A new family of MRD-codes

Bence Csajbok, Giuseppe Marino, Olga Polverino, Corrado Zanella *

Abstract

We introduce a family of linear sets of PG(1, ¢*") arising from max-
imum scattered linear sets of pseudoregulus type of PG(3,¢"™). For
n = 3,4 and for certain values of the parameters we show that these
linear sets of PG(1,¢?") are maximum scattered and they yield new
MRD-codes with parameters (6,6, ¢;5) for ¢ > 2 and with parameters
(8,8,¢;7) for q odd.
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1 Introduction

Linear sets are natural generalizations of subgeometries. Let A = PG(V,Fyn)
=PG(r—1,q¢"), where V is a vector space of dimension r over Fyn. A point
set L of A is said to be an [F-linear set of A of rank £ if it is defined by the
non-zero vectors of a k-dimensional F,-vector subspace U of V, i.e.

L=Ly={(wr,:uecU\{0}}.

The maximum field of linearity of an [Fg-linear set Ly is Fye if ¢ | n is the
largest integer such that Ly is an Fg-linear set.

Two linear sets Ly and Ly of A are said to be PI'L-equivalent (or simply
equivalent) if there is an element ¢ in PT'L(r, ¢"), the collineation group of
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A, such that L(g = Lw. It may happen that two F,-linear sets Ly and
Ly of A are PT'L-equivalent even if the two [Fy-vector subspaces U and W
are not in the same orbit of I'L(r, ¢"), the group of invertible Fyn-semilinear
transformations of V' (see [8] and [5] for further details).

The set of m x n matrices F;'*" over F, is a rank metric Fy-space with
rank metric distance defined by d(A, B) = rk (A — B) for A, B € F"*". A
subset C C F**™ is called a rank distance code (RD-code for short). The
minimum distance of C is

d(C) = Ang}nA#B{d(A, B)}.
In [11] the Singleton bound for an m x n rank metric code C with minimum
rank distance d was proved:

#C < qmax{m,n}(min{m,n}—d—o—l). (1)

If this bound is achieved, then C is an MRD-code. MRD-codes have various
applications in communications and cryptography; see for instance [12, [17].
More properties of MRD-codes can be found in [IT], 12} 13, [33]. When C is
an [Fg-linear subspace of Fy* ", we say that C is an F-linear code and the
dimension dim,(C) is defined to be the dimension of C as a subspace over F,,.
If d is the minimum distance of C we say that C has parameters (m,n, q; d).

In [35], Section 4], the author showed that scattered linear sets of PG(1, ¢")
of rank m yield F,-linear MRD-codes of dimension 2m and minimum dis-
tance m — 1. Also, codes arising in this way have middle nucleus of or-
der ¢"™ (which is an invariant with respect to the equivalence on MRD-
codes, see Section @ In Proposition we prove that every code with
these parameters can be obtained from a suitable scattered linear set of
rank m of PG(1,¢™). The correspondence between MRD codes and linear
sets of PG(1, ¢™) has been recently generalized in [6]. The number of non-
equivalent MRD-codes obtained from a scattered linear set of PG(1,¢™) of
rank m was studied in [0, Section 5.4]. In [24] the author investigated in
detail the relationship between linear sets of PG(n — 1,¢") of rank n and
Fg-linear MRD-codes.

So far, the known non-equivalent families of F,-linear MRD-codes of
dimension 2m, minimum distance m — 1 and with middle nucleus Fm arise
from the following maximum scattered F,—vector subspaces of Fgm X Fgm:

LU = {(z,27): 2 € Fgm}, 1 < s <m—1ged(s,m) =1 ([]) gives
Gabidulin codes when s = 1, and generalized Gabidulin codes when
s> 1;



2. Uy := {(z,027 + 27" "): x € Fgm}, Nym/o(8) # 1 , ged(s,m) =1
([27] for s = 1) gives MRD-codes found by Sheekey in [35] as part of
a larger family. The equivalence issue for these codes was studied also
by Lunardon, Trombetti and Zhou in [2§].

In this paper we present a family of Fy-linear sets of rank m of PG(1, ¢™),

m = 2n and n > 1, arising from F,-linear sets of PG(3, ¢") of pseudoregulus

type. These linear sets are defined by the following F,-vector subspaces of
Fgm X Fgm:

Ups = {(x,bx? + qun): r € Fpon} (2)

with Ngon jgn(b) # 1, 1 < s <2n — 1 and ged(s,n) = 1.

We will show that each point of Ly, , has weight at most 2 (cf. Propo-
sition and when Ly, , is scattered and m > 4, then, as we will see in
Section [0} the corresponding MRD-code is not equivalent to any previously
known MRD-code with the same parameters. Finally, in the last section,
we exhibit for m = 6 and m = 8 infinite examples of scattered IF,-subspaces
of type Uy s and hence new infinite families of MRD-codes.

2 Linear sets

Let Ly be an F-linear set of A = PG(r — 1,¢"), ¢ = p", p prime, of rank
k. We point out that different vector subspaces can define the same linear
set. For this reason a linear set and the vector space defining it must be
considered as coming in pair.

Let Q = PG(W,F,») be a subspace of A, then QN Ly is an Fy-linear set
of 2 defined by the F,~vector subspace UNW and, if wz,, (2) := dimg, (W N
U) = i, we say that Q has weight i w.r.t. Ly. Hence a point of A belongs
to Ly if and only if it has weight at least 1 and, if Ly has rank k, then
Lyl < ¢* ' 4+ ¢ 24 --- + ¢+ 1. For further details on linear sets see [34]
and [23].

An F,-linear set Ly of A of rank k is scattered if all of its points have
weight 1, or equivalently, if Ly has maximum size ¢* 1 +¢* 2 4. 4 ¢+ 1.
The associated F,~vector subspace U is said to be scattered. A scattered
F,-linear set of A of highest possible rank is a mazimum scattered F,—linear
set of A; see [4]. Maximum scattered linear sets have a lot of applications
in Galois Geometry. For a recent survey on the theory of scattered spaces
in Galois Geometry and its applications see [19].

'Nym 4(-) denotes the norm function from Fym over F.



The rank of a scattered Fy-linear set of PG(r — 1,¢"), rn even, is at
most rn/2 ([4, Theorems 2.1, 4.2 and 4.3]). For n = 2 scattered F,-linear
sets of PG(r — 1,¢?) of rank r are the Baer subgeometries. When r is even
there always exist scattered F,-linear sets of rank 5 in PG(r — 1,¢"), for
any n > 2 (see [I8, Theorem 2.5.5] for an explicit example). Existence
results were proved for r odd, n — 1 < r, n even, and ¢ > 2 in [4, Theorem
4.4], but no explicit constructions were known for r odd, except for the case
r =3, n =4, see [2, Section 3]. Very recently in [3, Theorem 1.2] and in [6),
Section 2] maximum scattered Fy-linear sets of PG(r — 1,¢") of rank rn/2
have been constructed for any integers r,n > 2, rn even, and for any prime
power q > 2.

2.1 Scattered linear sets of pseudoregulus type in PG(3, ¢")

In [26], generalizing results contained in [32], [20] and [22], a family of max-
imum scattered linear sets of PG(2h — 1,¢™) of rank hn (h,n > 2), called
of pseudoregulus type, is introduced. In particular, a maximum scattered
F,-linear set Ly of A = PG(3,¢") of rank 2n is of pseudoregulus type if (i)
there exist ¢" 4+ 1 pairwise disjoint lines of Ly of weight n w.r.t. Ly, say
51,52, ..., 8q¢gn+1;

(ii) there exist exactly two skew lines ¢; and t3 of A, disjoint from L, such
that ¢t; N's; # 0 for each i =1,...,¢" + 1 and for each j =1, 2.

The set of lines Pr,,, = {s;: i =1,...,¢"+1} is called the F -pseudoregulus
(or simply pseudoregulus) of A associated with Ly and t; and ty are the
transversal lines of Pr, (or transversal lines of Lir). Note that by [20],
Corollary 3.3], if n > 2 the pseudoregulus Pr,, associated with Ly and its
transversal lines are uniquely determined.

In [20, Sec. 2] and in [26, Theorems 3.5 and 3.9], F,linear sets of
pseudoregulus type of PG(2h — 1,¢") of rank hn (h,n > 2) have been al-
gebraically characterized. In particular, in PG(3,¢") we have the following
result.

Theorem 2.1. Let t; = PG(U;,Fyn) and to = PG(Us, Fyn) be two disjoint
lines of A = PG(V,Fqn) = PG(3,¢") and let ®; be a strictly semilinear
collineation between t1 and to defined by the Fyn-semilinear map f with

companion automorphism an element o € Aut(Fyn) such that Fixz(o) =TF,.
Then, for each p € Fyn, the set

Lps={{utpf(u))p,: ueUi\{0}}

is an Fy-linear set of A of pseudoregulus type whose associated pseudoregulus
is PrL,, = {(P,P®) : P € t1}, with transversal lines t; and to.
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Conversely, each Fy-linear set of pseudoregulus type of A = PG(3,q¢")
can be obtained as described above.

In [26], Fy-linear sets of pseudoregulus type of the projective line A =
PG(V,Fqn) = PG(1,¢") (n > 2) are also introduced. Let P, = (w) and P, =
(v) be two distinct points of the line A and let 7 be an F-automorphism of
Fgn such that Fiz(r) = Fg; then for each p € Fy. the set

Wp’q— = {)\W + p)\TVI A€ Fqn}, (3)

is an F,—vector subspace of V' of dimension n and L, := L, is a max-
imum scattered [Fg-linear set of A. The linear sets L, , are called of pseu-
doregulus type and the points P; and P, are their transversal points. Also,
if n > 2, then these transversal points are uniquely determined ([26, Prop.
4.3]). For more details on such linear sets see [9]. Also, by [26, Remark 4.5],
if Ly is an Fy-linear set of pseudoregulus type of PG(3,¢"), and s is a line
of weight n w.r.t. Ly, then Ly N s is an Fy-linear set of pseudoregulus type
of the line s whose transversal points are the intersection points of s with
the transversal lines of P, (see also [21, Prop. 2.5] and [31, Theorem 2.8]
for further details).

3 Linear sets and dual linear sets in PG(1,¢")

Let V=F x Fgn and let Ly be an Fy-linear set of rank n of PG(1,¢") =
PG(V,F4n). We can always assume (up to a projectivity) that Ly does not
contain the point ((0,1))r,.. Then U = Uy = {(z, f(z)): x € Fyn}, for some
g-polynomial f(z) = Z?:_Ol a;z?" over Fyn. For the sake of simplicity we will
write Ly instead of Ly, to denote the linear set defined by Uy.

Consider the non-degenerate symmetric bilinear form of Fy» over I,

defined by the following rule
<z,y >i= Trqn/q(:cy).(E[) (4)

Then the adjoint map f of an F,-linear map f(x) = Z:‘L;ol a;x? of Fyn (with
respect to the bilinear form (4)) is

fz) = Z a2t (5)

*Tryn /q(+) denotes the trace function from Fgn over Fy.



Let n: VXV — Fgn be the non-degenerate alternating bilinear form
of V defined by n((x,y), (u,v)) = v — yu. Then 7 induces a symplectic
polarity 7 on the line PG(V,Fgn) and

77/((37711)7 (u7v)) = Trq"/q(n((wvy)7 (u7v))) = Trqn/q(xv - yu) (6)

is a non-degenerate alternating bilinear form on V, when V is regarded as
a 2n-dimensional vector space over IF,. We will always denote in the paper
by L and L’ the orthogonal complement maps defined by 7 and 1’ on the
lattices of the Fyn-subspaces and the [F -subspaces of V, respectively. Direct
calculation shows that /

Up =U 2 (7)

and the F,-linear set of rank n of PG(V,[Fyn) defined by the orthogonal
complement U L' is called the dual linear set of Ly with respect to the
polarity 7.

Recall the following lemma.

Lemma 3.1 ([3, Lemma 2.6], [5, Lemma 3.1]). Let Ly = {((z, f()))rn: * €
Fyn} be an Iqulimfar set of PG(1,q"™) of rank n, with f(x) a g-polynomial
over Fyn, and let f be the adjoint of f with respect to the bilinear form .
Then for each point P € PG(1,q") we have wr,,(P) = wa(P). In partic-

ular, Ly = L and the maps defined by f(@)/z and f(x)/x have the same
1mage.

4 From the geometry in PG(3,¢") to the geometry
in PG(1,¢*)

From now on, we will consider V. = F2n X 2. both as a 2-dimensional
vector space over F 2. and as a 4-dimensional vector space over Fyn. In the
former case the linear set of £1 := PG(V,F2.) = PG(1,¢*") defined by an
Fg-subspace U <V will be denoted as Ly, in the latter case the linear set
of ¥3 := PG(V,F;n) = PG(3,¢") defined by U will be denoted by L.
Consider the following two skew lines of X3: £o := {((#,0))r,. : @ € Fs.}
and £1 := {((0,9))r,n: y € F2.}. By Theorem [F,-linear sets of pseu-
doregulus type in Y3 with transversal lines ¢g and ¢; are of the form L Fi=
Ly,, where Uy = {(z, f(2)): © € Fpn}, and f(x) is a strictly Fgn-semilinear
invertible map of Fg2n with companion automorphism o, Fiz(o) = F,. It
is easy to see that this happens if and only if f(z) = ax® + B2°7", where



orx > a?,1<s<2n—1,ged(s,n) =1, and Ngen jgn (@) # Ngan sgn (8).
That is,
Up = {(z,02° + p2°7"): v € Fon}, (8)

with the same conditions as above. In 3y the Fy-linear set Ly := Ly, is not
necessarily scattered, but as the next result shows, it cannot contain points
with weight greater than two.

Proposition 4.1. Each point of the Fy-linear set Ly of PG(I, "), n>2,
where

Uf = {(a:,f(a;)) S ]Fan},

with f(z) = ax® 4+ px°9", o: x> 29,1 <5< 2n—1, ged(s,n) = 1, and
Ngan jgn (@) # Ngzn gn(B), has weight at most two.

Proof. We first recall that the pseudoregulus associated with L fin Mg =
PG(3,¢") consists of ¢" + 1 lines, and these are the only lines with weight
n w.r.t. Ly ([26, Prop. 3.2]).

Let Q := ((xo, f(wo))>1gq2n be a point of Ly. In X3 this point corresponds
to a line {¢ disjoint from both ¢y and ¢; and meeting at least one line of the
pseudoregulus associated with Ly, say m. Note that wg,(Q) = wg, (lQ)-
By [1, Theorem 5.1] a plane of X3 has weight either n or n + 1 w.r.t. Ly,
hence if the weight of @ w.r.t. Ly is greater than one, then the plane 7 of
Y3 spanned by the lines /g and m has weight n + 1. Since £g N'm is a point
with weight one w.r.t. L 7, the Grassmann formula gives that the weight of
lo w.r.t Ly is two and hence the weight of @ w.r.t. Ly is two. O

5 A family of F -linear sets of PG(1,¢*")

In this section we investigate the family of F,-linear sets of PG(1,¢*") de-
fined by F,—vector subspaces of form (§). Let Uy and U, be two F,~vector
subspaces of V = Fj2n x F2n of form @D where f(z) = az? + Bxd™™"
g(z) = /27" + 24" | with 1 < s < 2n — 1 and ged(s,n) = 1. Since we
are interested in the study of scattered linear sets of PG(1, ¢>") not of pseu-
doregulus type, we can assume a3 # 0 (cf. [26, Sec. 4]). If Nyan jgn(af) =
Ngan /qn (@/B) then there exists a € IFZQ,L such that o/ = faa? (@1 and
direct computations show that U}p = Uy, where

and

¢: (z,y) € Vi (za,ya? o Ja) € V.



From the previous arguments it follows that L; is defined, up to the action
of the group GL(2, ¢"), by an F,—vector subspace of V of type

Ups = {(z,b27 +29""): z € Fnt, (9)

with b € F7,, and 1 <'s < 2n—1 such that Nyzn /4 (b) # 1 and ged(s,n) = 1.
We will denote by Ly s the corresponding Fy-linear set Ly, .

Also we can restrict our study to the choice of the integers s’ such that
1 < s <mnand ged(s,n) = 1. Indeed, by using the notation of Section 3, we
have

UbJ;; _ {(x, bq2nfsxq2nfs + an*S): = ]Fan} = qu2n75 9

n—s

and it can be easily seen that U, and UbLS, are equivalent via the linear
invertible map ¢: (z,y) € V — (ay,fz) € V, where « is any element
satisfying 4" 1 = —bqn%l and 8 = (0?7 a?" +)7""

Moreover we have the following result.
Proposition 5.1. Two Fq-subspaces Uy s and Uy 5 of V = Fgen X Fpon of
form @D with b,b € FZQ’“ Ngzn jqn(b) # 1, Nganjgn(b) # 1, 1 < 5,5 < n and
ged(n, s) = ged(n, 5) = 1, are TL(2, ¢*)-equivalent if and only if either

§=25 and Nan/qn (l_)) == Nq2n/qn (b)o—

or

S + 5 =N and Nan/qn (b) Nq2n/qn (b)g == 1,
for some automorphism o € Aut(Fgn).

Proof. Uy s and Uy 5 are I'L(2, ¢*")-equivalent if and only if there exist ele-
ments «, 3,7,0 € Fn, with ad # By and an automorphism o € Aut(FF2n)
such that

. (a8 v _ Y
VQT Equn,ﬂy G]Fan . ( 5 5 ) ( (bxqs +xqs+n)g > = < l_)yqs +yqs+n >

Put z := 27, the last equation implies that for each 2z € F2n, there exists
y € F2n such that

{ az+ BT+ 20) =y,

vz + 6729 + an+5) = Bng + yqn+§. (10)



Putting the first in the second equation of System , we get that

n—+s

72+5(b02q5+zq"+5) _ l_)(O[Z—i‘/B(bUZqS +an+s))q§+(az+/8(bo.zqs +an+s))q
(11)
for each z € F2n.

n+s n+2s

_ . . s 2s . . .
If s = 3, since the monomials z, 27,27, 29, 24 are pairwise dis-

tinct modulo 27" — z, from the previous polynomial identity we get

v=0_
5b° = ba?’
§=ad""" (12)

BT b7e 4 BT = 0
A T U )

Since Ngzn /qn (b) # 1, System is equivalent to

=0
f=0
6% = bad"
5 _ aqn-&-s’

which admits solutions if and only if Ngan /gn (b) = Ng2n/gn(0)7, with o €
AUt(Fqn)
If s # 5, since 1 < 5,5 < n and ged(s,n) = ged(s,n) = 1, we get

5 + +5 +5 +5+5
{qu7zqs} m {Z7zq’n S’an S7qu S,an S S} — @

modulo 29" — z. Hence polynomial identity yields a = § = 0 and
Equation becomes

n-+3s n+s+3s

vz = (BB + Bq””)ZqS*g + (BB + BTt 2

. _ . s+35
for each z € Fy2n. Also, since s + 5 < 2n, the monomials z and 27 are

different modulo 24" — z. Hence, if s + 5 # n we immediately get v = 0,
a contradiction. It follows that s + § = n and comparing the coefficients of
the terms of degree 1 and ¢*T° we get

7= 0BT 4 g7 e
bBIHT 4 BT =0,

which admits solutions if and only if Ngzn /gn (Bb"qg) =1, i.e. if and only if
Ngzn /gn (b) qun/qn(bqs)" = 1, for some automorphism o € Aut(Fgn). O
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We finish this section by determining the linear automorphism group of
Up s and with some results on the geometric structure of a linear set Ly .

Corollary 5.2. The F2n-linear automorphism group Gy s of an Fg-vector
subspace Uy s of V = F on X 2n of form (@) consists of the following matrices

a 0
0 o )’

Proof. In the previous theorem choosing s = § and b = b, by System
we get B=y=0and § =a? = a?"*". The assertion follows. O

with a € IF:;n.

The previous corollary allows us to prove the following result.

Proposition 5.3. Let Ly be the F,-linear set of PG(1,¢*") of rank 2n
defined by an Fy—vector subspace Uy s of type @ and let PGy s be the pro-
jectivity group induced on the line PG(1,¢*") by Gv,s- Then the following
properties hold:

i) the linear collineation group PGy, s preserves Ly s, it has order q;—_ll, fizes

the two points ((1, 0)>Fq2" and ((0, 1)>1qun and any other point—orbit has

L, g1,
812¢ ~ =1 ;

ii) Ly s is a union of orbits of points under the PGy s—action;

iii) all points of Ly, s belonging to the same PGy, s—orbit have the same weight
w.r.t. Lpsg.

Proof. Let ¢, be the linear collineation of PG, induced by the element
P = ( 3 )\(()Is ) € Gy, with A € Fy.. Since Fix(o) NFyn = Ty, the group

PGy, s has order q:__ll. Also, it can be easily seen that if P is a point of
PG(1,¢*") different from <(1,0)>[pan and ((0, 1)>Fq2n, then P> = P if and
only if ¢, is the identity map. Hence Statements i) and ii) follow.

Let now P = ((20, f(20)))F,,,, be apoint of Ly, i.e. f(zo) = bl +al

Then P = ((Azo, f()‘x0>)>]Fq2n and

n+s

wr, ,(P) = dimg(((zo, f($0))>JFq2n NUyp,s) = dimg o ({(zo, f(JUO))>IFq2n NUps)
= dim, (<(Ax0, F20)))F 5, O SDA(UI;,S)>
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= dimy (w0, F(A20))r 0, (Ups ) = w1, (P),
and Property #i7) is proved. O
From the previous proposition we get the following result.

Corollary 5.4. Let Ly, 5 be the F,-linear set of PG(1,¢*") of rank 2n defined
by an Fy—vector subspace Uy s of type @ The size of Ly s is a multiple of

qqn_—_ll. Furthermore, the set of points of weight 2 w.r.t. Ly s is a union of
orbits under the action of the linear collineation group PGy . O

6 Scattered I -subspaces of type U, and the cor-
responding MRD-codes

We start this section by recalling some important notion regarding RD-
codes. The middle nucleus of a code C C Fj**™ (cf. [29], or [30] where the
term left idealiser was used), is defined as

N(C):={Z e F»*™: ZC € C for all C € C},

and by [29, Theorem 5.4] it turns out to be a field of order at least g.

We will use the following equivalence definition for codes of Fy**™. If
C and C' are two codes then they are equivalent if and only if there exist
two invertible matrices A, B € Fy**™ and a field automorphism o such
that {AC°B: C € C} =, or {ACT°B: C € C} = (', where T denotes
transposition. The code C? is also called the adjoint of C.

In [35, Section 5] Sheekey showed that scattered Fy-linear sets of PG(1, ¢")
of rank m yield Fy-linear MRD-codes with parameters (m,m,¢;m —1). We
briefly recall here the construction from [35]. Let Uy = {(z, f(x)): v € Fgm}
be any maximum scattered F,—vector subspace of Fym x Fgm for some g-
polynomial f(z) over Fym. Then, after fixing an F,-bases for F,m, the set of
Fy-linear maps of Fym

Cr={x—af(x)+bx:abeFym} (13)

corresponds to m x m matrices over [F, forming an Fg-linear MRD-code
with parameters (m,m,q;m — 1). Also, since Cy is an Fym-subspace of
End(Fgm,Fg), its middle nucleus N'(Cy) contains the set of scalar maps
Fm i ={2 €Fgm — ax € Fgm: o € Fgm}, 1.e. |N(Cy)| > ¢™.
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On the other hand N (Cy) is an Fg-subspace of invertible maps together
with the zero map (cf. [29, Corollary 5.6]), it is also an MRD-code with
parameters (m,m,q;m). Then gives |N(Cy)| < ¢, thus N (Cy) = Frp.

Regarding the converse we can state the following.

Proposition 6.1. If C is an MRD-code with parameters (m,m,q;m — 1)
and with middle nucleus isomorphic to Fym, then C is equivalent to some

code Cy (cf. ([13)).

Proof. By using a ring isomorphism between Fy**™ and End(F,m,F;), we
may suppose that C C End(Fym,F,). Since N(C) \ {0} and F, \ {0} are
two Singer cyclic subgroups of GL(Fgm,F,), there exists H € GL(Fqm,[F,)
such that

H Yo N(C)o H = Fpp,

see for example [15, pg. 187]. With C’ := H~! o C we can see that N'(C’) =
Fom. It means that C’ is a 2-dimensional vector space over F,, and hence it
can be written as

C' = {ar(x)+ Bs(x): a, B € Fym},

for some g-polynomials r(x),s(z) over Fym. Since each MRD-code with
parameters (m,m,q;m — 1) contains invertible elements (cf. [29, Lemma
2.1]), we may take h(z) € C" invertible. Then h~! o C’ has the desired form,
i.e. h1o (" =Cy for some g-polynomial f(z) over Fym. O

Proposition 6.2. The known Fg-linear MRD-codes with parameters
(m,m,q;m — 1) and with middle nucleus isomorphic to Fgm, up to equiv-
alence, arise from one of the following maximum scattered subspaces of
qu X ]qu N

1. Uy ={(z,27): 2 €Fym}, 1 <5 <m—1 ged(s,m) = 1.
2. Uy = {(x,029" + 29" ") 2 € Fym}, Ngm/q(6) # 1, ged(s,m) = 1.

Proof. The known Fy-linear MRD-codes with parameters (m,m,¢;m — 1),
written as Fg-linear maps over Fym, are of the form

s h s
Ho,s(p1, h) == {z — apzx + a12? + pad 29 ag,ay € Fym},

with ged(s,m) =1 and Ngsm jgs (1) # 1.
By [29, Corollary 5.9] the middle nuclei of the codes Ha s(11, h) are iso-
morphic to Fym if and only if 4 = 0 or m | 2s — h. In the former case
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we obtain generalized Gabidulin codes arising from maximum scattered lin-
ear sets of pseudoregulus type, i.e. from maximum scattered subspaces of
Fgm x Fgm of type Uy. If m | 2s — h, by [28, Proposition 4.3] the adjoint
code of Ha s(p, h) is equivalent to Ho s(1/p,2s—h) = Ha 4(1/p,0) and direct
computations show that such a code is equivalent to a code arising from a
maximum scattered subspace of type Us. The assertion follows from the fact
that the families of MRD-codes arising from maximum scattered subspaces
of type U; and U,, respectively, are both closed under the adjoint operation
(following the terminology of [35} [16, 25], the adjoint code of Cy is Cf)-

O

Put m = 2n, n > 1 in the previous proposition. Note that if n = 2 then
a scattered F —vector subspace Uy s (which means Nga,,(b) # 1, cf. [10]) is

of type either U; or U2l/. Now, we are able to prove that MRD-codes arising
from scattered subspaces of form @ with n > 2 are new.

By using the same arguments as in Corollary the linear automor-
phism group G; of U;, i € {1,2}, is

glz{(g a?ls> :G/EFZ2TL}7 92:{<8 ags> :GGFZQ}.

This allows us to prove the following:

Theorem 6.3. If n > 2, the Fy—vector subspace of Fyon X Fgan
Ups = {(z, b2 + xqs+n): € Fpon},

with b € ¥y, and 1 <'s <n—1 such that Ngan o (b) # 1 and ged(s,n) =1,
is not equivalent to any subspace U;, 1 € {1,2}, under the action of the group
TL(2,¢*").

Proof. If there exists an element ¢ € I'L(2,¢*") such that U, = U;, for
some i € {1,2}, then the corresponding linear automorphism groups will be
isomorphic via the map

wEGps > powop L €G,

but this is a contradiction by comparing the sizes of the related groups (cf.

Corollary . O

Let Cy and Cy be two MRD-codes arising from maximum scattered sub-
spaces Uy and Uy of Fgm x Fym. In [35, Theorem 8| the author showed that

13



there exist invertible matrices A, B such that ACyB = C, if and only if
Uy and U, are I'L(2, ¢™)-equivalent. Hence, by Theorem we get the
following result.

Theorem 6.4. If n > 2, the linear MRD-code of dimension 4n and min-
imum distance 2n — 1 arising from a scattered Fy—vector subspace Uy s =
{(z,bx? + xqs+n): x € Fpen} of Fpan X Fan is not equivalent to any previ-
ously known MRD-code with the same parameters. ]

In the next section we will show that when n = 3 and ¢ > 2 and when
n = 4 and ¢ is odd there exist values of b and s for which the F,-subspace Uy s
of Fy2n X F2n is scattered, and from the above arguments the corresponding
MRD-codes are new.

7 New maximum scattered subspaces
7.1 The n =3 case
We want to show that there exists b € F(’;G such that

Up1 = {(z,bx? + xq4): v €Fp}

is a maximum scattered [F -subspace.
Uy, is scattered if and only if for each m € F6

bx? + 27"

X

=—-m

has at most ¢ solutions. Those m which admit exactly ¢ solutions corre-
spond to points ((1, —m)>]pq6 of Ly, , with weight one. Tt follows that Uy
is scattered if and only if for each m € F 6 the kernel of

rmp(T) = ma + bx? + 24"

has dimension less than two, or, equivalently, the Dickson matrix

m b 0 0 1 0
0 m¢ ¥ 0 0 1
1 0 m? ¥ 0 0
Dmpi=1¢ 1 me b’ 0
o 0 1 0 md p
b’ 0 1 0 mT

14



associated to 7, () has rank at least five (cf. [36, Proposition 4.4]). Equiv-
alently, D,,; has a non-zero 5 x 5 minor. We will denote by M; ; the deter-
minant of the matrix obtained from D,, ; by removing the i-th row and the
j-th column. We will use the following:
Mgy = bT —pIH 0+ _pata®+a' | plrata®+a*+a" _pat et +a® g a*ratret
(14)
Mgs = —bTm + b0 O+ — pmd@ 4 plratd @ 4 pa*pl+ata®+a® (15)
We will show that for certain choices of b and ¢ there is no m € F such
that both of the above expressions are zero.

Theorem 7.1. For g > 4 we can always find b € IFZ2, such that Uy is a
mazimum scattered Fy-subspace of Fpe X Fe.

Proof. We want to find b € IF'ZQ such that at least one of and is
non-zero. Suppose the contrary, i.e. for each b € F2:

0= b(l _ 2bq+1 + b2q+2 _ mq+q2+q3 _ mq2+q3+q4), (16)

0= b(—m + btm — m® 4 prtlg,d 4 m1+q+q2+q3)‘ (17)

Put 2 = m!*t9+9" and z = 1 — b%+1. Obviously z # 1 and dividing by b
gives

2=zl 4 27, (18)
multiplying by md' +4° /b gives
z(xq3 + 1‘q4) = 2?1, (19)

Since b € F 2, it follows that b9l € F, and hence 2z € F;. Then
yields 7 + 27 € F, and hence z € F,2. Then and give:

2=z +a9 (20)

23 = g0t (21)
Thus z and x7 are roots of the equation
X2 22X+ 2 =0. (22)

From now on we distinguish two cases according to the parity of ¢. First
suppose ¢q odd. If can be solved in Fy, then x = 29 € F; and hence
and give z =2 =0, 0or z =4, v = 8. If we can find z € Fy \ {0, 1,4}
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such that has roots in F,, then we obtain a contradiction meaning that
the two minors in consideration cannot vanish at the same time. Then Uj ;
is scattered for each b € IF 2 which satisfies 1 — bit! = 2. Equation has
roots in I if and only if 2% — 423 is a square, hence, when 22 —4z is a square.
Note that z = 2 gives 22 — 4z = —4, which is always a square when ¢ = 1
(mod 4). So from now on, we may assume ¢ = 3 (mod 4) and hence ¢ > 7.
Consider the conic C of PG(2,q) with equation X§ —4XoXo — X7 =0. It
is easy to see that C is always non-singular, and that the line with equation
Xy =0 is a tangent to C. For ¢ > 7 C has more than 7 points and hence we
can find a point of C not on the lines Xg = 0, Xg—4X5 =0, Xg— X2 = 0 and
X = 0. It means that we can always find a point ((zo,21,1))r, € PG(2,q)
such that #3 — 4z = 2% and xg € F,\ {0, 1,4}. It follows that we can always
find z, and hence b, with the given conditions.

Now consider the case when ¢ is even. For z # 0 has a solution in
[y if and only if the S-invariant of the equation, that is Tr,/»(1/2), equals
to zero. If there is a solution in F,, then and give z = 0, so it is
enough to prove that there exists z € F, \ {0, 1}, such that Tr,/5(1/2) = 0.
The existence of such z gives a contradiction meaning that the two minors
in consideration cannot vanish at the same time. The equation Try/(x) = 0
has ¢/2 pairwise distinct roots in Fy, thus Try/5(1/2) = 0 has ¢/2—1 non-zero
solutions. It follows that for ¢ > 8 we can find such z. O

7.2 The n =4 case
We will show that there exists b € ]F;S such that
Up1 = {(x, bz + ajq5): rcFps}

is a maximum scattered IF-subspace for each odd g.
Up,1 1s scattered if and only if for each m € s

bx? + 2

X

=—-m
has at most ¢ solutions. Those m which admit exactly ¢ solutions corre-
spond to points ((1, —m)}nrqg of Ly, , with weight one. Tt follows that Uy

is scattered if and only if for each m € s the kernel of

rmp(z) = ma + bx? + 2
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has dimension less than two, or, equivalently, the Dickson matrix

m b 0 0 0 1 0 0

0O m2 ¥ 0 0 0 1 0

0 0 m¥ ¥ 0o 0 0 1

1 0 0 m? » 0 0 0
Prpi=1{06 1 0 0 md p' 0 0
0O 0 1 0 0 md »¥ 0

o 0 0 1 0 ma® b

¥ 0 0 0 1 0 0 md

of 7y, p(x) has a non-zero 7 x 7 minor. If we remove the first two columns and
last two rows of the above matrix, then the remaining 6 x 6 submatrix M has
determinant (b777° — 1)m?+4". Tt follows that with Ngsq1(b) # 1 the only
point of Ly, , with weight larger than 2 is ((1, 0)>1Fqs- On the other hand, it
is easy to see that ((1, O)>Fq8 is a point of Ly,  if and only if Ngs /44 (b) = 1.

We will denote by M; ; the determinant of the matrix obtained from D, ;
by cancelling the i-row and the j-th column. We will use the following:

Mg = (B0 —1)7+0 (404 gy ') 41+ (0 ). (23)

Theorem 7.2. For odd q and b*> = —1 the Fy-subspace Uy is mazimum
scattered in Fgs x Fs.

Proof. We will show that there is no m € IF;S such that vanishes.
Applying b?> = —1, the vanishing of would give

0 = 469 m + m?") + mI TS (p @ 4 payd®y. (24)

Now we distinguish two cases, according to b € F,, (i.e., ¢ =1 (mod 4)), or
beFp\F, (ie., ¢ =3 (mod 4)). First suppose that the former case holds.
Then 4 3 4 5 2 6
0=4(—m+m?) +bm!TCTCHT (10" 4. (25)
Considering the Fys — g4 trace of both sides of 5amd using the F4-
linearity of this function, it follows that Tres e (m? t9) = 0. It is easy
to see that Trqs/q4(f) = ”_Erqs4/q4(y) :30 Eismpzllies6 ry € Fpa for any two
z,y € Fgs, thus m?@Tma e and m& T m?+% are in Fa. It follows
that b0 T0+ (;ma® 4+ ma®) = mA for some A € [F,4 and hence gives

mi'—l e 4. But also mi'+l ¢ Fg4 and hence m? € g4 giving either

m € Fga, or Trgs pa(m) = 0, but gives m = 0 in both cases.
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Now consider the b € F2 \ F, case. Then bitl =1 and b7 = —b, thus

gives

0 =4(m+md") + bm! T+ HC (a* _ pa®y, (26)

Since 4(m 4+ m4') € Fg4 and bmitd' ¢ Fga, it follows that ma*+a (me® —
me’) € Fga. Tt is easy to see that Tres/p(x) = 0 and xy € Fga implies
Tres /g4 (y) = 0 for any two z,y € Fys, thus Trys /g (m?+9°) = 0. Then, as in
the previous case, m? € [F 4 follows, which gives a contradiction. ]

Remark 7.3. It follows from Theorem[6.3 that the mazimum scattered sub-
spaces of this section are new, i.e. they cannot be obtained from previously
known mazimum scattered subspaces under the action of T'L(2,4¢"), n = 6,8.

As we mentioned in the Introduction, it can happen that two Fy—vector
subspaces of Fgn X Fgn lie on different orbits of I'L(2, ¢") but they define Fy-
linear sets which are equivalent under the group PT'L(2,q¢™). In [7, Theorem
4.3] the authors prove that the mazimum scattered linear sets defined by the
mazimum scattered subspaces constructed in Theorems and [7.3 are not
equivalent to the previously known maximum scattered linear sets under the
group PT'L(2, ¢").

Remark 7.4. Computations with GAP yield the following results.
With respect to the cases not covered by Theorem : there exist b € FZ“

such that the subspace {(z,ba?+29"): z € Fyo} is scattered in Fys X F e also
for q € {3,4}, but not for g = 2.

With respect to Theorem : for q <8, q even, there is no b € IF;']‘S such
that {(z, bx? +xq5): x € Fis} is scattered in F s x F s and for ¢ < 11, q odd,
the corresponding subspace is scattered if and only if R According
to the first paragraph of Section[5, each of these subspaces is equivalent to
the scattered subspace found in Theorem 7.3,

There is no b € F7,, such that {(z, be? + 29" ) x € Fen}, ged(s,n) =
1, is scattered in Fon x Fpon when ¢ <5 and n € {5,6,7,8}, or ¢ =7 and
n € {56,7}, orq=Tandn =38, or ¢q=8 andn =5.

n+s)

Conjecture 7.5. According to the first paragraph of Section @ filz) =
bt + 29" € Foo(z] and fa(w) = box? + 21" € Fs[z] define equivalent sub-
spaces when Ngeg3(b1) = Ngo/g3(b2).  We conjecture that the size of the
set

{Ngs/g3(b): f(z) = bz + 27" defines a mazimum scattered Fq-space Uy 1}
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is | (¢ +q+1)(¢—2)/2], and hence there might be further examples of maz-
mmum scattered subspaces in this family. By GAP we wverified this conjecture
for q < 32.

Remark 7.6. The mazimum number of directions determined by an IFy-
linear function over Fyn is (¢ — 1)/(¢ — 1). Also, the mazimum size of
an Fq-linear blocking set of Rédei type of PG(2,4¢") is ¢" + (¢" — 1)/(q —
1). According to [5, Section 5.3] our new examples of mazimum scattered
spaces yield new examples of functions and of blocking sets which attain
these bounds.

In [T, pg. 132] the mazimal cardinality of the image set Im(L(x)/x) is
considered (with v — 1/x defined to take 0 to 0), where L(z) is an Fp-linear
function over IFy, p is a prime and q is a power of p. If for some invertible
p-polynomial f, the subspace Uy = {(x, f(x)): © € Fy} is scattered, then the
cardinality of Im(L(x)/x) reaches its mazimum, which is 14+ (¢—1)/(p—1).
It follows that the maximum scattered subspaces constructed in this paper
yield such functions.
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