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Abstract

We introduce a family of linear sets of PG(1, q2n) arising from max-
imum scattered linear sets of pseudoregulus type of PG(3, qn). For
n = 3, 4 and for certain values of the parameters we show that these
linear sets of PG(1, q2n) are maximum scattered and they yield new
MRD-codes with parameters (6, 6, q; 5) for q > 2 and with parameters
(8, 8, q; 7) for q odd.
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1 Introduction

Linear sets are natural generalizations of subgeometries. Let Λ = PG(V,Fqn)
= PG(r−1, qn), where V is a vector space of dimension r over Fqn . A point
set L of Λ is said to be an Fq-linear set of Λ of rank k if it is defined by the
non-zero vectors of a k-dimensional Fq-vector subspace U of V , i.e.

L = LU = {〈u〉Fqn : u ∈ U \ {0}}.

The maximum field of linearity of an Fq-linear set LU is Fqt if t | n is the
largest integer such that LU is an Fqt-linear set.

Two linear sets LU and LW of Λ are said to be PΓL-equivalent (or simply
equivalent) if there is an element φ in PΓL(r, qn), the collineation group of
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Λ, such that LφU = LW . It may happen that two Fq–linear sets LU and
LW of Λ are PΓL-equivalent even if the two Fq-vector subspaces U and W
are not in the same orbit of ΓL(r, qn), the group of invertible Fqn-semilinear
transformations of V (see [8] and [5] for further details).

The set of m× n matrices Fm×nq over Fq is a rank metric Fq-space with
rank metric distance defined by d(A,B) = rk (A − B) for A,B ∈ Fm×nq . A
subset C ⊆ Fm×nq is called a rank distance code (RD-code for short). The
minimum distance of C is

d(C) = min
A,B∈C, A 6=B

{d(A,B)}.

In [11] the Singleton bound for an m×n rank metric code C with minimum
rank distance d was proved:

#C ≤ qmax{m,n}(min{m,n}−d+1). (1)

If this bound is achieved, then C is an MRD-code. MRD-codes have various
applications in communications and cryptography; see for instance [12, 17].
More properties of MRD-codes can be found in [11, 12, 13, 33]. When C is
an Fq-linear subspace of Fm×nq , we say that C is an Fq-linear code and the
dimension dimq(C) is defined to be the dimension of C as a subspace over Fq.
If d is the minimum distance of C we say that C has parameters (m,n, q; d).

In [35, Section 4], the author showed that scattered linear sets of PG(1, qm)
of rank m yield Fq-linear MRD-codes of dimension 2m and minimum dis-
tance m − 1. Also, codes arising in this way have middle nucleus of or-
der qm (which is an invariant with respect to the equivalence on MRD-
codes, see Section 6). In Proposition 6.1 we prove that every code with
these parameters can be obtained from a suitable scattered linear set of
rank m of PG(1, qm). The correspondence between MRD codes and linear
sets of PG(1, qm) has been recently generalized in [6]. The number of non-
equivalent MRD-codes obtained from a scattered linear set of PG(1, qm) of
rank m was studied in [5, Section 5.4]. In [24] the author investigated in
detail the relationship between linear sets of PG(n − 1, qn) of rank n and
Fq-linear MRD-codes.

So far, the known non-equivalent families of Fq-linear MRD-codes of
dimension 2m, minimum distance m− 1 and with middle nucleus Fqm arise
from the following maximum scattered Fq–vector subspaces of Fqm × Fqm :

1. U1 := {(x, xqs) : x ∈ Fqm}, 1 ≤ s ≤ m − 1 gcd(s,m) = 1 ([4]) gives
Gabidulin codes when s = 1, and generalized Gabidulin codes when
s > 1;
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2. U2 := {(x, δxqs + xq
m−s

) : x ∈ Fqm}, Nqm/q(δ) 6= 1 (1), gcd(s,m) = 1
([27] for s = 1) gives MRD-codes found by Sheekey in [35] as part of
a larger family. The equivalence issue for these codes was studied also
by Lunardon, Trombetti and Zhou in [28].

In this paper we present a family of Fq-linear sets of rank m of PG(1, qm),
m = 2n and n > 1, arising from Fq-linear sets of PG(3, qn) of pseudoregulus
type. These linear sets are defined by the following Fq-vector subspaces of
Fqm × Fqm :

Ub,s := {(x, bxqs + xq
s+n

) : x ∈ Fq2n} (2)

with Nq2n/qn(b) 6= 1, 1 ≤ s ≤ 2n− 1 and gcd(s, n) = 1.
We will show that each point of LUb,s has weight at most 2 (cf. Propo-

sition 4.1) and when LUb,s is scattered and m > 4, then, as we will see in
Section 6, the corresponding MRD-code is not equivalent to any previously
known MRD-code with the same parameters. Finally, in the last section,
we exhibit for m = 6 and m = 8 infinite examples of scattered Fq-subspaces
of type Ub,s and hence new infinite families of MRD-codes.

2 Linear sets

Let LU be an Fq-linear set of Λ = PG(r − 1, qn), q = ph, p prime, of rank
k. We point out that different vector subspaces can define the same linear
set. For this reason a linear set and the vector space defining it must be
considered as coming in pair.

Let Ω = PG(W,Fqn) be a subspace of Λ, then Ω∩LU is an Fq–linear set
of Ω defined by the Fq–vector subspace U ∩W and, if wLU (Ω) := dimFq(W ∩
U) = i, we say that Ω has weight i w.r.t. LU . Hence a point of Λ belongs
to LU if and only if it has weight at least 1 and, if LU has rank k, then
|LU | ≤ qk−1 + qk−2 + · · · + q + 1. For further details on linear sets see [34]
and [23].

An Fq–linear set LU of Λ of rank k is scattered if all of its points have
weight 1, or equivalently, if LU has maximum size qk−1 + qk−2 + · · ·+ q+ 1.
The associated Fq–vector subspace U is said to be scattered. A scattered
Fq–linear set of Λ of highest possible rank is a maximum scattered Fq–linear
set of Λ; see [4]. Maximum scattered linear sets have a lot of applications
in Galois Geometry. For a recent survey on the theory of scattered spaces
in Galois Geometry and its applications see [19].

1Nqm/q(·) denotes the norm function from Fqm over Fq.
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The rank of a scattered Fq-linear set of PG(r − 1, qn), rn even, is at
most rn/2 ([4, Theorems 2.1, 4.2 and 4.3]). For n = 2 scattered Fq-linear
sets of PG(r − 1, q2) of rank r are the Baer subgeometries. When r is even
there always exist scattered Fq–linear sets of rank rn

2 in PG(r − 1, qn), for
any n ≥ 2 (see [18, Theorem 2.5.5] for an explicit example). Existence
results were proved for r odd, n− 1 ≤ r, n even, and q > 2 in [4, Theorem
4.4], but no explicit constructions were known for r odd, except for the case
r = 3, n = 4, see [2, Section 3]. Very recently in [3, Theorem 1.2] and in [6,
Section 2] maximum scattered Fq-linear sets of PG(r − 1, qn) of rank rn/2
have been constructed for any integers r, n ≥ 2, rn even, and for any prime
power q ≥ 2.

2.1 Scattered linear sets of pseudoregulus type in PG(3, qn)

In [26], generalizing results contained in [32], [20] and [22], a family of max-
imum scattered linear sets of PG(2h − 1, qn) of rank hn (h, n ≥ 2), called
of pseudoregulus type, is introduced. In particular, a maximum scattered
Fq–linear set LU of Λ = PG(3, qn) of rank 2n is of pseudoregulus type if (i)
there exist qn + 1 pairwise disjoint lines of LU of weight n w.r.t. LU , say
s1, s2, . . . , sqn+1;
(ii) there exist exactly two skew lines t1 and t2 of Λ, disjoint from LU , such
that tj ∩ si 6= ∅ for each i = 1, . . . , qn + 1 and for each j = 1, 2.

The set of lines PLU = {si : i = 1, . . . , qn+1} is called the Fq–pseudoregulus
(or simply pseudoregulus) of Λ associated with LU and t1 and t2 are the
transversal lines of PLU (or transversal lines of LU ). Note that by [26,
Corollary 3.3], if n > 2 the pseudoregulus PLU associated with LU and its
transversal lines are uniquely determined.

In [20, Sec. 2] and in [26, Theorems 3.5 and 3.9], Fq–linear sets of
pseudoregulus type of PG(2h − 1, qn) of rank hn (h, n ≥ 2) have been al-
gebraically characterized. In particular, in PG(3, qn) we have the following
result.

Theorem 2.1. Let t1 = PG(U1,Fqn) and t2 = PG(U2,Fqn) be two disjoint
lines of Λ = PG(V,Fqn) = PG(3, qn) and let Φf be a strictly semilinear
collineation between t1 and t2 defined by the Fqn-semilinear map f with
companion automorphism an element σ ∈ Aut(Fqn) such that Fix(σ) = Fq.
Then, for each ρ ∈ F∗qn, the set

Lρ,f = {〈u + ρf(u)〉Fqn : u ∈ U1 \ {0}}

is an Fq-linear set of Λ of pseudoregulus type whose associated pseudoregulus
is PLρ,f = {〈P, PΦf 〉 : P ∈ t1}, with transversal lines t1 and t2.
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Conversely, each Fq–linear set of pseudoregulus type of Λ = PG(3, qn)
can be obtained as described above.

In [26], Fq-linear sets of pseudoregulus type of the projective line Λ =
PG(V,Fqn) = PG(1, qn) (n ≥ 2) are also introduced. Let P1 = 〈w〉 and P2 =
〈v〉 be two distinct points of the line Λ and let τ be an Fq-automorphism of
Fqn such that Fix(τ) = Fq; then for each ρ ∈ F∗qn the set

Wρ,τ = {λw + ρλτv : λ ∈ Fqn}, (3)

is an Fq–vector subspace of V of dimension n and Lρ,τ := LWρ,τ is a max-
imum scattered Fq-linear set of Λ. The linear sets Lρ,τ are called of pseu-
doregulus type and the points P1 and P2 are their transversal points. Also,
if n > 2, then these transversal points are uniquely determined ([26, Prop.
4.3]). For more details on such linear sets see [9]. Also, by [26, Remark 4.5],
if LU is an Fq-linear set of pseudoregulus type of PG(3, qn), and s is a line
of weight n w.r.t. LU , then LU ∩ s is an Fq-linear set of pseudoregulus type
of the line s whose transversal points are the intersection points of s with
the transversal lines of PLU (see also [21, Prop. 2.5] and [31, Theorem 2.8]
for further details).

3 Linear sets and dual linear sets in PG(1, qn)

Let V = Fqn × Fqn and let LU be an Fq–linear set of rank n of PG(1, qn) =
PG(V,Fqn). We can always assume (up to a projectivity) that LU does not
contain the point 〈(0, 1)〉Fqn . Then U = Uf = {(x, f(x)) : x ∈ Fqn}, for some

q-polynomial f(x) =
∑n−1

i=0 aix
qi over Fqn . For the sake of simplicity we will

write Lf instead of LUf to denote the linear set defined by Uf .
Consider the non-degenerate symmetric bilinear form of Fqn over Fq

defined by the following rule

< x, y >:= Trqn/q(xy).(2) (4)

Then the adjoint map f̂ of an Fq-linear map f(x) =
∑n−1

i=0 aix
qi of Fqn (with

respect to the bilinear form (4)) is

f̂(x) :=
n−1∑
i=0

aq
n−i

i xq
n−i
. (5)

2Trqn/q(·) denotes the trace function from Fqn over Fq.
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Let η : V × V −→ Fqn be the non-degenerate alternating bilinear form
of V defined by η((x, y), (u, v)) = xv − yu. Then η induces a symplectic
polarity τ on the line PG(V,Fqn) and

η′((x, y), (u, v)) := Trqn/q(η((x, y), (u, v))) = Trqn/q(xv − yu) (6)

is a non-degenerate alternating bilinear form on V, when V is regarded as
a 2n-dimensional vector space over Fq. We will always denote in the paper
by ⊥ and ⊥′ the orthogonal complement maps defined by η and η′ on the
lattices of the Fqn-subspaces and the Fq-subspaces of V, respectively. Direct
calculation shows that

U⊥
′

f = Uf̂ , (7)

and the Fq–linear set of rank n of PG(V,Fqn) defined by the orthogonal
complement U⊥

′
is called the dual linear set of LU with respect to the

polarity τ .
Recall the following lemma.

Lemma 3.1 ([3, Lemma 2.6], [5, Lemma 3.1]). Let Lf = {〈(x, f(x))〉Fqn : x ∈
F∗qn} be an Fq–linear set of PG(1, qn) of rank n, with f(x) a q-polynomial

over Fqn, and let f̂ be the adjoint of f with respect to the bilinear form (4).
Then for each point P ∈ PG(1, qn) we have wLf (P ) = wLf̂ (P ). In partic-

ular, Lf = Lf̂ and the maps defined by f(x)/x and f̂(x)/x have the same
image.

4 From the geometry in PG(3, qn) to the geometry
in PG(1, q2n)

From now on, we will consider V = Fq2n × Fq2n both as a 2-dimensional
vector space over Fq2n and as a 4-dimensional vector space over Fqn . In the
former case the linear set of Σ1 := PG(V,Fq2n) = PG(1, q2n) defined by an
Fq-subspace U ≤ V will be denoted as LU , in the latter case the linear set
of Σ3 := PG(V,Fqn) = PG(3, qn) defined by U will be denoted by L̄U .

Consider the following two skew lines of Σ3: `0 := {〈(x, 0)〉Fqn : x ∈ F∗q2n}
and `1 := {〈(0, y)〉Fqn : y ∈ F∗q2n}. By Theorem 2.1, Fq-linear sets of pseu-

doregulus type in Σ3 with transversal lines `0 and `1 are of the form L̄f :=
L̄Uf , where Uf = {(x, f(x)) : x ∈ Fq2n}, and f(x) is a strictly Fqn-semilinear
invertible map of Fq2n with companion automorphism σ, Fix(σ) = Fq. It
is easy to see that this happens if and only if f(x) = αxσ + βxσq

n
, where
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σ : x 7→ xq
s
, 1 ≤ s ≤ 2n − 1, gcd(s, n) = 1, and Nq2n/qn(α) 6= Nq2n/qn(β).

That is,
Uf = {(x, αxσ + βxσq

n
) : x ∈ Fq2n}, (8)

with the same conditions as above. In Σ1 the Fq-linear set Lf := LUf is not
necessarily scattered, but as the next result shows, it cannot contain points
with weight greater than two.

Proposition 4.1. Each point of the Fq-linear set Lf of PG(1, q2n), n ≥ 2,
where

Uf = {(x, f(x)) : x ∈ Fq2n},

with f(x) = αxσ + βxσq
n

, σ : x 7→ xq
s
, 1 ≤ s ≤ 2n − 1, gcd(s, n) = 1, and

Nq2n/qn(α) 6= Nq2n/qn(β), has weight at most two.

Proof. We first recall that the pseudoregulus associated with L̄f in Σ3 =
PG(3, qn) consists of qn + 1 lines, and these are the only lines with weight
n w.r.t. L̄f ([26, Prop. 3.2]).

Let Q := 〈(x0, f(x0))〉Fq2n be a point of Lf . In Σ3 this point corresponds
to a line `Q disjoint from both `0 and `1 and meeting at least one line of the
pseudoregulus associated with L̄f , say m. Note that wLf (Q) = wL̄f (`Q).

By [1, Theorem 5.1] a plane of Σ3 has weight either n or n + 1 w.r.t. L̄f ,
hence if the weight of Q w.r.t. Lf is greater than one, then the plane π of
Σ3 spanned by the lines `Q and m has weight n+ 1. Since `Q ∩m is a point
with weight one w.r.t. L̄f , the Grassmann formula gives that the weight of
`Q w.r.t L̄f is two and hence the weight of Q w.r.t. Lf is two.

5 A family of Fq-linear sets of PG(1, q2n)

In this section we investigate the family of Fq–linear sets of PG(1, q2n) de-
fined by Fq–vector subspaces of form (8). Let Uf and Ug be two Fq–vector

subspaces of V = Fq2n × Fq2n of form (8), where f(x) = αxq
s

+ βxq
s+n

and

g(x) = α′xq
s

+ β′xq
s+n

, with 1 ≤ s ≤ 2n − 1 and gcd(s, n) = 1. Since we
are interested in the study of scattered linear sets of PG(1, q2n) not of pseu-
doregulus type, we can assume αβ 6= 0 (cf. [26, Sec. 4]). If Nq2n/qn(αβ′) =

Nq2n/qn(α′β) then there exists a ∈ F∗q2n such that βα′ = β′αaq
s(qn−1) and

direct computations show that Uϕf = Ug, where

ϕ : (x, y) ∈ V 7→ (xa, yaq
s
α′/α) ∈ V.
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From the previous arguments it follows that Lf is defined, up to the action
of the group GL(2, qn), by an Fq–vector subspace of V of type

Ub,s := {(x, bxqs + xq
s+n

) : x ∈ Fq2n}, (9)

with b ∈ F∗q2n and 1 ≤ s ≤ 2n−1 such that Nq2n/qn(b) 6= 1 and gcd(s, n) = 1.
We will denote by Lb,s the corresponding Fq–linear set LUb,s .

Also we can restrict our study to the choice of the integers s’ such that
1 ≤ s ≤ n and gcd(s, n) = 1. Indeed, by using the notation of Section 3, we
have

U⊥
′

b,s = {(x, bq2n−s
xq

2n−s
+ xq

n−s
) : x ∈ Fq2n} = U

bq2n−s ,2n−s

and it can be easily seen that Ub,s and U⊥
′

b,s are equivalent via the linear
invertible map φ : (x, y) ∈ V 7→ (αy, βx) ∈ V, where α is any element
satisfying αq

n−1 = − 1
bqn−1 and β = (b2q

n
αq

n
+ α)q

n−s
.

Moreover we have the following result.

Proposition 5.1. Two Fq-subspaces Ub,s and Ub̄,s̄ of V = Fq2n × Fq2n of
form (9) with b, b̄ ∈ F∗q2n, Nq2n/qn(b) 6= 1, Nq2n/qn(b̄) 6= 1, 1 ≤ s, s̄ < n and

gcd(n, s) = gcd(n, s̄) = 1, are ΓL(2, q2n)-equivalent if and only if either

s = s̄ and Nq2n/qn(b̄) = Nq2n/qn(b)σ

or
s+ s̄ = n and Nq2n/qn(b̄) Nq2n/qn(b)σ = 1,

for some automorphism σ ∈ Aut(Fqn).

Proof. Ub,s and Ub̄,s̄ are ΓL(2, q2n)-equivalent if and only if there exist ele-
ments α, β, γ, δ ∈ Fq2n , with αδ 6= βγ and an automorphism σ ∈ Aut(Fq2n)
such that

∀x ∈ Fq2n , ∃ y ∈ Fq2n :

(
α β
γ δ

)(
xσ

(bxq
s

+ xq
s+n

)σ

)
=

(
y

b̄yq
s̄

+ yq
s̄+n

)
.

Put z := xσ, the last equation implies that for each z ∈ Fq2n , there exists
y ∈ Fq2n such that{

αz + β(bσzq
s

+ zq
n+s

) = y,

γz + δ(bσzq
s

+ zq
n+s

) = b̄yq
s̄

+ yq
n+s̄

.
(10)
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Putting the first in the second equation of System (10), we get that

γz+δ(bσzq
s
+zq

n+s
) = b̄(αz+β(bσzq

s
+zq

n+s
))q

s̄
+(αz+β(bσzq

s
+zq

n+s
))q

n+s̄

(11)
for each z ∈ Fq2n .

If s = s̄, since the monomials z, zq
s
, zq

2s
, zq

n+s
, zq

n+2s
are pairwise dis-

tinct modulo zq
2n − z, from the previous polynomial identity we get

γ = 0
δbσ = b̄αq

s

δ = αq
n+s

b̄βq
s
bσq

s
+ βq

n+s
= 0

b̄βq
s

+ βq
n+s

bσq
n+s

= 0.

(12)

Since Nq2n/qn(b) 6= 1, System (12) is equivalent to
γ = 0
β = 0
δbσ = b̄αq

s

δ = αq
n+s

,

which admits solutions if and only if Nq2n/qn(b̄) = Nq2n/qn(b)σ, with σ ∈
Aut(Fqn).

If s 6= s̄, since 1 ≤ s, s̄ < n and gcd(s, n) = gcd(s̄, n) = 1, we get

{zqs , zqs̄} ∩ {z, zqn+s
, zq

n+s̄
, zq

s+s̄
, zq

n+s+s̄} = ∅

modulo zq
2n − z. Hence polynomial identity (11) yields α = δ = 0 and

Equation (11) becomes

γz = (b̄βq
s̄
bσq

s̄
+ βq

n+s̄
)zq

s+s̄
+ (b̄βq

s̄
+ βq

n+s̄
bσq

n+s̄
)zq

n+s+s̄

for each z ∈ Fq2n . Also, since s + s̄ < 2n, the monomials z and zq
s+s̄

are

different modulo zq
2n − z. Hence, if s + s̄ 6= n we immediately get γ = 0,

a contradiction. It follows that s+ s̄ = n and comparing the coefficients of
the terms of degree 1 and qs+s̄ we get{

γ = b̄βq
s̄

+ βq
n+s̄

bσq
n+s̄

b̄βq
s̄
bσq

s̄
+ βq

n+s̄
= 0,

which admits solutions if and only if Nq2n/qn(b̄bσq
s̄
) = 1, i.e. if and only if

Nq2n/qn(b̄) Nq2n/qn(bq
s̄
)σ = 1, for some automorphism σ ∈ Aut(Fqn).
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We finish this section by determining the linear automorphism group of
Ub,s and with some results on the geometric structure of a linear set Lb,s.

Corollary 5.2. The Fq2n-linear automorphism group Gb,s of an Fq–vector
subspace Ub,s of V = Fq2n×Fq2n of form (9) consists of the following matrices(

α 0
0 αq

s

)
,

with α ∈ F∗qn .

Proof. In the previous theorem choosing s = s̄ and b = b̄, by System (12)
we get β = γ = 0 and δ = αq

s
= αq

n+s
. The assertion follows.

The previous corollary allows us to prove the following result.

Proposition 5.3. Let Lb,s be the Fq–linear set of PG(1, q2n) of rank 2n
defined by an Fq–vector subspace Ub,s of type (9) and let PGb,s be the pro-
jectivity group induced on the line PG(1, q2n) by Gb,s. Then the following
properties hold:

i) the linear collineation group PGb,s preserves Lb,s, it has order qn−1
q−1 , fixes

the two points 〈(1, 0)〉Fq2n and 〈(0, 1)〉Fq2n and any other point–orbit has

size qn−1
q−1 ;

ii) Lb,s is a union of orbits of points under the PGb,s–action;

iii) all points of Lb,s belonging to the same PGb,s–orbit have the same weight
w.r.t. Lb,s.

Proof. Let φλ be the linear collineation of PGb,s induced by the element

ϕλ :=

(
λ 0
0 λq

s

)
∈ Gb,s, with λ ∈ F∗qn . Since Fix(σ) ∩ F∗qn = Fq, the group

PGb,s has order qn−1
q−1 . Also, it can be easily seen that if P is a point of

PG(1, q2n) different from 〈(1, 0)〉Fq2n and 〈(0, 1)〉Fq2n , then P φλ = P if and

only if φλ is the identity map. Hence Statements i) and ii) follow.

Let now P = 〈(x0, f(x0))〉Fq2n be a point of Lb,s, i.e. f(x0) = bxq
s

0 +xq
n+s

0 .

Then P φλ = 〈(λx0, f(λx0))〉Fq2n and

wLb,s(P ) = dimq(〈(x0, f(x0))〉Fq2n ∩Ub,s) = dimq ϕλ(〈(x0, f(x0))〉Fq2n ∩Ub,s)

= dimq

(
〈(λx0, f(λx0))〉Fq2n ∩ ϕλ(Ub,s)

)
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= dimq

(
〈(λx0, f(λx0)〉Fq2n ∩ Ub,s

)
= wLb,s(P

φλ),

and Property iii) is proved.

From the previous proposition we get the following result.

Corollary 5.4. Let Lb,s be the Fq–linear set of PG(1, q2n) of rank 2n defined
by an Fq–vector subspace Ub,s of type (9). The size of Lb,s is a multiple of
qn−1
q−1 . Furthermore, the set of points of weight 2 w.r.t. Lb,s is a union of

orbits under the action of the linear collineation group PGb,s.

6 Scattered Fq-subspaces of type Ub,s and the cor-
responding MRD-codes

We start this section by recalling some important notion regarding RD-
codes. The middle nucleus of a code C ⊆ Fm×nq (cf. [29], or [30] where the
term left idealiser was used), is defined as

N (C) := {Z ∈ Fm×mq : ZC ∈ C for all C ∈ C},

and by [29, Theorem 5.4] it turns out to be a field of order at least q.
We will use the following equivalence definition for codes of Fm×mq . If

C and C′ are two codes then they are equivalent if and only if there exist
two invertible matrices A,B ∈ Fm×mq and a field automorphism σ such

that {ACσB : C ∈ C} = C′, or {ACTσB : C ∈ C} = C′, where T denotes
transposition. The code CT is also called the adjoint of C.

In [35, Section 5] Sheekey showed that scattered Fq-linear sets of PG(1, qm)
of rank m yield Fq-linear MRD-codes with parameters (m,m, q;m− 1). We
briefly recall here the construction from [35]. Let Uf = {(x, f(x)) : x ∈ Fqm}
be any maximum scattered Fq–vector subspace of Fqm × Fqm for some q-
polynomial f(x) over Fqm . Then, after fixing an Fq-bases for Fqm , the set of
Fq-linear maps of Fqm

Cf := {x 7→ af(x) + bx : a, b ∈ Fqm} (13)

corresponds to m × m matrices over Fq forming an Fq-linear MRD-code
with parameters (m,m, q;m − 1). Also, since Cf is an Fqm-subspace of
End(Fqm ,Fq), its middle nucleus N (Cf ) contains the set of scalar maps
Fm := {x ∈ Fqm 7→ αx ∈ Fqm : α ∈ Fqm}, i.e. |N (Cf )| ≥ qm.

11



On the other hand N (Cf ) is an Fq-subspace of invertible maps together
with the zero map (cf. [29, Corollary 5.6]), it is also an MRD-code with
parameters (m,m, q;m). Then (1) gives |N (Cf )| ≤ qm, thus N (Cf ) = Fm.

Regarding the converse we can state the following.

Proposition 6.1. If C is an MRD-code with parameters (m,m, q;m − 1)
and with middle nucleus isomorphic to Fqm, then C is equivalent to some
code Cf (cf. (13)).

Proof. By using a ring isomorphism between Fm×mq and End(Fqm ,Fq), we
may suppose that C ⊂ End(Fqm ,Fq). Since N (C) \ {0} and Fm \ {0} are
two Singer cyclic subgroups of GL(Fqm ,Fq), there exists H ∈ GL(Fqm ,Fq)
such that

H−1 ◦ N (C) ◦H = Fm,

see for example [15, pg. 187]. With C′ := H−1 ◦ C we can see that N (C′) =
Fm. It means that C′ is a 2-dimensional vector space over Fm and hence it
can be written as

C′ = {αr(x) + βs(x) : α, β ∈ Fqm},

for some q-polynomials r(x), s(x) over Fqm . Since each MRD-code with
parameters (m,m, q;m − 1) contains invertible elements (cf. [29, Lemma
2.1]), we may take h(x) ∈ C′ invertible. Then h−1 ◦ C′ has the desired form,
i.e. h−1 ◦ C′ = Cf for some q-polynomial f(x) over Fqm .

Proposition 6.2. The known Fq-linear MRD-codes with parameters
(m,m, q;m − 1) and with middle nucleus isomorphic to Fqm, up to equiv-
alence, arise from one of the following maximum scattered subspaces of
Fqm × Fqm:

1. U1 = {(x, xqs) : x ∈ Fqm}, 1 ≤ s ≤ m− 1 gcd(s,m) = 1.

2. U2 = {(x, δxqs + xq
m−s

) : x ∈ Fqm}, Nqm/q(δ) 6= 1, gcd(s,m) = 1.

Proof. The known Fq-linear MRD-codes with parameters (m,m, q;m − 1),
written as Fq-linear maps over Fqm , are of the form

H2,s(µ, h) := {x 7→ a0x+ a1x
qs + µaq

h

0 x
q2s

: a0, a1 ∈ Fqm},

with gcd(s,m) = 1 and Nqsm/qs(µ) 6= 1.
By [29, Corollary 5.9] the middle nuclei of the codes H2,s(µ, h) are iso-

morphic to Fqm if and only if µ = 0 or m | 2s − h. In the former case

12



we obtain generalized Gabidulin codes arising from maximum scattered lin-
ear sets of pseudoregulus type, i.e. from maximum scattered subspaces of
Fqm × Fqm of type U1. If m | 2s − h, by [28, Proposition 4.3] the adjoint
code of H2,s(µ, h) is equivalent to H2,s(1/µ, 2s−h) = H2,s(1/µ, 0) and direct
computations show that such a code is equivalent to a code arising from a
maximum scattered subspace of type U2. The assertion follows from the fact
that the families of MRD-codes arising from maximum scattered subspaces
of type U1 and U2, respectively, are both closed under the adjoint operation
(following the terminology of [35, 16, 25], the adjoint code of Cf is Cf̂ ).

Put m = 2n, n > 1 in the previous proposition. Note that if n = 2 then
a scattered Fq–vector subspace Ub,s (which means Nq4/q(b) 6= 1, cf. [10]) is

of type either U2 or U⊥
′

2 . Now, we are able to prove that MRD-codes arising
from scattered subspaces of form (9) with n > 2 are new.

By using the same arguments as in Corollary 5.2, the linear automor-
phism group Gi of Ui, i ∈ {1, 2}, is

G1 =

{(
a 0
0 aq

s

)
: a ∈ F∗q2n

}
, G2 =

{(
a 0
0 aq

s

)
: a ∈ F∗q2

}
.

This allows us to prove the following:

Theorem 6.3. If n > 2, the Fq–vector subspace of Fq2n × Fq2n

Ub,s = {(x, bxqs + xq
s+n

) : x ∈ Fq2n},

with b ∈ F∗q2n and 1 ≤ s ≤ n− 1 such that Nq2n/qn(b) 6= 1 and gcd(s, n) = 1,

is not equivalent to any subspace Ui, i ∈ {1, 2}, under the action of the group
ΓL(2, q2n).

Proof. If there exists an element ϕ ∈ ΓL(2, q2n) such that Uϕb,s = Ui, for
some i ∈ {1, 2}, then the corresponding linear automorphism groups will be
isomorphic via the map

ω ∈ Gb,s 7→ ϕ ◦ ω ◦ ϕ−1 ∈ Gi,

but this is a contradiction by comparing the sizes of the related groups (cf.
Corollary 5.2).

Let Cf and Cg be two MRD-codes arising from maximum scattered sub-
spaces Uf and Ug of Fqm × Fqm . In [35, Theorem 8] the author showed that

13



there exist invertible matrices A, B such that ACfB = Cg if and only if
Uf and Ug are ΓL(2, qm)-equivalent. Hence, by Theorem 6.3, we get the
following result.

Theorem 6.4. If n > 2, the linear MRD-code of dimension 4n and min-
imum distance 2n − 1 arising from a scattered Fq–vector subspace Ub,s =

{(x, bxqs + xq
s+n

) : x ∈ Fq2n} of Fq2n × Fq2n is not equivalent to any previ-
ously known MRD-code with the same parameters.

In the next section we will show that when n = 3 and q > 2 and when
n = 4 and q is odd there exist values of b and s for which the Fq-subspace Ub,s
of Fq2n×Fq2n is scattered, and from the above arguments the corresponding
MRD-codes are new.

7 New maximum scattered subspaces

7.1 The n = 3 case

We want to show that there exists b ∈ F∗q6 such that

Ub,1 := {(x, bxq + xq
4
) : x ∈ Fq6}

is a maximum scattered Fq-subspace.
Ub,1 is scattered if and only if for each m ∈ Fq6

bxq + xq
4

x
= −m

has at most q solutions. Those m which admit exactly q solutions corre-
spond to points 〈(1,−m)〉Fq6 of LUb,1 with weight one. It follows that Ub,1
is scattered if and only if for each m ∈ Fq6 the kernel of

rm,b(x) := mx+ bxq + xq
4

has dimension less than two, or, equivalently, the Dickson matrix

Dm,b :=



m b 0 0 1 0
0 mq bq 0 0 1

1 0 mq2
bq

2
0 0

0 1 0 mq3
bq

3
0

0 0 1 0 mq4
bq

4

bq
5

0 0 1 0 mq5


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associated to rm,b(x) has rank at least five (cf. [36, Proposition 4.4]). Equiv-
alently, Dm,b has a non-zero 5× 5 minor. We will denote by Mi,j the deter-
minant of the matrix obtained from Dm,b by removing the i-th row and the
j-th column. We will use the following:

M6,1 = bq
2−b1+q2+q3−bq+q2+q4

+b1+q+q2+q3+q4−bq4
mq+q2+q3−bmq2+q3+q4

,
(14)

M6,5 = −bq2
m+ bq+q

2+q4
m− bmq3

+ b1+q+q4
mq3

+ bq
4
m1+q+q2+q3

. (15)

We will show that for certain choices of b and q there is no m ∈ Fq6 such
that both of the above expressions are zero.

Theorem 7.1. For q > 4 we can always find b ∈ F∗q2, such that Ub,1 is a
maximum scattered Fq-subspace of Fq6 × Fq6.

Proof. We want to find b ∈ F∗q2 such that at least one of (14) and (15) is
non-zero. Suppose the contrary, i.e. for each b ∈ Fq2 :

0 = b(1− 2bq+1 + b2q+2 −mq+q2+q3 −mq2+q3+q4
), (16)

0 = b(−m+ bq+1m−mq3
+ bq+1mq3

+m1+q+q2+q3
). (17)

Put x = m1+q+q2
and z = 1− bq+1. Obviously z 6= 1 and dividing (16) by b

gives
z2 = xq + xq

2
, (18)

multiplying (17) by mq4+q5
/b gives

z(xq
3

+ xq
4
) = xq

3+1. (19)

Since b ∈ Fq2 , it follows that bq+1 ∈ Fq and hence z ∈ Fq. Then (18)

yields xq + xq
2 ∈ Fq and hence x ∈ Fq2 . Then (18) and (19) give:

z2 = x+ xq, (20)

z3 = xq+1. (21)

Thus x and xq are roots of the equation

X2 − z2X + z3 = 0. (22)

From now on we distinguish two cases according to the parity of q. First
suppose q odd. If (22) can be solved in Fq, then x = xq ∈ Fq and hence (20)
and (21) give z = x = 0, or z = 4, x = 8. If we can find z ∈ Fq \ {0, 1, 4}
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such that (22) has roots in Fq, then we obtain a contradiction meaning that
the two minors in consideration cannot vanish at the same time. Then Ub,1
is scattered for each b ∈ Fq2 which satisfies 1− bq+1 = z. Equation (22) has
roots in Fq if and only if z4−4z3 is a square, hence, when z2−4z is a square.
Note that z = 2 gives z2 − 4z = −4, which is always a square when q ≡ 1
(mod 4). So from now on, we may assume q ≡ 3 (mod 4) and hence q ≥ 7.
Consider the conic C of PG(2, q) with equation X2

0 − 4X0X2 −X2
1 = 0. It

is easy to see that C is always non-singular, and that the line with equation
X0 = 0 is a tangent to C. For q ≥ 7 C has more than 7 points and hence we
can find a point of C not on the lines X0 = 0, X0−4X2 = 0, X0−X2 = 0 and
X2 = 0. It means that we can always find a point 〈(x0, x1, 1)〉Fq ∈ PG(2, q)
such that x2

0−4x0 = x2
1 and x0 ∈ Fq \{0, 1, 4}. It follows that we can always

find z, and hence b, with the given conditions.
Now consider the case when q is even. For z 6= 0 (22) has a solution in

Fq if and only if the S-invariant of the equation, that is Trq/2(1/z), equals
to zero. If there is a solution in Fq, then (20) and (21) give z = 0, so it is
enough to prove that there exists z ∈ Fq \ {0, 1}, such that Trq/2(1/z) = 0.
The existence of such z gives a contradiction meaning that the two minors
in consideration cannot vanish at the same time. The equation Trq/2(x) = 0
has q/2 pairwise distinct roots in Fq, thus Trq/2(1/z) = 0 has q/2−1 non-zero
solutions. It follows that for q ≥ 8 we can find such z.

7.2 The n = 4 case

We will show that there exists b ∈ F∗q8 such that

Ub,1 := {(x, bxq + xq
5
) : x ∈ Fq8}

is a maximum scattered Fq-subspace for each odd q.
Ub,1 is scattered if and only if for each m ∈ Fq8

bxq + xq
5

x
= −m

has at most q solutions. Those m which admit exactly q solutions corre-
spond to points 〈(1,−m)〉Fq8 of LUb,1 with weight one. It follows that Ub,1
is scattered if and only if for each m ∈ Fq8 the kernel of

rm,b(x) := mx+ bxq + xq
5
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has dimension less than two, or, equivalently, the Dickson matrix

Dm,b :=



m b 0 0 0 1 0 0
0 mq bq 0 0 0 1 0

0 0 mq2
bq

2
0 0 0 1

1 0 0 mq3
bq

3
0 0 0

0 1 0 0 mq4
bq

4
0 0

0 0 1 0 0 mq5
bq

5
0

0 0 0 1 0 0 mq6
bq

6

bq
7

0 0 0 1 0 0 mq7


of rm,b(x) has a non-zero 7×7 minor. If we remove the first two columns and
last two rows of the above matrix, then the remaining 6×6 submatrix M has
determinant (bq+q

5 − 1)mq3+q4
. It follows that with Nq8/q4(b) 6= 1 the only

point of LUb,s with weight larger than 2 is 〈(1, 0)〉Fq8 . On the other hand, it

is easy to see that 〈(1, 0)〉Fq8 is a point of LUb,s if and only if Nq8/q4(b) = 1.
We will denote by Mi,j the determinant of the matrix obtained from Dm,b

by cancelling the i-row and the j-th column. We will use the following:

M8,2 = (b1+q4−1)q+q
2
(bq

3+q4
m+mq4

)+m1+q3+q4+q5
(bq

6
mq2

+bqmq6
). (23)

Theorem 7.2. For odd q and b2 = −1 the Fq-subspace Ub,1 is maximum
scattered in Fq8 × Fq8.

Proof. We will show that there is no m ∈ F∗q8 such that (23) vanishes.

Applying b2 = −1, the vanishing of (23) would give

0 = 4(bq+1m+mq4
) +m1+q3+q4+q5

(bmq2
+ bqmq6

). (24)

Now we distinguish two cases, according to b ∈ Fq (i.e., q ≡ 1 (mod 4)), or
b ∈ Fq2 \ Fq (i.e., q ≡ 3 (mod 4)). First suppose that the former case holds.
Then

0 = 4(−m+mq4
) + bm1+q3+q4+q5

(mq2
+mq6

). (25)

Considering the Fq8 → Fq4 trace of both sides of (25) and using the Fq4-

linearity of this function, it follows that Trq8/q4(mq3+q5
) = 0. It is easy

to see that Trq8/q4(x) = Trq8/q4(y) = 0 implies xy ∈ Fq4 for any two

x, y ∈ Fq8 , thus mq3+q5
mq2+q4

and mq3+q5
mq4+q6

are in Fq4 . It follows

that bm1+q3+q4+q5
(mq2

+mq6
) = mλ for some λ ∈ Fq4 and hence (25) gives

mq4−1 ∈ Fq4 . But also mq4+1 ∈ Fq4 and hence m2 ∈ Fq4 giving either
m ∈ Fq4 , or Trq8/q4(m) = 0, but (25) gives m = 0 in both cases.
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Now consider the b ∈ Fq2 \ Fq case. Then bq+1 = 1 and bq = −b, thus
(24) gives

0 = 4(m+mq4
) + bm1+q3+q4+q5

(mq2 −mq6
). (26)

Since 4(m + mq4
) ∈ Fq4 and bm1+q4 ∈ Fq4 , it follows that mq3+q5

(mq2 −
mq6

) ∈ Fq4 . It is easy to see that Trq8/q4(x) = 0 and xy ∈ Fq4 implies

Trq8/q4(y) = 0 for any two x, y ∈ Fq8 , thus Trq8/q4(mq3+q5
) = 0. Then, as in

the previous case, m2 ∈ Fq4 follows, which gives a contradiction.

Remark 7.3. It follows from Theorem 6.3 that the maximum scattered sub-
spaces of this section are new, i.e. they cannot be obtained from previously
known maximum scattered subspaces under the action of ΓL(2, qn), n = 6, 8.

As we mentioned in the Introduction, it can happen that two Fq–vector
subspaces of Fqn ×Fqn lie on different orbits of ΓL(2, qn) but they define Fq-
linear sets which are equivalent under the group PΓL(2, qn). In [7, Theorem
4.3] the authors prove that the maximum scattered linear sets defined by the
maximum scattered subspaces constructed in Theorems 7.1 and 7.2 are not
equivalent to the previously known maximum scattered linear sets under the
group PΓL(2, qn).

Remark 7.4. Computations with GAP yield the following results.
With respect to the cases not covered by Theorem 7.1: there exist b ∈ F∗q6

such that the subspace {(x, bxq +xq
4
) : x ∈ Fq6} is scattered in Fq6×Fq6 also

for q ∈ {3, 4}, but not for q = 2.
With respect to Theorem 7.2: for q ≤ 8, q even, there is no b ∈ F∗q8 such

that {(x, bxq +xq
5
) : x ∈ Fq8} is scattered in Fq8×Fq8 and for q ≤ 11, q odd,

the corresponding subspace is scattered if and only if bq
4+1 = −1. According

to the first paragraph of Section 5, each of these subspaces is equivalent to
the scattered subspace found in Theorem 7.2.

There is no b ∈ F∗q2n such that {(x, bxqs + xq
n+s

) : x ∈ Fq2n}, gcd(s, n) =

1, is scattered in Fq2n × Fq2n when q ≤ 5 and n ∈ {5, 6, 7, 8}, or q = 7 and
n ∈ {5, 6, 7}, or q = 7 and n = 8, or q = 8 and n = 5.

Conjecture 7.5. According to the first paragraph of Section 5, f1(x) =
b1x

q + xq
4 ∈ Fq6 [x] and f2(x) = b2x

q + xq
4 ∈ Fq6 [x] define equivalent sub-

spaces when Nq6/q3(b1) = Nq6/q3(b2). We conjecture that the size of the
set

{Nq6/q3(b) : f(x) = bxq + xq
4

defines a maximum scattered Fq-space Ub,1}
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is b(q2 +q+1)(q−2)/2c, and hence there might be further examples of max-
imum scattered subspaces in this family. By GAP we verified this conjecture
for q ≤ 32.

Remark 7.6. The maximum number of directions determined by an Fq-
linear function over Fqn is (qn − 1)/(q − 1). Also, the maximum size of
an Fq-linear blocking set of Rédei type of PG(2, qn) is qn + (qn − 1)/(q −
1). According to [5, Section 5.3] our new examples of maximum scattered
spaces yield new examples of functions and of blocking sets which attain
these bounds.

In [14, pg. 132] the maximal cardinality of the image set Im(L(x)/x) is
considered (with x 7→ 1/x defined to take 0 to 0), where L(x) is an Fp-linear
function over Fq, p is a prime and q is a power of p. If for some invertible
p-polynomial f , the subspace Uf = {(x, f(x)) : x ∈ Fq} is scattered, then the
cardinality of Im(L(x)/x) reaches its maximum, which is 1+(q−1)/(p−1).
It follows that the maximum scattered subspaces constructed in this paper
yield such functions.
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