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Abstract. In the title, where R stands for nucleus-electeord r for electron-electron distances in practife
computation chemistry or physics, the (n,m)=(08eis trivial, the (n,m)=(1,0) and (0,1) casesveett known,
fundamental milestone in integration and widelydjses well as based on Laplace transformation intdgrand
exp(-&t2). The rest of the cases are new and need the lotipéaice transformation with integrand exp(-also, as
well as the necessity of a two dimensional vergibBoys function comes up in case. These analygwessions
(up to Gaussian function integrand) are usefulnfanipulation with higher moments of inter-electmdistances,
for example in correlation calculations. The equadiderived help to evaluate the important Coulartdgrals
Ip(r)Rey "Rpg Mdry,
[p(r)p(r2)Re1 ™2 Mdr 1dr 5,
[p(r)p(r2)p(r3)ryz"rys™dr ydr odr 5,
wherep(r;), called one-electron density, is a linear comtdmeof Gaussian functions of position vector vaké;,
capable to describe the electron clouds in molecglaids or any media/ensemble of materials.

Keywords. Analytic evaluation of Coulomb integrals for oneptand three-electron operators,
Higher moment Coulomb operatorg,RRp; ™, Rei ;™ and £, 3™ with n, m=0,1,2

INTRODUCTION

The Coulomb interaction between two chargeslassical physics is Q.r1,", and is one of the most
important fundamental interactions in nature. The/gr “n” has the rigorous value 2 describing theséo
while as a consequence, the n=1 yields the en€gyelectron-electron interactions, the exact thesarys
that the Coulomb interaction energy is represehtethe two-electron energy operates .

Using GTO functions, which is

Gai(a,nx,ny,nz¥ (X-Rax)™ (yi-Ray)™ (z-Raz) ™ exptali-Raf) (1)
with a>0 and nx, ny, nz0 benefiting its important property such ag(&nx,ny,nz)G;(b,mx,my,mz) is
also (a sum of) GTO, the Coulomb interaction endogymolecular systems is expressed finally witéa th
linear combination of the famous integral

[Ga1Gga iz dr dr . )

In Eq.1 we use double letters for polarization pswvee., nx, ny and nz to avoid “index in index”,
nx=0,1,2,... are the s, p, d-like orbitals, etc.. Bmalytic evaluation [1-3] of the integral in Echds been
fundamental and a mile stone in the history of cotagion chemistry. It is an important building bkofor
the solution of the Schrddinger (partial differafitiequation of many variables,{...,ry), which still needs
correction terms for its approximate solutions §od2y this reason, in view of the extreme powesefies
expansion (trigonometric Fourier, polynomial TaylBade, etc.) in numerical calculations, the

[GaiGrari2dr dr, as well as [GayGgoGearip " i3 ™dr (dr odr 5 ©)



with n,m=1,2 important terms have also come upoimgutation chemistry, for example, what we can call
higher moments with respect to inter-electronidatises jj, though their analytical evaluations have not
been provided yet. Another key to improve the é@xisCoulomb energy approximations is the use of e.g
{ Jp(r D1PLp(r 2)]%r1z dr odr 5 }* (4)

non-local moment expansion for correlation effe@aly approximate numerical expressions are aviailab
for evaluation, for example, for the second onEdn3 (or see equation 52 in ref.[4] with m=-n=1¢ th

<ijm|r;2"ryg"kml>= Z; <ij|ry;"pm><pmlg; k1> , 5)(
where the bracket notation [1-2] is used along atithreducing product Gaussians to single Gausséms,
well as the GTO basis set {p} for expansion hakda “good quality” for adequate approximation.

Not only two or three-electron integrals (E55), but (less effective) one-electron integrals

[GaiRci%dr (6)
can also be used as candidates, or the more general
{ J‘pp Rc]__ndrl }t . (7)

Furthermore, if derivatives appear, such(@s(r 1)/0x,)’Re."dr 1, [(0p(r 1)/0x)°p(r »)° r1,"dr 1dr , or many
other algebraic possibilities (recall that derivasi ofp are used frequently even by empirical reasons, e.g
in the generalized gradient approximations), arid given as linear combination of Gaussians, ditaly
evaluation of Eqs.3-7 are fundamental building kéofor analytical integral evaluation, since notyoime
products, but the derivatives of Gaussians in BgelGaussians.

More general one-electron and the mixed casestectron Coulomb integrals with R'Rp; ™ and
Reir, ™, resp.: These cases come up not only mathemagtidfédir the above cases, but in computation for
electronic structures as well. Not going into tooiam details, we outline one way only as example:
Applying the Hamiltonian twice for the ground statmve function simply vyields #¥,= Ep electHWo=
Eo clecttWo, OF Wo|HWo>= By ciecie- The H preserves the linearity and hermetic property faparator H,
and if e.g. HF-SCF single determinang &proximates¥, via variation principle from <§H|S>, the
approximation (<§H*|S>)"= Ey eiecris better than <§H|S>= Eo ciecty COMing from basic linear algebraic
properties of linear operators for the ground sthimvever, H yields very hectic terms, the & HydHee
and H¢Z products show up, for example, yielding Coulomleragors belonging to the types indicated.
Using <$|H*Sy>= <HS|HS>, the right side keeps the algorithm away fromrapes like(,%r;,™ at least.

Below, we use common notations, abbreviatams definitions: Fv) = [o1) expevt’) £ dt, the Boys
function, L=0,1,2,...; GTO = primitive Gaussian-typgomic orbital, the G(a,nx,ny,nz) in Eq.1RA=
(Rax: Ray, Raz) or (%a, Ya, Za)= 3 dimension position (spatial) vector of (fixeu)cleus A; Rg= [Ra-Rg|=
nucleus-nucleus distance;yR [Ra-ri|= nucleus-electron distancez= (x;,Y;,z)= 3 dimension position
(spatial) vector of (moving) electron j=r;-r;|= electron-electron distance.

One-electron spherical Coulomb integral for Rey?

Now R=[Rc-rq] and RE=|Rpry], and we evaluate the one-electron spherical @aulintegral for
Gp1(p,0,0,0)= exp(-p R?) in Eq.1 analytically, i.e. the
VP,C(n)E I(Rs) exp(-p R:’) Rei"dry, (8
for which n=1 is well known and 2 is a new expressbelow. The idea comes from the Laplace
transformation for n= 1 and 2 respectively as
Rert =TT [ €Xp(-Rest)dlt 9)
RC]__Z = J(-m,O) eXp(R;lzt)dt :J.(o,m) eXp(-R;lzt)dt . (10)
In this way (using Appendixes 1-2 after the e.gddieé part in Eq.10) the
Ve 2= [0 Ra@XP(-p B)exp(Reit) dr 1dt= [ o) [raeXp(Pt(p-t)'Rep’)exp((t-p)Rsy) dr ydt=
[0y (W (p-))*? exp(pt(p-t)'Res)dt. Using u:=t/(p-t) changes the domain t i®,@) — u in (-1,0), \b P=
2017 1 o (u+1)*?exp(p R u)du, and using w:= (u+¥j changes the domain u in (-1,0) w in (0,1)
and yields
Vel = (2%p™) (o nexp(p Re2 (W>-1))dw = (2P%p*3eFo(-v) | (12)
where R(v) is Boys function with % p Res?. For Eq.11 the immediate minor/major values corenfi<
exp(pRFAW) < exp(\& pRey) if 0<w<1 as

0 <exp(-v) < [P/ Ve? < 1, (12)
and for a comparison, we recall the well known egpion [5] for n=1
Ve Y = (2Up) j(O,l)eXp('p R W)dw = (27p)Ro(V) (13)



with immediate minor/major values
0 <exp(-v) < [p/(@)] VeV < 1. (14)

Note that poinRs can be calculated by the m=2 case in Appendixu,its particular value drops,
because integral value in Appendix 1 is invarianshifting a Gaussian in R3 space. Egs.12 andlllth&
up to normalization factor with p, the-¥" and \b &2 are in same range, roughly in (0,1). The ratithef
two is easily obtained whencR=0, then the integrands become unity, and

Ve A(Rer=0)/ Vo, M(Rer=0)= (2°7p")/(21p)= ()" (15)
as well as for n=1 and 2 the lim¥"=0 if Rep— .

Note that the integral is the tyfexp(-w/)dw in Eq.13, a frequent expression coming up iysjis, but
contrary, thelexp(w?)dw has come up in Eq.11. The latter is infinitedmmain (0J), otherwise similar
algebraic blocks have come up in Egs.8-14 for ns.12y which is not surprising; but, the evaluatan
Fo(v) differs significantly from g{-v). Integration in Eq.13 can be related to thef™é&unction (i.e. for
Fo(v>0)) in a calculation which is standard in pragraing, but lacks analytical expression, as welihas
“erf” is inbuilt function in program languages liIKEORTRAN. However, integration in Eq.11 cannot be
related to any inbuilt function like “erf”, but itsvaluation numerically belongs to standard devimesnly
because the integrand is a simple monotonic eleanefinction.

Note that, 1., The algebraic keys are in E49.%and Appendix 2 to evaluate Eq.8 analyticallyp-to
Gaussian function exp(£yin the integrand. If not GTO but Slater-type atowrbitals (Ii-Raf* - [Fi-Ral
replacement) is used in Eq.1, i.e. ngt’Fbut R, shows up in the power of Eq.8, the evaluationtiar
corresponding integral in EQ.8 is far more difficildtemming from the fact that the convenient devic
Appendix 2 cannot be used. A simple escape routeoisuse the approximation exp(-pR:
2»CiGpa(a,0,0,0), which is well known in molecular structuralculations, see the idea of STO-3G basis
sets and higher levels in which one does not ewsd many terms in the summation but, in fact is thi
way, one loses the desired complete analyticaluetian for the original integrdjrsexp(-pRy)Rei"” dr;.

2., In Eqs.910 the power correspondence in thejiiatel and integral value for n=1 vs. 2 igfR » Rci
vs. Ri? « Rci%, what is the seed of trick for analytical evaloatiand may indicates the way for further
generalizations. 3., Fast, accurate and fully nicakintegration for one-electron Coulomb integrais
Eq.8 is available for any>1 integer and non-integer values of n, the genaraierical integral scheme is
widely used in DFT correlation calculations basadv@ronoi polygons, Lebedev spherical integratiod a
Becke’ scheme in R3, see references in ref.[6]. él@w, this numerical process is definitely not aggtile
for two and three-electron Coulomb integrals in &R9, respectively because it is slow in compatgti
the reason being that the at least K=1000 pointsifionerical integration become$ Kr K3, respectively,
that is, the computation time is K of Kmes longer, respectively.

One-electron non-spherical Coulomb integral for Rci?

If the more general ggp,nx,ny,nz) is used, Eq.8 generates the analy@icaluation as a seed, and no
further trick needed than Egs.9-10, the only fomnoécessary is how to shift the center of polyntsmia
(Appendix 3, the alternative is Appendix 4). We tise notationd"V, (" and b (", the former stands for
any (spherical and non-spherical, nx+ny#@g quantum number, while the latter denotes theplagt
spherical (1s-like) case, nx=ny=nz=0. With the reflj\ppendixes 1 and 3, we show the evaluation for

b = [(ra) Gpa(p,nx1,nyl,nzl) Ry dr . (16)
With short hand abbreviations (for sum and mulktigiion operators)
%1 = T ™20 ™ = ) (M) (") foreveniil, j1, k1 only (17)

nl=nxl+nyl+nzl (18)
ml=il+jl+kl (29)
M= ((I1+1)/2) 1 ((1+1)/2) T ((k1+1)/2) (20)
D = (Xe—%0)™ (ye—ye) ™ (ze-20)™ (1)
one obtains
fuIIVP‘C(Z): 25,1,D p-(m1+l)/2.[(0’1) (Wz_l)nl-ml wmt exp(p %Pz(wz_l)) dw . (22)

If n1=0, then EQ.22 reduces to Eq.11 as expectgteSnl is always even via EQ.17, it yields that
integrand in Eq.22 is always linear combinatiom®fexp(p R (W>-1)) for L=0,1,2,..., i.e. Boys function
can be recalled again as in Eq.11, that1&,_ev) with v= p Ree.

The expression for n=1 (in:R') comes out in analogous way, and the final exjads



fu”VP,C(l): 2p-l.r[—l/221|—lD p_mllzJ‘(Ovl)('Wz)nl_ml (1‘V\/2)m1/2 exp(_p %PZWZ) dw. (23)
Eq.23 reduces to Eq.13 if n1=0 in Eq.18 as expected since powers ofappear, it makes the linear
combination of Boys functions ) with v= p Ree?. De-convolution of Boys functions from @v) to
Fo(xv) can be found in Appendix 5. Note that D in Zjdynamically provides signs.

One-electron spherical Coulomb integral for Rcy"Rpy™ with n, m=1,2

We evaluate analytically the one-electron sigaeCoulomb integral
Ve .co™™= [raeXp(-pR1)Re:r "Ros Mdr ;. (24)
Let us take the example of (n,m)= (1,2), the atganiis straightforward for other cases of (n,m)inds
Eq.9 and e.qg. the far right side in Eq.10, as a&lAppendixes 1-2, finally

Vp o= T (osoplu= (0@ > 2€Xxp(f/g)dudt (25)
g=p +£+u (26)
f= o] IZRPCZ +p u R:»DZ +Uu 12 RCD2 . 752

Like for Eq.11 or Eq.13, by simple substitution ara® end up wittﬂovlj(ovl)(...)dtdu integration.

Two and three-electron spherical Coulomb integrals:
Two-electron spherical Coulomb integral for r152, the (n,m)=(2,0) or (0,2) case

V"= [re) €XP(-p R1) €Xp(-q Ry) 112" drdr, (28)
is considered, for which n=1 is well known and 2isew expression below. Re-indexing Eq.11 ancbi3 f
C-2 and R (i.e. electron 2 takes the role of nucleus Clalgieally) yields
Ve, ? = [rs) €Xp(-p R dry = (27p") [0 1yexp(p Ry (W-1))dw, (29)
Ve Y = s exp(-p RAriz dry = (20p) fo.yexp(-p R w?)dw . (30)
Finally, with v= pqReo’/(p+Q)
Veg? = 28 (payAp+a) o1y exp(v(w-1))dw = (2P(pay Ap+a))e Fo(-v),  (31)
where R(v) is the Boys function, and the immediate min@jon values come froms<lexp(ww) < exp(V)
if 0<w<1 as

0 <exp(-v) < [(pd)(p+a)/(2T)Veg” < 1. (32)
For comparison, we recall the well known expres$tosm=1 as
Ve = (2r°%(pg)) [i0.0@XP(-paReg’ W)dw (33)

with c=(p+q)*?in the integration domain, it can also be expressitd Boys or “erf” functions, and the

immediate minor/major values (from w:=c vs. 0 ie thtegrand)
0 <exp(v) < [pa(p+dfi(2r*?) Ve < 1. (34)
In Egs.31-34 the expressions are symmetric todhterge of p and q, as expected. The ratio of tloeigw
easily obtained whendg=0, then the integrands become unity, and
Veg™(Re=0)/ Vg (Reg=0)= (2(pa) *(p+a)"/(2cr?/(pa))= (pai/(p+a)}* (35)
as well as for n=1 and 2 the limpy"=0 if Rpg- .

Two-€electron spherical Coulomb integral for the mixed term Re1ri2 " with n, m=1,2

[ (Rﬁ)exp(-pl%f)exp(-q Rgzz) Rey'ryodr ydr 2:(2712/ Q).[ u:(O,l)[t:(-oo,oo) g_alzeXp('f/ g)dtdu (36)
f= PQReQ U+PRec T +GRUY 37)
g= p+qu+ £ (38)
Alternatively, withRy= (pRP+quRQ)/(p+qLF) and Boys function
[ReXP(-PR1)eXP(-qRy)Rer 117 dr 1dr ,=(412/0)] 0 1yFo(gRwc) g " exp(-f/g)du (39)
f= pgRog U 40)
g= p+auf (41)
where Ry depends on u as gi&= (p+quf)|Rw—Rcf= |pRe+qUPRq —gRcf. Eqs.39-41 vs. Eqgs.36-38 shows
us something about the two dimensional versionhef Boys function, see below. The algorithm is
straightforward for other cases of (n,m).



Three-electron spherical Coulomb integral for ri2"ris™ with n,m=1,2

Vpos™™= [re) EXP(-p R1) eXp(-q Ry’) exp(-s RY) r2"rs™ drydrodrs  (42)
Eqs.29 and 30 provide the key substitutions fargrating out withr, andrs. For example, for n=m=1,

V"™ = [(reeXp(-qRy2)r1z " dr 2= (2100 1y€XP(-aRy:” W) du= (27q)Fo(qRoy?), (43)
V™= [reexp(-sR)ri3 drs = (21s) o, 1eXp(-sR’ tP)dt= (27S)Ry(SRsy). (44)
Eqs.42-44 and Appendixes 1-2 yield finally
VPQS(M): (4“7/2/ (qs)j(o,l)[(o,l)9_3/29Xp('f/ g)dudt (45)
f= pORe U +PSReSt +aSRSU L (46)
g= p+qu+Sl2 . 47

This integration can be done numerically, isext section, which is still more stable and maigble
than Eq.5 because the latter is basis set choendent and much more complex. For n and/or m=@scas
not Eq.30 but Eq.29 must be applied analogousgvtduate Eq.42, the algorithm is straightforwardiag

The way to Eqs.45-47 was to apply Eqs.43-Hdn tAppendixes 1-2, yielding two dimensional ingtgr
on the unit square. Another way, analogous to Bg413yielding one dimensional integral on the unit
segment is to apply only Eq.43 and not Eq.44 oe viersa, then Appendixes 1-2, and then Eq.33. liginal
with Ry= (pRe+ qURG)/(p+ qU) one obtains

Veos™ = (4171(as))f0.1) h(u) g'exp(-f/g) du f48
h(uE Jo.cexp(-g s R’ w’)dw (49)

c=(g+s)"? (50)

f= pgReg U (51)

g= p+qu2 . (52)

EQs.45-47 and EQs.48-52 both yield the same vaiuéa’Fst(l’l), of course, as well as h(u) in Eq.49 is the
pre-stage of Boys functionylas in Eq.33. Here again as above, Eqs.48-52 cawisdered as the two
dimensional version of Boys function wherein a alimensional Boys function is in the integrand. See
Appendix 6 how Coulomb operatagtr;;™ can come up.

Thetwo dimensional Boysfunction, its pre-equation and integration

If we consider the right hand side of Eq.3%0r48 as a kind of two dimensional Boys functione
can see that a one dimensional Boys function appeats integrand. We draw attention to the fétat at
the beginning, i.e. in “seed equations” Egs.11 BEhave obtained the one dimensional Boys functigaid
the term §'%exp(-f/g) in the integrand as a pre-equation, (tette derivation in middle stage e.g. as
Ve =107 . 00 *%exp(f/g)dt with & pRest and @ p-t), and when the two dimensional cases caméhap,
same term showed up in the integrand again, bteadsof function set {f(t), g(t)}, the {f(u,t), g(t)}, see
Eqs.25-27, 36-38 and Eqs.45-47. Th¥exp(f/g) is the core part of integrands for all&mgn the main
titte of this work. Finer property is that, f=f((*ti(-t)") and g=g((-uj,(-t)") are 2 and #' order
polynomials, respectively, with respect to -@nd (-t}, where K, L = 1 or 2; wherein the middle part of
Eq.10 has been used, alternatively, with the fagintrside of Eq.10 the -wiu and -t.t transformations
should be done in this sentence. The K, L= 1 geesraxp(), while the 2 generates expfwtype
Gaussians in the integrand.

Appendix 1: For m= 1 and 2, thgy., X" exp(-ax™ )dx,= F[(n+1)/m]/(m &' holds for a>0. lin=2
and n=0 = [reexp(-ai)dri= ((wemexp(-ax?)dx)’=(ma)’ If m=2 = [« X" exp(-ax’ )dx=
r[(n+1)/2)/d™V" for even n, but zero if n is odd. The gamma fiamcts F[n+1]= n! for n=0,1,2, ..., with
M[1/2]= 2 and[n+1/2]= 1x3x5x...(2n-1)yT"%2" for n=1,2,... . The erf(8 2" [y, exp(-w)dw, for
which erfo)=1.

Appendix 2: The product of two Gaussians,;;(;0,0,0) with J=1,....m=2 is another Gaussian
centered somewhere on the line connecting themaligsbaussians, but a more general expression f@ m>
comes from the elementary

25 P Rit’ = (3 p) Rwt” + a2k Py P R/ (225 py) (53)
Rw = (Z3p5 R)/(Z5 ) (54)
whereZ; o & 2 or k=110 m@nd R1 = [Ryr4| for expf;¢)= M-1 1 mgXP(G), keeping in mind that 0, and
the m centers do not have to be collinear. For g reduces to



P Rei’ + 0 Ryt = (p+0) Rui” + PAR7(p+a) (55)

yielding the well known and widely used

Gei(p.0,0,0) G1(d,0,0,0)= G(p+d,0,0,0)exp(-paR7(p+a)) - (56)
We also need the case m=3, which explicitly reads a

p Rt + 0 Ry’ + 5 Ry’ = (p+a+s) R® + (DR +psR<+asRys)/(p+a+s) . (57)

Only the Gyi(p+g+s,0,0,0) depends on electron coordirratén Eqs.A56-57, not the other multiplier,
indicating that the product of Gaussians decomptsésum of) individual Gaussians, (s=0 reduce$Eq.
to Eq.56).

Appendix 3: Given a single power term polynomial R§, we need to rearrange or shift it to a given
point Rs. For variable x, this rearrangement is (X i © n G (X=X5)', which can be solved
systematically and immediately for by the consecutive equation system obtained froen@,1,...H'
derivative of both sides at x:=,xyielding

POLY (X,P,S,nkE (X-Xp)"= Zizg 10 n (1) (Xsxp)™" (X—X9)' (58)
where {5)=nY/(i!(n-i)!). If x =0, it reduces to the simpler well known binomi@irhula as (x—-"=
zi=0 ton (ni)('XP)n-IXI-

Appendix 4: The Hermite Gaussians are defined as

Hai(a,t,U,VE (0/0R)'(0/0R )" (3/0R,) ‘eXplal-RAf) , (59)
and Hy(a,2,0,0)= @/0Ra.)’exp(-a Ry*)= (0/0Ra.)[-2a (Rux -X) exp(a Ry?)]=
-2a expfa Ry?)+ 4&(Rax -x)’expla Ry?)= -2aGy(a,0,0,0)+ 445, (a,2,0,0) is an example that Hermite
Gaussians are linear combination of Cartesian Ganss

Appendix 5: De-convolution of Boys functions from (@)= [ 1)expevt)t™dt to Ry(v)= [0 expevt’)dt

for v>0 and ¥0 comes from the help of partial integratidfgE[fg]- [fg’) on interval [0,1] with f=t",
M#-1 and g=exp(-%), and K:=M+2 thereafter. After elementary calculus

2V[o. 1t exp(-vE)dt = (K-1)01£? exp(-vf)dt - exp(-v) (60)
for K=0,-1, 2, +3, #4,..., i.e. any integer exceptahd v is any real number, i.e. v>0 arDv(For K=1
the 2y exp(-vf)dt= 1-exp(-v) bylg’exp(g(t))dt=exp(g(t).) In Boys functions the K=210 is even, so
K=1 is jumped, and with K:=2L+2 Eq.60 yields

2VvR.1(v)= (2L+1)R (V) — exp(-v) . (61)

The value of L recursively goes down to zero, dmltalue of f{v) is needed only at the end. The v=0
case is trivial and the v>0 is well known in theefdature but, the v<0 cases are also needed fes cas
described in the main title of this work.

Appendix 6: The cardinality in the set generated by electiesteon repulsion operator
Hee= (Ciman T j=ir1.n 1 1)? comes from elementary combinatorics. Eontains 2)=N(N-1)/2 and H¢
contains N(N-1)¥4 terms. In relation to integration with singlea®r determinant, it contains three kinds
of terms: 1,2, o st and fo 21t as

<S*|Hee[S>= (L{<SHr12?IS> +2(N-2)<S*lr; 115 |S> +{%)<S*na'rad 1>} . (62)
The control sum™) +2(N-2)(",) + (*2)("%) = N¥(N-1)%/4 holds, as well as the magnitude of cardinalfty o
individual terms on the right in Eq.62 aré, N and N, respectively.
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