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Abstract. In the title, where R stands for nucleus-electron and r for electron-electron distances in practice of 
computation chemistry or physics, the (n,m)=(0,0) case is trivial, the (n,m)=(1,0) and (0,1) cases are well known, 
fundamental milestone in integration and widely used, as well as based on Laplace transformation with integrand 
exp(-a2t2). The rest of the cases are new and need the other Laplace transformation with integrand exp(-a2t) also, as 
well as the necessity of a two dimensional version of Boys function comes up in case. These analytic expressions 
(up to Gaussian function integrand) are useful for manipulation with higher moments of inter-electronic distances, 
for example in correlation calculations. The equations derived help to evaluate the important Coulomb integrals  

∫ρ(r1)RC1
-nRD1

-mdr1, 
∫ρ(r1)ρ(r2)RC1

-nr12
-mdr1dr2, 

∫ρ(r1)ρ(r2)ρ(r3)r12
-nr13

-mdr1dr2dr3, 
where ρ(ri), called one-electron density, is a linear combination of Gaussian functions of position vector variable ri, 
capable to describe the electron clouds in molecules, solids or any media/ensemble of materials.       
 
Keywords. Analytic evaluation of Coulomb integrals for one, two and three-electron operators,  
Higher moment Coulomb operators RC1

-nRD1
-m, RC1

-nr12
-m and r12

-nr13
-m with n, m=0,1,2 

 
INTRODUCTION 

 
    The Coulomb interaction between two charges in classical physics is Q1Q2r12

-n, and is one of the most 
important fundamental interactions in nature. The power “n” has the rigorous value 2 describing the force, 
while as a consequence, the n=1 yields the energy. For electron-electron interactions, the exact theory says 
that the Coulomb interaction energy is represented by the two-electron energy operator r12

−1.  
     Using GTO functions, which is  

GAi(a,nx,ny,nz)≡ (xi-RAx)
nx (yi-RAy)

ny (zi-RAz)
nz exp(-a|ri-RA|2)                  (1) 

with a>0 and nx, ny, nz ≥0 benefiting its important property such as GAi(a,nx,ny,nz)GBi(b,mx,my,mz) is 
also (a sum of) GTO, the Coulomb interaction energy for molecular systems is expressed finally with the 
linear combination of the famous integral  

∫GA1GB2 r12
-1dr1dr2.                                                       (2) 

In Eq.1 we use double letters for polarization powers i.e., nx, ny and nz to avoid “index in index”, 
nx=0,1,2,… are the s, p, d-like orbitals, etc.. The analytic evaluation [1-3] of the integral in Eq.2 has been 
fundamental and a mile stone in the history of computation chemistry. It is an important building block for 
the solution of the Schrödinger (partial differential) equation of many variables (r1,…,rN), which still needs 
correction terms for its approximate solutions today. By this reason, in view of the extreme power of series 
expansion (trigonometric Fourier, polynomial Taylor, Pade, etc.) in numerical calculations, the  

∫GA1GB2 r12
-2dr1dr2   as well as   ∫GA1GB2GC3r12

-n
 r13

-mdr1dr2dr3                  (3) 
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with n,m=1,2 important terms have also come up in computation chemistry, for example, what we can call 
higher moments with respect to inter-electronic distances rij, though their analytical evaluations have not 
been provided yet. Another key to improve the existing Coulomb energy approximations is the use of e.g.  

{ ∫[ρ(r1)]
p[ρ(r2)]

qr12
-1dr1dr2 }

t                                                              (4) 
non-local moment expansion for correlation effects. Only approximate numerical expressions are available 
for evaluation, for example, for the second one in Eq.3 (or see equation 52 in ref.[4] with m=-n=1) the 

<ijm|r12
-nr13

-m|kml> ≈ Σp <ij|r12
-n|pm><pm|r12

-m|kl> ,                                            (5) 
where the bracket notation [1-2] is used along without reducing product Gaussians to single Gaussians, as 
well as the GTO basis set {p} for expansion has to be a “good quality” for adequate approximation.  
     Not only two or three-electron integrals (Eqs.2-5), but (less effective) one-electron integrals   

∫GA1RC1
-2dr1                                                                           (6) 

can also be used as candidates, or the more general 
{ ∫ρp RC1

-ndr1 }
t .                                                                        (7)  

     Furthermore, if derivatives appear, such as ∫(∂ρ(r1)/∂x1)
pRC1

-ndr1, ∫(∂ρ(r1)/∂x1)
pρ(r2)

q r12
-ndr1dr2 or many 

other algebraic possibilities (recall that derivatives of ρ are used frequently even by empirical reasons, e.g. 
in the generalized gradient approximations), and ρ is given as linear combination of Gaussians, analytical 
evaluation of Eqs.3-7 are fundamental building blocks for analytical integral evaluation, since not only the 
products, but the derivatives of Gaussians in Eq.1 are Gaussians.  
     More general one-electron and the mixed case two-electron Coulomb integrals with RC1

-nRD1
-m and  

RC1
-nr12

-m, resp.: These cases come up not only mathematically after the above cases, but in computation for 
electronic structures as well. Not going into too much details, we outline one way only as example: 
Applying the Hamiltonian twice for the ground state wave function simply yields H2Ψ0= E0,electrHΨ0= 
E0,electr

2Ψ0, or <Ψ0|H
2|Ψ0>= E0,electr

2. The H2 preserves the linearity and hermetic property from operator H, 
and if e.g. HF-SCF single determinant S0 approximates Ψ0 via variation principle from <S0|H|S0>, the 
approximation (<S0|H

2|S0>)1/2≈ E0,electr is better than <S0|H|S0>≈ E0,electr, coming from basic linear algebraic 
properties of linear operators for the ground state. However, H2 yields very hectic terms, the Hne

2, HneHee 
and Hee

2 products show up, for example, yielding Coulomb operators belonging to the types indicated. 
Using <S0|H

2S0>= <HS0|HS0>, the right side keeps the algorithm away from operators like ∇1
2
 r12

-1 at least.     
     Below, we use common notations, abbreviations and definitions: FL(v) ≡ ∫(0,1) exp(-vt2) t2L dt, the Boys 
function, L=0,1,2,…; GTO = primitive Gaussian-type atomic orbital, the GAi(a,nx,ny,nz) in Eq.1; RA≡ 
(RAx, RAy, RAz) or (xA, yA, zA)= 3 dimension position (spatial) vector of (fixed) nucleus A; RAB≡ |RA-RB|= 
nucleus-nucleus distance; RAi≡ |RA-ri|= nucleus-electron distance; ri≡ (xi,yi,zi)= 3 dimension position 
(spatial) vector of (moving) electron i; rij≡ |ri-rj|= electron-electron distance. 
 

One-electron spherical Coulomb integral for RC1
-2 

 

     Now RC1≡|RC-r1| and RP1≡|RP-r1|, and we evaluate the one-electron spherical Coulomb integral for 
GP1(p,0,0,0)= exp(-p RP1

2) in Eq.1 analytically, i.e. the  
VP,C

(n)≡ ∫(R3) exp(-p RP1
2) RC1

-n dr1 ,                                          (8) 
for which n=1 is well known and 2 is a new expression below. The idea comes from the Laplace 
transformation for n= 1 and 2 respectively as 

RC1
-1 = π−1/2 ∫(-∞,∞) exp(-RC1

2t2)dt ,                                           (9)    
RC1

-2 = ∫(-∞,0) exp(RC1
2t)dt = ∫(0,∞) exp(-RC1

2t)dt .                                (10)         
In this way (using Appendixes 1-2 after the e.g. middle part in Eq.10) the  

VP,C
(2)= ∫(-∞,0)∫(R3)exp(-p RP1

2)exp(RC1
2t) dr1dt= ∫(-∞,0) ∫(R3)exp(pt(p-t)-1RCP

2)exp((t-p)RS1
2) dr1dt= 

∫(-∞,0) (π/(p-t))3/2 exp(pt(p-t)-1RCP
2)dt. Using u:=t/(p-t) changes the domain t in (-∞,0) → u in (-1,0), VP,C

(2)= 
π3/2p-1/2∫(-1,0) (u+1)-1/2exp(p RCP

2 u)du, and using w:= (u+1)1/2 changes the domain u in (-1,0) → w in (0,1) 
and yields 

VP,C
(2) = (2π3/2/p1/2) ∫(0,1) exp(p RCP

2 (w2-1))dw = (2π3/2/p1/2)e-vF0(-v) ,             (11) 
where F0(v) is Boys function with v≡ p RCP

2. For Eq.11 the immediate minor/major values come from 1≤ 
exp(pRCP

2w2) ≤ exp(v≡ pRCP
2) if 0≤w≤1 as   

0 < exp(-v)  <  [p1/2 /(2π3/2)] VP,C
(2)  <  1,                                     (12) 

and for a comparison, we recall the well known expression [5] for n=1   
VP,C

(1)  = (2π/p) ∫(0,1) exp(-p RCP
2 w2)dw = (2π/p)F0(v)                           (13) 
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with immediate minor/major values  
0 < exp(-v)  <  [p/(2π)] VP,C

(1)  <  1.                                            (14)  
     Note that point RS can be calculated by the m=2 case in Appendix 2, but its particular value drops, 
because integral value in Appendix 1 is invariant by shifting a Gaussian in R3 space. Eqs.12 and 14 tell that 
up to normalization factor with p, the VP,C

(1) and VP,C
(2) are in same range, roughly in (0,1). The ratio of the 

two is easily obtained when RCP=0, then the integrands become unity, and  
VP,C

(2)(RCP=0)/ VP,C
(1)(RCP=0)= (2π3/2/p1/2)/(2π/p)= (πp)1/2                       (15) 

as well as for n=1 and 2 the lim VP,C
(n)=0 if RCP→∞. 

     Note that the integral is the type ∫exp(-w2)dw in Eq.13, a frequent expression coming up in physics, but 
contrary, the ∫exp(w2)dw has come up in Eq.11. The latter is infinite on domain (0,∝), otherwise similar 
algebraic blocks have come up in Eqs.8-14 for n=1 vs. 2, which is not surprising; but, the evaluation of 
F0(v) differs significantly from F0(-v). Integration in Eq.13 can be related to the “erf” function (i.e. for 
F0(v>0)) in a calculation which is standard in programming, but lacks analytical expression, as well as the 
“erf” is inbuilt function in program languages like FORTRAN. However, integration in Eq.11 cannot be 
related to any inbuilt function like “erf”, but its evaluation numerically belongs to standard devices, mainly 
because the integrand is a simple monotonic elementary function.  
     Note that, 1., The algebraic keys are in Eqs.9-10 and Appendix 2 to evaluate Eq.8 analytically - up to 
Gaussian function exp(±w2) in the integrand. If not GTO but Slater-type atomic orbitals (|ri-RA|2 → |ri-RA| 
replacement) is used in Eq.1, i.e. not RP1

2 but RP1 shows up in the power of Eq.8, the evaluation for the 
corresponding integral in Eq.8 is far more difficult, stemming from the fact that the convenient device in 
Appendix 2 cannot be used. A simple escape route is to use the approximation exp(-pRP1)≈ 
Σ(i)ciGP1(ai,0,0,0), which is well known in molecular structure calculations, see the idea of STO-3G basis 
sets and higher levels in which one does not even need many terms in the summation but, in fact in this 
way, one loses the desired complete analytical evaluation for the original integral ∫(R3)exp(-pRP1)RC1

-n dr1. 
2., In Eqs.910 the power correspondence in the integrand and integral value for n=1 vs. 2 is RC1

-1 ↔ RC1
2 

vs. RC1
-2 ↔ RC1

2, what is the seed of trick for analytical evaluation, and may indicates the way for further 
generalizations. 3., Fast, accurate and fully numerical integration for one-electron Coulomb integrals in 
Eq.8 is available for any n≥1 integer and non-integer values of n, the general numerical integral scheme is 
widely used in DFT correlation calculations based on Voronoi polygons, Lebedev spherical integration and 
Becke’ scheme in R3, see references in ref.[6]. However, this numerical process is definitely not applicable 
for two and three-electron Coulomb integrals in R6 or R9, respectively because it is slow in computation; 
the reason being that the at least K=1000 points for numerical integration becomes K2 or K3, respectively, 
that is, the computation time is K or K2 times longer, respectively.   
 

One-electron non-spherical Coulomb integral for RC1
-2 

 

     If the more general GP1(p,nx,ny,nz) is used, Eq.8 generates the analytical evaluation as a seed, and no 
further trick needed than Eqs.9-10, the only formula necessary is how to shift the center of polynomials 
(Appendix 3, the alternative is Appendix 4). We use the notations fullVP,C

(n) and VP,C
(n), the former stands for 

any (spherical and non-spherical, nx+ny+nz≥0) quantum number, while the latter denotes the simplest 
spherical (1s-like) case, nx=ny=nz=0. With the help of Appendixes 1 and 3, we show the evaluation for 

fullVP,C
(2)≡ ∫(R3) GP1(p,nx1,ny1,nz1) RC1

-2 dr1 .                                     (16)  
With short hand abbreviations (for sum and multiplication operators) 

Σ1 ≡ Σi1=0 
nx1Σj1=0 

ny1Σk1=0 
nz1 (nx1

i1)(
ny1

j1)(
nz1

k1)    for even i1, j1, k1  only   (17) 
n1 ≡ nx1+ny1+nz1                                                                                     (18)  

m1 ≡ i1+j1+k1                                                                                             (19) 
Γ1≡ Γ((i1+1)/2) Γ((j1+1)/2) Γ((k1+1)/2)                                                  (20) 
D ≡ (xP–xC)nx1-i1(yP–yC)ny1-j1 (zP–zC)nz1-k1                                                   (21) 

one obtains 
fullVP,C

(2)= 2Σ1Γ1D p-(m1+1)/2 ∫(0,1) (w
2-1)n1-m1 wm1 exp(p RCP

2(w2-1)) dw .                     (22) 
If n1=0, then Eq.22 reduces to Eq.11 as expected. Since m1 is always even via Eq.17, it yields that 
integrand in Eq.22 is always linear combination of w2L exp(p RCP

2 (w2-1)) for L=0,1,2,…, i.e. Boys function 
can be recalled again as in Eq.11, that is, e-vFL(-v) with v≡ p RCP

2. 
     The expression for n=1 (in RC1

-n) comes out in analogous way, and the final expression is  
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fullVP,C
(1)= 2p-1π-1/2Σ1Γ1D p-m1/2∫(0,1)(-w

2)n1-m1 (1-w2)m1/2 exp(-p RCP
2 w2) dw.                   (23) 

Eq.23 reduces to Eq.13 if n1=0 in Eq.18 as expected, and since powers of w2 appear, it makes the linear 
combination of Boys functions FL(v) with v≡ p RCP

2. De-convolution of Boys functions from FL(±v) to 
F0(±v) can be found in Appendix 5. Note that D in Eq.21 dynamically provides signs. 
 

One-electron spherical Coulomb integral for RC1
-nRD1

-m with n, m=1,2 
 

     We evaluate analytically the one-electron spherical Coulomb integral 
VP,CD

(n,m)≡ ∫(R3)exp(-pRP1
2)RC1

-nRD1
-mdr1 .                                                 (24) 

Let us take the example of (n,m)= (1,2), the algorithm is straightforward for other cases of (n,m). Using 
Eq.9 and e.g. the far right side in Eq.10, as well as Appendixes 1-2, finally 

VP,CD
(1,2)= π∫t=(-∞,∞)∫u=(0,∞)g

-3/2exp(-f/g)dudt                                              (25) 
g≡ p + t2 +u                                                                                 (26) 
f≡ p t2 RPC

2 +p u RPD
2 +u t2 RCD

2 .                                               (27)  
Like for Eq.11 or Eq.13, by simple substitution one can end up with ∫(0,1)∫(0,1)(…)dtdu integration. 
 

Two and three-electron spherical Coulomb integrals: 
Two-electron spherical Coulomb integral for r12

-2, the (n,m)=(2,0) or (0,2) case 
 

VPQ
(n)≡ ∫(R6) exp(-p RP1

2) exp(-q RQ2
2) r12

-n dr1dr2                                    (28) 
is considered, for which n=1 is well known and 2 is a new expression below. Re-indexing Eq.11 and 13 for 
C→2 and R→r (i.e. electron 2 takes the role of nucleus C algebraically) yields  

VP,C
(2) = ∫(R3) exp(-p RP1

2)r12
-2 dr1 = (2π3/2/p1/2) ∫(0,1) exp(p RP2

2 (w2-1))dw,            (29) 
VP,C

(1)  = ∫(R3) exp(-p RP1
2)r12

-1 dr1 = (2π/p) ∫(0,1) exp(-p RP2
2 w2)dw .                  (30) 

Finally, with v≡ pqRPQ
2/(p+q) 
VPQ

(2) = 2π3(pq)-1/2(p+q)-1∫(0,1) exp(v(w2-1))dw = (2π3(pq)-1/2(p+q)-1)e-vF0(-v),        (31) 
where F0(v) is the Boys function, and the immediate minor/major values come from 1≤ exp(vw2) ≤ exp(v) 
if 0≤w≤1 as   

0 < exp(-v)  <  [(pq)1/2(p+q)/(2π3)]VPQ
(2)  <  1.                                    (32) 

For comparison, we recall the well known expression for n=1 as    
VPQ

(1)  = (2π5/2/(pq)) ∫(0,c) exp(-pqRPQ
2 w2)dw                                          (33) 

with c≡(p+q)-1/2 in the integration domain, it can also be expressed with Boys or “erf” functions, and the 
immediate minor/major values (from w:=c vs. 0 in the integrand)  

0 < exp(-v)  <  [pq(p+q)1/2/(2π5/2)]VPQ
(1)  <  1.                                        (34)  

In Eqs.31-34 the expressions are symmetric to interchange of p and q, as expected. The ratio of the two is 
easily obtained when RPQ=0, then the integrands become unity, and  

VPQ
(2)(RPQ=0)/ VPQ

(1)(RPQ=0)= (2π3(pq)-1/2(p+q)-1/(2cπ5/2/(pq))= (πpq/(p+q))1/2             (35) 
as well as for n=1 and 2 the lim VPQ

(n)=0 if RPQ→∞. 
 
Two-electron spherical Coulomb integral for the mixed term RC1

-nr12
-m with n, m=1,2 

 
∫(R6)exp(-pRP1

2)exp(-qRQ2
2)RC1

-1r12
-1dr1dr2=(2π2/q)∫u=(0,1)∫t=(-∞,∞) g

-3/2exp(-f/g) dtdu         (36) 
f≡ pqRPQ

2u2+pRPC
2t2+qRQC

2u2t2                     (37) 
g≡ p+qu2+ t2                                                    (38) 

Alternatively, with RW= (pRP+qu2RQ)/(p+qu2) and Boys function  
∫(R6)exp(-pRP1

2)exp(-qRQ2
2)RC1

-1r12
-1dr1dr2=(4π2/q)∫(0,1)F0(gRWC

2)g-1exp(-f/g)du          (39) 
f≡ pqRPQ

2u2                                                  (40) 
g≡ p+qu2 ,                                                     (41) 

where RWC depends on u as gRWC
2= (p+qu2)|RW–RC|2= |pRP+qu2RQ –gRC|2. Eqs.39-41 vs. Eqs.36-38 shows 

us something about the two dimensional version of the Boys function, see below. The algorithm is 
straightforward for other cases of (n,m).   
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Three-electron spherical Coulomb integral for r12
-nr13

-m with n,m=1,2 
 

VPQS
(n,m)≡ ∫(R9) exp(-p RP1

2) exp(-q RQ2
2) exp(-s RS3

2) r12
-nr13

-m dr1dr2dr3       (42) 
Eqs.29 and 30 provide the key substitutions for integrating out with r2 and r3. For example, for n=m=1,   

VQ
(n=1) = ∫(R3)exp(-qRQ2

2)r12
-1dr2= (2π/q)∫(0,1) exp(-qRQ1

2 u2)du= (2π/q)F0(qRQ1
2),           (43) 

VS
(m=1)= ∫(R3)exp(-sRS3

2)r13
-1dr3 = (2π/s)∫(0,1)exp(-sRS1

2 t2)dt= (2π/s)F0(sRS1
2).              (44) 

Eqs.42-44 and Appendixes 1-2 yield finally  
VPQS

(1,1)= (4π7/2/(qs))∫(0,1)∫(0,1) g
-3/2exp(-f/g)dudt                              (45) 

f≡ pqRPQ
2u2+psRPS

2t2+qsRQS
2u2t2                                       (46) 

g≡ p+qu2+st2 .                                                                      (47) 
     This integration can be done numerically, see next section, which is still more stable and more reliable 
than Eq.5 because the latter is basis set choice dependent and much more complex. For n and/or m=2 cases 
not Eq.30 but Eq.29 must be applied analogously to evaluate Eq.42, the algorithm is straightforward again.  
     The way to Eqs.45-47 was to apply Eqs.43-44, then Appendixes 1-2, yielding two dimensional integral 
on the unit square. Another way, analogous to Eqs.39-41 yielding one dimensional integral on the unit 
segment is to apply only Eq.43 and not Eq.44 or vice versa, then Appendixes 1-2, and then Eq.33. Finally, 
with RV≡ (pRP+ qu2RQ)/(p+ qu2) one obtains  

VPQS
(1,1)= (4π7/2/(qs)) ∫(0,1)  h(u) g-1exp(-f/g) du                                    (48) 

h(u)≡  ∫(0,c)exp(-g s RVS
2 w2)dw                                                      (49) 

c≡(g+s)-1/2                                                                                  (50) 
f≡ pqRPQ

2u2                                                                               (51) 
g≡ p+qu2  .                                                                                 (52) 

Eqs.45-47 and Eqs.48-52 both yield the same value for VPQS
(1,1), of course, as well as h(u) in Eq.49 is the 

pre-stage of Boys function F0 as in Eq.33. Here again as above, Eqs.48-52 can be considered as the two 
dimensional version of Boys function wherein a one dimensional Boys function is in the integrand. See 
Appendix 6 how Coulomb operator r12

-nr13
-m can come up. 

 
The two dimensional Boys function, its pre-equation and integration 

 
     If we consider the right hand side of Eq.39 or Eq.48 as a kind of two dimensional Boys function, one 
can see that a one dimensional Boys function appears in its integrand. We draw attention to the fact, that at 
the beginning, i.e. in “seed equations” Eqs.11 and 13 we obtained the one dimensional Boys function F0 via 
the term g-3/2exp(-f/g) in the integrand as a pre-equation, (recall the derivation in middle stage e.g. as 
VP,C

(2)= π3/2∫(-∞,0)g
-3/2exp(f/g)dt with f≡ pRCP

2t and g≡ p-t), and when the two dimensional cases came up, the 
same term showed up in the integrand again, but instead of function set {f(t), g(t)}, the {f(u,t), g(u,t)}, see 
Eqs.25-27, 36-38 and Eqs.45-47. The g-3/2exp(f/g) is the core part of integrands for all cases in the main 
title of this work. Finer property is that, f=f((-u)K,(-t)L) and g=g((-u)K,(-t)L) are 2nd and 1st order 
polynomials, respectively, with respect to (-u)K and (-t)L, where K, L = 1 or 2; wherein the middle part of 
Eq.10 has been used, alternatively, with the far right side of Eq.10 the -u→u and -t→t transformations 
should be done in this sentence. The K, L= 1 generates exp(w2), while the 2 generates exp(-w2) type 
Gaussians in the integrand.    
 
     Appendix 1: For m= 1 and 2, the ∫(0,∞) x

n exp(-ax1
m

 )dx1= Γ[(n+1)/m]/(m a(n+1)/m) holds for a>0. If m=2 
and n=0 ⇒ ∫(R3)exp(-ar1

2)dr1= (∫(-∞,∞)exp(-ax1
2)dx1)

3=(π/a)3/2. If m=2 ⇒ ∫(-∞,∞) xn exp(-ax1
2
 )dx1= 

Γ[(n+1)/2]/a(n+1)/2 for even n,  but zero if n is odd. The gamma function is Γ[n+1]= n! for n=0,1,2,…, with 
Γ[1/2]= π1/2 and Γ[n+1/2]= 1x3x5x…(2n-1) π1/2/2n for n=1,2,… . The erf(x)≡ 2π−1/2 ∫(0,x) exp(-w2)dw, for 
which erf(∞)=1.  
     Appendix 2: The product of two Gaussians, GJ1(pJ,0,0,0) with J=1,…,m=2  is another Gaussian 
centered somewhere on the line connecting the original Gaussians, but a more general expression for m>2 
comes from the elementary  

ΣJ pJ RJ1
2 = (ΣJ pJ) RW1

2 + (ΣJΣK pJ pK RJK
2)/(2ΣJ pJ)                                 (53) 

RW ≡ (ΣJ pJ RJ)/(ΣJ pJ)                                                                      (54) 
where ΣJ or K≡ Σ(J or K=1 to m) and RJ1 ≡ |RJ-r1| for exp(ΣJ cJ)= Π(J=1 to m)exp(cJ), keeping in mind that RJJ=0, and 
the m centers do not have to be collinear. For m=2, this reduces to  



 6

p RP1
2 + q RQ1

2 = (p+q) RW1
2 + pqRPQ

2/(p+q)                                  (55) 
yielding the well known and widely used  

GP1(p,0,0,0) GQ1(q,0,0,0)= GW1(p+q,0,0,0)exp(-pqRpq
2/(p+q)) .                      (56) 

We also need the case m=3, which explicitly reads as 
p RP1

2 + q RQ1
2 + s RS1

2 = (p+q+s) RW1
2 + (pqRPQ

2+psRPS
2+qsRQS

2)/(p+q+s) .    (57) 
Only the GW1(p+q+s,0,0,0) depends on electron coordinate r1 in Eqs.A56-57, not the other multiplier, 
indicating that the product of Gaussians decomposes to (sum of) individual Gaussians, (s=0 reduces Eq.57 
to Eq.56).  
     Appendix 3: Given a single power term polynomial at RP, we need to rearrange or shift it to a given 
point RS. For variable x, this rearrangement is (x–xP)

n= Σi=0 to n ci (x–xS)
i, which can be solved 

systematically and immediately for ci by the consecutive equation system obtained from the 0,1,…nth 
derivative of both sides at x:= xS, yielding   

POLY(x,P,S,n) ≡ (x-xP)
n= Σi=0 to n (

n
i)(xS–xP)

n-i (x–xS)
i  ,                         (58)   

where (ni)=n!/(i!(n-i)!). If x S=0, it reduces to the simpler well known binomial formula as (x–xP)
n=  

Σi=0 to n (
n
i)(-xP)

n-ixi.   
     Appendix 4: The Hermite Gaussians are defined as 

 HAi(a,t,u,v)≡ (∂/∂RAx)
t(∂/∂RAy)

u(∂/∂RAz)
vexp(-a|ri-RA|2) ,                       (59) 

and HAi(a,2,0,0)= (∂/∂RAx)
2exp(-a RAi

2)= (∂/∂RAx)[-2a (RAx -xi) exp(-a RAi
2)]= 

 -2a exp(-a RAi
2)+ 4a2(RAx -xi)

2exp(-a RAi
2)= -2aGAi(a,0,0,0)+ 4a2GAi(a,2,0,0) is an example that Hermite 

Gaussians are linear combination of Cartesian Gaussians.   
     Appendix 5: De-convolution of Boys functions from FL(v)≡ ∫(0,1) exp(-vt2)t2Ldt to F0(v)= ∫(0,1) exp(-vt2)dt 
for v>0 and v≤0 comes from the help of partial integration (∫f’g=[fg]- ∫fg’) on interval [0,1] with f’=tM,  
M≠-1 and g=exp(-vt2), and K:=M+2 thereafter. After elementary calculus: 

2v∫(0,1)t
K exp(-vt2)dt = (K-1)∫(0,1)t

K-2 exp(-vt2)dt - exp(-v)                      (60) 
for K=0,-1, ±2, ±3, ±4,…, i.e. any integer except 1, and v is any real number, i.e. v>0 and v≤0. (For K=1 
the 2v∫(0,1)t exp(-vt2)dt= 1-exp(-v) by ∫g’exp(g(t))dt=exp(g(t).) In Boys functions the K=2L ≥0 is even, so 
K=1 is jumped, and with K:=2L+2 Eq.60 yields 

2vFL+1(v)= (2L+1)FL(v) – exp(-v) .                                             (61)  
The value of L recursively goes down to zero, and the value of F0(v) is needed only at the end. The v=0 
case is trivial and the v>0 is well known in the literature but, the v<0 cases are also needed for cases 
described in the main title of this work.  
     Appendix 6: The cardinality in the set generated by electron-electron repulsion operator  
Hee

2= (Σi=1..N Σ j=i+1…N rij
-1)2 comes from elementary combinatorics. Hee contains (N2)=N(N-1)/2 and Hee

2 
contains N2(N-1)2/4 terms. In relation to integration with single Slater determinant, it contains three kinds 
of terms: r12

-2, r12
-1r13

-1 and r12
-1r34

-1 as 
<S*|Hee

2|S>= (N2){<S*|r12
-2|S> +2(N-2)<S*|r12

-1r13
-1|S> +(N-2

2)<S*|r12
-1r34

-1|S>} .    (62) 
The control sum (N

2) +2(N-2)(N2) + (N2)(
N-2

2) = N2(N-1)2/4 holds, as well as the magnitude of cardinality of 
individual terms on the right in Eq.62 are N2, N3 and N4, respectively.  
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