contrary to our claim, that Bq3−q =

−a2q
3 /a

2q3

1 . Because of the choice of B (23) yields Bq3−q = −aq−q
3

1 aq−q
3

3 .
Since B 6= 0 this implies

−a2q
3 /a

2q3

1 = −aq−q
3

1 aq−q
3

3 ,

and hence aq
2+1

1 = aq
2+1

3 . A contradiction since N(a1) 6= N(a3). From
now on we assume a2 6= 0, we may also assume a2 = 1 after a suitable
projectivity.

Corollary 4.4 with σ = 1 yields

C = (Ba2
1)q

3
+Bq2 + (Ba2

3)q, (24)

Da1 − (a3A)q = (Ba1)q
3

+ (Ba3)q
2
, (25)

D −Aq2 = (Ba1a3)q
3

+ (Ba3a1)q, (26)

Da3 − (a1A)q
3

= (Ba1)q
2

+ (Ba3)q. (27)

The right hand side of (25) is the q-th power of the right hand side of
(27) and hence Dqaq3 − a1A = Da1 − aq3Aq, i.e.

aq3(D +A)q = a1(D +A).

Since a1 or a3 is non-zero, we have either D = −A, or (D +A)q−1 = a1/a
q
3.

The latter case can be excluded since in that case N(a1) = N(a3). Let
D = −A. Then the left hand side of (25) is w(A) := −Aa1 − aq3Aq. The
kernel of w is trivial and hence B uniquely determines A. The inverse of w
is

w−1(x) =
−xaq+q

2+q3

1 + xqaq
2+q3

1 aq3 − xq
2
aq

3

1 a
q+q2

3 + xq
3
aq+q

2+q3

3

N(a1)−N(a3)
.
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Denote the right hand side of (25) by r(B), the right hand side of (26) by
t(B). Then B has to be in the kernel of

K(x) := w−1(r(x)) + (w−1(r(x)))q
2

+ t(x).

If B = 0, then A = B = D = 0 and hence this is not a suitable solution. It
is easy to see that Im t ⊆ Fq2 and hence also ImK ⊆ Fq2 , so the kernel of
K has at least dimension 2.

Let B ∈ kerK, B 6= 0, A := w−1(r(B)) and C := (Ba2
1)q

3
+Bq2 +(Ba2

3)q

(we recall D = −A). This gives a solution. We have to check that B can be
chosen such that AD −BC 6= 0, i.e.

Q(B) :=
(
w−1(r(B))

)2
+B

(
(Ba2

1)q
3

+Bq2 + (Ba2
3)q
)
,

is non-zero. We have w−1(r(x))(N(a1)−N(a3)) =
∑3

i=0 cix
qi , where

c0 = a1+q2+q3

1 aq3 − a
q3

1 a
1+q+q2

3 ,

c1 = a2q+q2+q3

3 − aq+q
3

1 aq+q
2

3 ,

c2 = aq+q
2+q3

3 aq
2

1 − a
q+q2+q3

1 aq
2

3 ,

c3 = aq
2+q3

1 aq+q
3

3 − aq+q
2+2q3

1 .

If X0, X1, X2, X3 denote the coordinate functions in PG(3, q4) and Q(B) = 0
for some B ∈ Fq4 , then the point 〈(B,Bq, Bq2 , Bq3)〉q4 is contained in the
the quadric Q of PG(3, q4) defined by the equation(

3∑
i=0

ciXi

)2

+X0(X1a
2q
3 +X2 +X3a

2q3

1 )(N(a1)−N(a3))2 = 0.

We can see that the equation of Q is the linear combination of the equations
of two degenerate quadrics, a quadric of rank 1 and a quadric of rank 2.
It follows that Q is always singular and it has rank 2 or 3. In particular,
the rank of Q is 2 when the intersection of the planes A : X0 = 0 and

B : X1a
2q
3 + X2 + X3a

2q3

1 = 0 is contained in the plane C :
∑3

i=0 ciXi = 0.
Straightforward calculations show that under our hypothesis (a1 6= 0 or
a3 6= 0, N(a1) 6= N(a3)) this happens if and only if 1 = aq1a3.
We recall that the kernel of K has dimension at least two. Let

H = {〈(x, xq, xq2 , xq3)〉q4 : K(x) = 0}.
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Our aim is to prove that H has points not belonging to the quadric Q,
i.e. H * Q.

Note that x ∈ Fq4 7→ (x, xq, xq
2
, xq

3
) ∈ F4

q4 is a vector-space isomorphism

between Fq4 and the 4-dimensional Fq-space {(x, xq, xq2 , xq3) : x ∈ Fq4} ⊂
F4
q4 . Denote by H̄ the Fq4-extension of H, i.e. the projective subspace of

PG(3, q4) generated by the points of H. Then the projective dimension
of H̄ is dim kerK − 1. Let ξ denotes the collineation (X0, X1, X2, X3) 7→
(Xq

3 , X
q
0 , X

q
1 , X

q
2) of PG(3, q4). Then the points of H are fixed points of ξ

and hence ξ fixes the subspace H̄. Note that the subspace of singular points
of Q is always disjoint from H since it is contained in A, while H is disjoint
from it.

First of all note that if dim kerK = 4, i.e. K is the zero polynomial,
then H is a subgeometry of PG(3, q4) isomorphic to PG(3, q), which clearly
cannot be contained in Q. It follows that dim kerK is either 3 or 2, i.e. H
is either a q-order subplane or a q-order subline.

First assume 1 6= aq1a3, i.e. the case when Q has rank 3. If H is a
q-order subplane, then H cannot be contained in Q. To see this, suppose
the contrary and take three non-concurrent q-order sublines of H. The
Fq4-extensions of these sublines are also contained in Q, but there is at
least one of them which does not pass through the singular point of Q, a
contradiction. Now assume that H is a q-order subline. The singular point of
Q is the intersection of the planes A,B and C. Straightforward calculations
show that this point is V = 〈(v0, v1, v2, v3)〉q4 , where

v0 = 0,

v1 = aq
2+q3

1 (aq
3

1 a
q2

3 − 1),

v2 = aq
3

1 a
q
3(aq

2

1 a
q
3 − a

q3

1 a
q2

3 ),

v3 = aq+q
2

3 (1− aq
2

1 a
q
3).

Suppose, contrary to our claim, that H is contained in Q. Then H̄ passes
through the singular point V of Q. Since H̄ is fixed by ξ, it follows that
the points V, V ξ, V ξ2 , V ξ3 have to be collinear (v0 = 0 yields that these four
points cannot coincide). Let M denote the 4 × 4 matrix, whose i-th row
consists of the coordinates of V ξi−1

for i = 1, 2, 3, 4. The rank of M is two,
thus each of its minors of order three is zero. Let Mi,j denote the submatrix
of M obtained by deleting the i-th row and j-th column of M . Then

detM1,2 = aq+1
1 (aq1a3 − 1)q

3+1α,
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detM1,4 = aq
3+1

3 (aq1a3 − 1)q
3+1β,

where

α = N(a1)(aq
2

1 a
q
3 − 1) + N(a3)(1− aq1a3 − aq

3

1 a
q2

3 + a1a
q3

3 ),

β = N(a1)(a1a
q3

3 + aq
2

1 a
q
3 − a

q
1a3 − 1) + N(a3)(1− aq

3

1 a
q2

3 ).

Since a1 and a3 cannot be both zeros and aq1a3− 1 6= 0, we have α = β = 0.

But α − β = (N(a1) − N(a3))(aq1a3 − a1a
q3

3 ). It follows that aq1a3 ∈ Fq and
hence α can be written as (N(a1) − N(a3))(aq1a3 − 1), which is non-zero.
This contradiction shows that V cannot be contained in a line fixed by ξ
and hence H̄ cannot pass through V . It follows that H * Q and hence we
can choose B such that AD −BC 6= 0.

Now consider the case 1 = aq1a3. Then Q is the union of two planes

meeting each other in ` := A∩B. It is easy to see that R := 〈(0, 1,−a2q
3 , 0)〉q4

and Rξ are two distinct points of `. Since N(a1) 6= N(a3) and N(a1) N(a3) =
1, det{R,Rξ, Rξ2 , Rξ3} = N(a3)2 − 1 cannot be zero and hence R /∈ H,
otherwise dim〈R,Rξ, Rξ2 , Rξ3〉 ≤ dim H̄ ≤ 2. Suppose, contrary to our
claim, that H is contained in one of the two planes of Q. Since R /∈ H, such
a plane can be written as 〈H,R〉 and since H is fixed by ξ and ` ⊆ 〈H,R〉,
we have 〈H,R〉ξ = 〈H,Rξ〉 = 〈H,R〉. Thus R,Rξ, Rξ

2
, Rξ

3
are coplanar, a

contradiction.

5 Different aspects of the classes of a linear set

5.1 Class of a linear set and the associated variety

Let LU be an Fq-linear set of rank k of PG(W,Fqn) = PG(r−1, qn). Consider
the projective space Ω = PG(W,Fq) = PG(rn − 1, q). For each point P =
〈u〉Fqn of PG(W,Fqn) there corresponds a projective (n−1)-subspace XP :=
PG(〈u〉qn ,Fq) of Ω. The variety of Ω associated to LU is

Vr,n,k(LU ) =
⋃

P∈LU

XP . (28)

This variety was already used in [2] and [17], see Example 5.1. The question
of determining whether a linear set is simple or not is related to the existence
of so-called irregular subspaces (see [17]). The case of irregular sublines was
already studied in [11].

A (k − 1)-space H = PG(V,Fq) of Ω is said to be a transversal space of
V(LU ) if H ∩XP 6= ∅ for each point P ∈ LU , i.e. LU = LV .
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The Z(ΓL)-class of an Fq-linear set LU of rank n of PG(W,Fqn) =
PG(1, qn), with maximum field of linearity Fq, is the number of transversal
spaces of V2,n,n(LU ) up to the action of the subgroup G of PGL(2n − 1, q)
induced by the maps x ∈ W 7→ λx ∈ W , with λ ∈ F∗qn . Note that G fixes
XP for each point P ∈ PG(1, qn) and hence fixes the variety.

The maximum size of an Fq-linear set LU of rank n of PG(1, qn) is
(qn − 1)/(q − 1). If this bound is attained (hence each point of LU has
weight one), then LU is a maximum scattered linear set of PG(1, qn). For
maximum scattered linear sets, the number of transversal spaces through
Q ∈ V(LU ) does not depend on the choice of Q and this number is the
Z(ΓL)-class of LU .

Example 5.1. Let U = {(x, xq) : x ∈ Fqn} and consider the linear set LU .
In [17] the variety V2,n,n(LU ) was studied, and the transversal spaces were
determined. It follows that the Z(ΓL)-class of LU is ϕ(n), where ϕ is the
Euler’s phi function.

5.2 Classes of linear sets as projections of subgeometries

Let Σ = PG(k − 1, q) be a canonical subgeometry of Σ∗ = PG(k − 1, qn).
Let Γ ⊂ Σ∗ \Σ be a (k− r− 1)-space and let Λ ⊂ Σ∗ \Γ be an (r− 1)-space
of Σ∗. The projection of Σ from center Γ to axis Λ is the point set

L = pΓ,Λ(Σ) := {〈Γ, P 〉 ∩ Λ: P ∈ Σ}. (29)

In [24] Lunardon and Polverino characterized linear sets as projections
of canonical subgeometries. They proved the following.

Theorem 5.2 ([24, Theorems 1 and 2]). Let Σ∗, Σ, Λ, Γ and L = pΓ,Λ(Σ)
be defined as above. Then L is an Fq-linear set of rank k and 〈L〉 = Λ.
Conversely, if L is an Fq-linear set of rank k of Λ = PG(r−1, qn) ⊂ Σ∗ and
〈L〉 = Λ, then there is a (k− r− 1)-space Γ disjoint from Λ and a canonical
subgeometry Σ = PG(r − 1, q) disjoint from Γ such that L = pΓ,Λ(Σ).

Let LU be an Fq-linear set of rank k of P = PG(W,Fqn) = PG(r− 1, qn)
such that for each k-dimensional Fq-subspace V of W if PG(V,Fq) is a
transversal space of Vr,n,k(LU ), then there exists γ ∈ PΓL(W,Fq), such that
γ fixes the Desarguesian spread {XP : P ∈ P} and PG(U,Fq)γ = PG(V,Fq).
This is condition (A) from [7], and it is equivalent to say that LU is a simple
linear set. Then the main results of [7] can be formalized as follows.

Theorem 5.3 ([7]). Let L1 = pΓ1,Λ1(Σ1) and L2 = pΓ2,Λ2(Σ2) be two linear
sets of rank k. If L1 and L2 are equivalent and one of them is simple, then
there is a collineation mapping Γ1 to Γ2 and Σ1 to Σ2.
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Theorem 5.4 ([7]). If L is a non-simple linear set of rank k in Λ = 〈L〉,
then there are a subspace Γ = Γ1 = Γ2 disjoint from Λ, and two q-order
canonical subgeometries Σ1,Σ2 such that L = pΓ,Λ(Σ1) = pΓ,Λ(Σ2), and
there is no collineation fixing Γ and mapping Σ1 to Σ2.

Now we interpret the classes of linear sets, hence we are going to consider
Fq-linear sets of rank n of Λ = PG(1, qn) = PG(W,Fqn), with maximum field
of linearity Fq. Arguing as in the proof of [7, Theorem 7], if LU is non-simple,
then for any pair U , V of n-dimensional Fq-subspaces of W with LU = LV
such that Uf 6= V for each f ∈ ΓL(2, qn) we can find a q-order subgeometry
Σ of Σ∗ = PG(n − 1, qn) and two (n − 3)-spaces Γ1 and Γ2 of Σ∗, disjoint
from Σ and from Λ, lying on different orbits of Stab(Σ). On the other hand,
arguing as in [7, Theorem 6], if there exist two (n− 3)-subspaces Γ1 and Γ2

of Σ∗, disjoint from Σ and from Λ, belonging to different orbits of Stab(Σ)
and such that L = pΛ,Γ1(Σ) = pΛ,Γ2(Σ), then it is possible to construct two
n-dimensional Fq-subspaces U and V of W with LU = LV such that Uf 6= V
for each f ∈ ΓL(2, qn). Hence we can state the following.

The ΓL-class of LU is the number of orbits of Stab(Σ) on (n−3)-spaces of
Σ∗ containing a Γ disjoint from Σ and from Λ such that pΛ,Γ(Σ) is equivalent
to LU .

5.3 Class of linear sets and linear blocking sets of Rédei type

A blocking set B of PG(V,Fqn) = PG(2, qn) is a point set meeting every line
of the plane. Blocking sets of size qn+N ≤ 2qn with an N -secant are called
blocking sets of Rédei type, the N -secants of the blocking set are called
Rédei lines. Let LU be an Fq-linear set of rank n of a line ` = PG(W,Fqn),
W ≤ V , and let w ∈ V \W . Then 〈U,w〉Fq defines an Fq-linear blocking set
of PG(2, qn) with Rédei line `. The following theorem tells us the number
of inequivalent blocking sets obtained in this way.

Theorem 5.5. The ΓL-class of an Fq-linear set LU of rank n of PG(W,Fqn) =
PG(1, qn), with maximum field of linearity Fq, is the number of inequivalent
Fq-linear blocking sets of Rédei type of PG(V,Fqn) = PG(2, qn) containing
LU .

Proof. Fq-linear blocking sets of PG(2, qn) with more than one Rédei line
are equivalent to those defined by Trqn/qm(x) for some divisor m of n, see
[22, Theorem 5]. Suppose first that LU is equivalent to LT , where T =
{(x,Trqn/q(x)) : x ∈ Fqn}. According to Theorem 3.7 LT , and hence also
LU , have Z(ΓL)-class and ΓL-class one and hence there exists a unique
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point P ∈ LU such that wLU (P ) = n− 1. Then for each v ∈ V \W the Fq-
linear blocking set defined by 〈U,v〉Fq has more than one Rédei line, each of
them incident with P , and hence it is equivalent to the Rédei type blocking
set obtained from Trqn/q(x).

Now let B1 = LV1 and B2 = LV2 be two Fq-linear blocking sets of Rédei
type with PG(W,Fqn) the unique Rédei line. Denote by U1 and U2 the Fq-
subspaces W ∩ V1 and W ∩ V2, respectively, and suppose LU1 = LU2 with
Fq the maximum field of linearity. Then B1 and B2 have (q+ 1)-secants and
we have V1 = U1 ⊕ 〈u1〉Fq and V2 = U2 ⊕ 〈u2〉Fq for some u1,u2 ∈ V \W .

If Bϕf1 = B2, then [6, Proposition 2.3] implies V f
1 = λV2 for some λ ∈ F∗qn .

Such f ∈ ΓL(3, qn) has to fix W and it is easy to see that Uf1 = λU2, i.e. U1

and U2 are ΓL(2, qn)-equivalent.

Conversely, if there exists f ∈ ΓL(W,Fqn) such that Uf1 = U2, then
Bϕg1 = B2, where g ∈ ΓL(V,Fqn) is the extension of f mapping u1 to u2.

5.4 Class of linear sets and MRD-codes

In [28, Section 4] Sheekey showed that maximum scattered Fq-linear sets
of PG(1, qn) yield Fq-linear maximum rank distance codes (MRD-codes) of
dimension 2n and minimum distance n − 1, that is, a set M of q2n n × n
matrices over Fq forming an Fq-subspace of Fn×nq of dimension 2n such that
the non-zero matrices of M have rank at least n − 1. It can be easily seen
that these MRD-codes have the so-called middle nucleus isomorphic to Fqn .
For definitions and properties on MRD-codes we refer the reader to [10] by
Delsarte and [13] by Gabidulin. The kernel and the nuclei of MRD-codes
are studied in [26].

For n × n matrices there are two different definitions of equivalence for
MRD-codes in the literature. The arguments of [28, Section 4] yield the
following interpretation of the ΓL-class:

• M andM′ are equivalent if there are invertible matrices A, B ∈ Fn×nq

and a field automorphism σ of Fq such that AMσB =M′, see [28]. In
this case the ΓL-class of LU is the number of inequivalent MRD-codes
obtained from the linear set LU .

• M and M′ are equivalent if there are invertible matrices A, B ∈
Fn×nq and a field automorphism σ of Fq such that AMσB = M′, or

AMTσB =M′, see [9]. In this case the number of inequivalent MRD-
codes obtained from the linear set LU is between ds/2e and s, where
s is the ΓL-class of LU .
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We summarize here the known non-equivalent families of MRD-codes
arising from maximum scattered linear sets.

1. LU1 := {〈(x, xq)〉Fqn : x ∈ F∗qn} ([5]) gives Gabidulin codes,

2. LU2 := {〈(x, xqs)〉Fqn : x ∈ F∗qn}, gcd(s, n) = 1 ([5]) gives generalized
Gabidulin codes,

3. LU3 := {〈(x, δxq + xq
n−1

)〉Fqn : x ∈ F∗qn} ([23]) gives MRD-codes found
by Sheekey in [28],

4. LU4 := {〈(x, δxqs + xq
n−s

)〉Fqn : x ∈ F∗qn}, N(δ) 6= 1, gcd(s, n) = 1
gives MRD-codes found by Sheekey in [28] and studied by Lunardon,
Trombetti and Zhou in [25].

Remark 5.6. The linear sets LU1 and LU2 coincide, but when s /∈ {1, n−1},
there is no f ∈ ΓL(2, qn) such that Uf1 = U2. These linear sets are of
pseudoregulus type, [21] (see also Example 5.1), and in [7] it was proved
that the ΓL-class of these linear sets is ϕ(n)/2, hence they are examples of
non-simple linear sets for n = 5 and n > 6.

It can be proved that the family LU4 contains linear sets non-equivalent
to those from the other families. We will report on this elsewhere.
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