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1. INTRODUCTION 
 
The process of optimization is finding the best solution to a given problem, when 
the amount of available resources is often restricted. Despite the rapid development 
of computer science, most optimization problems can't be solved by evaluating all 
feasible solutions. For example, the class of NP-hard problems, such as the 
Traveling salesman problem (also known as TSP), might have an enormously large 
search space, which requires exponential computation time to be fully explored. To 
solve these kinds of problems, many heuristic algorithms have been developed. 
Heuristic algorithms can find approximate solutions, even when the search space is 
excessively huge. In this paper, we benchmarked twelve optimization techniques, to 
compare their efficiency in finding the global minima of different continuous 
mathematical test functions. Mathematical function optimization is very important, 
because most real world optimization problems can be modelled in this general 
framework. Numerous mathematical test functions can be found in the literature, 
additionally we created a software solution, which utilizes a novel method to 
construct customized test functions. 
 
2. BENCHMARK PROBLEMS 
 
As mentioned before, a lot of mathematical test functions can be found in the 
literature [1]. The complexity of test functions is determined by the number of 
variables and the number and distribution of local extremes. We studied continuous 
test functions with two variables, since those problems can be plotted as 3d 
surfaces. Table 1 summarizes the ten test functions we used in alphabetical order. 
The Ackley's function has a nearly flat outer region, and a large valley at its centre. 
This widely used multimodal test function can easily trap heuristic algorithms at 
one of its local optima. De Jong's function is a very simple convex, unimodal 
benchmark problem. Drop-Wave function is very complex, with expanding ripples, 
like when an object is dropped into liquid surface. Easom's function is unimodal 
like De Jong's, however more complicated, because the global optima is relatively 
small compared to the search space. Griewangk's function looks similar to De 
Jong's either, but it has a rugged surface with many regularly distributed local 
optima. Matyas's function is a plate shaped problem, it doesn't have any local 
extremes, only the global one, which is relatively easy to find. However, 
convergence to the global optima is difficult, so that this is a great benchmark 
problem to measure the accuracy and convergence rate of search algorithms. 
Rastrigin's function, also known as egg holder is a widely used, highly multimodal 
problem with regularly distributed local extremes. Rosenbrock's valley is unimodal, 



the global minimum can be found in a narrow, parabolic valley. Schaffer's second 
function is an extremely noisy optimization problem, with a lot of local optima very 
close to each other. Last but not least, Three-hump camelback looks very much like 
Rosenbrock's valley, however it has two local extremes. 
 

Table 1. 
Numerical data of benchmark problems 

 
Name Definition Search range and 

global optimum 

Ackley's 
function (F1) 

𝑓(𝑥) = −20 × exp (−0,2 × �
1
𝑛�(𝑥𝑖2)

𝑛

𝑖=1

− exp(
1
𝑛� cos (2𝜋𝑥𝑖)) + 20 + exp (1)

𝑛

𝑖=1

 

−32,768 ≤ 𝑥𝑖 ≤ 32,768 

𝑥𝑖 = 0, 𝑖 = 1, … ,𝑛 
f(𝑥)=0 

De Jong's 
function (F2) 

𝑓(𝑥) = �𝑥𝑖2
𝑛

𝑖=1

 

−5,12 ≤ 𝑥𝑖 ≤ 5,12 

𝑥𝑖 = 0, 𝑖 = 1, … ,𝑛 
f(𝑥)=0 

Drop-Wave 
function (F3) 

𝑓(𝑥) = −
1 + cos (12 × �𝑥12 + 𝑥22

1
2 (𝑥12 + 𝑥22) + 2

+ 1 
−5,12 ≤ 𝑥𝑖 ≤ 5,12 

𝑥𝑖 = 0, 𝑖 = 1, 2 
f(𝑥)=0 

Easom's 
function (F4) 

𝑓(𝑥) = − cos(𝑥1) × cos(𝑥2)

× exp(−(𝑥1 − 𝜋)2 − (𝑥2 − 𝜋)2) + 1 

−10 ≤ 𝑥𝑖 ≤ 10 

𝑥𝑖 = 𝜋, 𝑖 = 1, 2 
f(𝑥)=0 

Griewangk's 
function (F5) 

𝑓(𝑥) =
1

4000
× �𝑥𝑖2

𝑛

𝑖=1

−� cos �
𝑥i
√i
� + 1

n

i=1

 
−600 ≤ 𝑥𝑖 ≤ 600 

𝑥𝑖 = 0, 𝑖 = 1, … ,𝑛 
f(𝑥)=0 

Matyas's 
function (F6) 

𝑓(𝑥) = 0,26 × (𝑥12 + 𝑥22) − 0,48 × 𝑥1 × 𝑥2 

−10 ≤ 𝑥𝑖 ≤ 10 

𝑥𝑖 = 0, 𝑖 = 1, 2 
f(𝑥)=0 

Rastrigin's 
function (F7) 

𝑓(𝑥) = 10 × 𝑛 + �[𝑥𝑖2 − 10 × cos (2𝜋𝑥𝑖)]
𝑛

𝑖=1

 
−5,12 ≤ 𝑥𝑖 ≤ 5,12 

𝑥𝑖 = 0, 𝑖 = 1, … ,𝑛 
f(𝑥)=0 

Rosenbrock's 
valley (F8) 

𝑓(𝑥) = �[100 × (𝑥𝑖+1 − 𝑥𝑖2)2 + (1 − 𝑥𝑖)2]
𝑛−1

𝑖=1

 

−2,048 ≤ 𝑥𝑖 ≤ 2,048 

𝑥𝑖 = 1, 𝑖 = 1, … ,𝑛 
f(𝑥)=0 

Schaffer's N. 2. 
function (F9) 

𝑓(𝑥) = 0,5 +
𝑠𝑖𝑛2(𝑥12 − 𝑥22) − 0,5

[1 + 0,001 × (𝑥12 + 𝑥22)]2
 

−10 ≤ 𝑥𝑖 ≤ 10 

𝑥𝑖 = 0, 𝑖 = 1, 2 
f(𝑥)=0 

Three-hump 
camelback 

(F10) 
𝑓(𝑥) = 2𝑥12 − 1,05𝑥14 +

𝑥16

6
+ 𝑥1𝑥2 + 𝑥22 

−2,048 ≤ 𝑥𝑖 ≤ 2,048 

𝑥𝑖 = 0, 𝑖 = 1, 2 
f(𝑥)=0 

 



3. COMPOSITION OF TEST FUNCTIONS 
 
In [2] the authors proposed a novel theoretical method to create more complex test 
functions from given basis functions. A practical framework has been described in 
[3], which extends the above theory. We have developed a software solution, which 
utilizes the practical framework to easily create customized arbitrarily difficult test 
problems. 
 
3.1 Theoretical Method 
 
In order to generate arbitrarily difficult complex test functions, the algorithm 
requires several input parameters: 
 

̶ [Xmin, Xmax]D: search range of the complex function 
̶ D: number of dimensions 
̶ fi(θ): list of basic functions 
̶ [xmin, xmax]D: search range of the basic functions 
̶ oi: the position of the global optima for the i-th basic function 
̶ bias (ψ): a vector to define the global optima. It allows the user to shift the 

optimum values of the basic functions. 
 
To define the position of global and local optimums, we have to shift the value of 
the basic function's global optimum points. In order to achieve this, the basic 
functions have to be evaluated outside the defined search range. Therefore the given 
global optimum positions of the basic functions have to be independent of the 
search range. The complex test functions can be determined using the following 
formulas: 
 

𝐹(𝜃) = ��𝑤𝑖 �
fi(ϑi)
fi(𝑜i)

+ 𝑏𝑖𝑎𝑠𝑖�� (1) 

 

ϑi =
𝜃 − �𝑋𝑚𝑖𝑛 − 𝑥𝑚𝑖𝑛𝑖κi + 𝜓𝑖�

κi
 (2) 

 
Where wi is the weighting function, which ensures to keep the predefined optimum 
positions and values. The closer we get to a basic functions global optimum position 
(oi), the bigger weighting coefficient it gets. At the same time, the other basic 
functions get smaller weighting coefficients. We used three different types of 
weighting functions. 
 
3.1.1 Euclidean distance-based weighting 
 
The first weighting function is based on the Euclidean distance between the 
complex function's given point (𝜗) and the optimum points (oi) of the basic 
functions. 
 



𝑤𝑖 = Euclidean_distance(ϑi, 𝑜i) (3) 
 
We have to normalize the distances: 
 

𝑤𝑖 =
𝑤𝑖

∑𝑤
 (4) 

 
𝑤𝑖 = 1 − 𝑤𝑖  (5) 

 
If 𝑤𝑖 ≠ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑤), and 𝑛 is the number of basic functions: 
 

𝑤𝑖 =
1 −𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑤)

(𝑛 − 1)
 (6) 

 
3.1.2 Gaussian weighting 
 
Smoother edges can be achieved by using the Gaussian functions to determine 
weighting coefficients. 
 

𝑤𝑖 = e
(𝜗i−𝑜i)2

6  (7) 
 
3.1.3 Gabor-like weighting 
 
We can create more difficult optimization problems if the weighting function 
generates noise. However we have to make sure not to shift the original optimum 
values. The weighting function should return values between 0 and 1, its global 
maxima should be at the complex function's global optimum. 
 

𝑤𝑖 = �� cos(ϑi(k)τ1) e−
∑ ϑi(k)2k

τ2

k

� (8) 

 
Where ϑi(k) is the k-th element of the ϑi vector, τ1 is the noisiness parameter, and 
τ2 is the convergence range. Increasing the τ1 parameter results in more noise. If 
𝑤𝑖 ≠ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑊𝑒𝑖𝑔ℎ𝑡(𝑤), and 𝑛 is the number of basic functions: 
 

𝑤𝑖 =
1 −𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑊𝑒𝑖𝑔ℎ𝑡(𝑤)

(𝑛 − 1)
 (9) 

 
3.2 Practical Example 
 
We have generated a complex test function to demonstrate the method and expand 
the number of benchmark problems used in this paper. The input parameters are the 
following: 
 



̶ [𝑋𝑚𝑖𝑛,𝑋𝑚𝑎𝑥]𝐷: the search range of the complex function is [−10, 10]𝐷 
̶ 𝐷: the number of dimensions is 2 
̶ 𝑓𝑖(𝜃): we used 7 basic functions, all of them are Ackey's functions (F1). 
̶ [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥]𝐷: since we shift the optimum points of the basic functions, we don't 

have to define the basic functions' search range. 
̶ 𝑜(𝑥): the 𝑥 coordinates for the basic functions: [7,5; 5; 5; 0; -7,5; -5; 0] 
̶ 𝑜(𝑦): the 𝑦 coordinates for the basic functions: [0; 5; -5; -5; 0; 5; 0] 
̶ bias (𝜓): a vector to shift the basic functions: [3; 1; 2; 0,5; 1; 4,5; 0] 

 
Table 2. 

Surface and contour plot of complex benchmark problems 
 

Name Surface plot Contour plot 

Complex 
function with 

Euclidean 
distance-based 

weighting 
(F11) 

  

Complex 
function with 

Gaussian 
weighting 

(F12) 

  

Complex 
function with 

Gabor-like 
weighting 

(𝛕𝟏 = 𝟑, 𝛕𝟐 = 𝟖) 
(F13) 

  
 



In Table 3 you can see the generated Complex functions, which all consists of 7 
Ackley's basic functions. The different characteristics of the three weighting 
functions are also observable. The basic functions global optimum values have been 
shifted, therefore the complex function's global optimum value is 𝑓(𝑥) = 0, can be 
found at 𝑥 = 0, 𝑦 = 0 coordinates. 
 
3.4 Novel software solution to easily generate complex test functions 
 
We have developed a software solution which utilizes the above framework to 
easily create customized arbitrarily difficult test problems. All the coding was done 
in C#, the program uses the .NET Framework. The best feature of the software is 
the automatic source code generation. As the user builds the complex function in a 
visual editor, at the same time the program generates the function's C# source code. 
Therefore the newly created optimization problem can be used straight away. 
 
4. MAIN CHARACTERISTICS OF HEURISTIC ALGORITHMS 
 
As mentioned before, the biggest advantage of heuristic algorithms is that they can 
find approximate solutions, even when the search space is excessively huge. 
However, finding the global optimum cannot be guaranteed, since they don't 
evaluate all feasible solutions. A good heuristic algorithm has to maintain balance 
between local search and global search. On one hand, it has to explore the entire 
search space properly, on the other hand search around the current best positions 
efficiently. In other words, quickly find regions with quality solutions, and don't 
waste too much time in low quality areas. Most of the time, heuristic algorithms 
have stochastic behaviour. Ideally, the final solutions, through slightly different, 
will converge to the optimal solution of the given problem. However, the way 
heuristic algorithms get to the solution is always a bit different because of the 
stochastic factor. Nowadays a lot of nature inspired heuristic algorithms emerge. 
We benchmarked twelve optimization techniques, like evolutionary (Differential 
Evolution, Cultural Algorithm, Memetic Algorithm), physical (Simulated 
Annealing, Harmony Search), biological (Artificial Immune Network) and swarm 
intelligence (Bacterial Foraging, Bees Algorithm, Krill Herd, Particle Swarm) 
optimization methods. We made the algorithms' source code available on the 
Internet. The algorithms search for the global minima, if the Rastrigin's function in 
the source code [4]. 
 
4.1 Benchmarked heuristic algorithms 
 
- Artificial Immune Network (AiNet) algorithm was developed by de Castro and 

Von Zuben to solve a clustering problem in 2000 [5]. According to its 
principles, the algorithm is related to the field of Artificial Immune Systems. 

- Bacterial Foraging Algorithm (BFOA) was first described by Liu and Passino 
in 2002 [6]. It's a relatively new swarm intelligence search algorithm. These 
techniques use the collective intelligence of numerous homogenous individuals. 
In principle, an individual entity may not be able to solve a problem on its own. 



However, if a large number of individuals form a group, the group's collective 
intelligence may be enough to solve the task. Bacterial Foraging is based on the 
foraging behavior of E. Coli bacteria colonies. 

- Bees Algorithm (BA) was published by Pham in 2005 [7]. Primarily it was 
developed to search for the global optima of continuous mathematical 
functions. It belongs to the field of swarm intelligence procedures. The Bees 
Algorithm, as the name suggests, was inspired by the foraging behavior of bees. 

- Cultural Algorithm (CA) was described by Reynolds in 1994 [8]. This 
evolutionary algorithm simulates the cultural evolution of human society. 

- Differential Evolution (DE) algorithm was developed by Storn and Price in 
1995. It belongs to the field of evolutionary algorithms. Differential Evolution 
is mainly based on Darwin's Theory of Evolution, because its main principle is 
natural selection [9]. 

- Harmony Search (HS) was published by Geem, Kim and Loganathan in 2001 
[10]. It was inspired by Jazz musicians. When they start a musical performance, 
they adapt their music to the band, creating musical harmony. If a false sound 
occurs, the band makes modifications to improve their performance. 

- Krill Herd (KH) algorithm is a novel swarm intelligence method, developed by 
Gandomi and Alami in 2012 [11]. It is inspired by the foraging behavior of the 
Antarctic krill (Euphausia superba). These krill search for food in dense 
swarms, the number of krill can be up to 10-30 thousand per cubic meters. On 
one hand, the swarm guarantees protection against predators, on the other hand 
krill can find food easier, because the swarm can scout larger areas. 

- Memetic Algorihm (MA) was developed by Moscato in 1989 [12]. The 
algorithm simulates the creation and inheritance of cultural information among 
individuals. Meme is the basic unit of cultural information (an idea, discovery, 
etc), which name derives from the biological term gene. 

- Nelder-Mead (NM) algorithm was named after its creators. Nelder and Mead 
created this heuristic in 1965 [13]. In the literature its often referred as Amoeba 
Method. Basically Nelder-Mead algorithm is a simplex search method [14]. 

- Particle Swarm Optimization (PSO) was developed by Eberhart and Kennedy. 
Nowadays its one of the most promising metaheuristic optimization algorithms. 
Particle Swarm's operation was inspired by the foraging movement of bird and 
fish swarms [15]. 

- Random Search (RS) algorithm, as the name suggests, is a simple random 
search algorithm. It takes any position in the search space with equal 
probability. The new solutions are always independent from the previous ones. 

- Simulated Annealing (SA) method was described by Kirkpatrick, Gelatt and 
Vecchi in 1983. The operation of the algorithm is based on a physical 
phenomenon. In metallurgy certain materials gain beneficial properties when 
heated and then cooled under controlled conditions. The materials' crystal 
structure is transformed during the process, because the particles take more 
favorable positions. The heuristic algorithm emulates this process to search for 
better solutions to a given problem [16]. 

 



5. NUMERICAL EXPERIMENTS 
 
Benchmarking heuristic optimization algorithms is a quite difficult and complex 
process. Due to the algorithms' stochastic factors, we had to use statistical methods 
to present satisfactory results. The heuristic algorithms did 50 Monte Carlo searches 
per test function. We specified the iteration limit for each search to be 100. The 
input parameters for the algorithms are determined based on the proposals found in 
the literature indicated. 
 
5.1 Statistical results 
 
We created a statistical table, which summarizes the performance of algorithms 
broken down by test functions. Table 4 gives an overview regarding algorithms' 
efficiency and reliability. The values are normalized, so that the optima in each row 
is 0, and the maximum is 1. These are not the absolute minima found by each 
algorithm, but the average minima for 50 Monte Carlo simulations. 
 

Table 3. 
Mean normalized optimization results for thirteen benchmark functions. 

 
 AiNet BFOA BA CA DE HS KH MA NM PSO RS SA 

F1 0,58 1 0 0,10 0 0,77 0,01 0,11 0 0 0,40 0,65 
F2 0,12 0 0 0,29 0 1 0 0,01 0 0 0,08 0,03 
F3 0,28 0,56 0 0,31 0,04 1 0,11 0,16 0,35 0 0,47 0,71 
F4 0,28 0,56 0 0,31 0,04 1 0,11 0,16 0,35 0 0,47 0,71 
F5 0,43 0,05 0,04 0,06 0 0,68 0,10 0,30 1 0 0,05 0,27 
F6 0,08 0,17 0 0,01 0 0,13 0 0,01 0,01 0 0,04 1 
F7 0,12 0 0 0,07 0,06 1 0,01 0,13 0 0 0,04 0,15 
F8 0,09 0 0,05 0,08 0,01 0,82 0,01 1 0 0 0,07 0,01 
F9 0 0,04 0 0,11 0,01 1 0,04 0,07 0,41 0 0,02 0,37 

F10 0 0 0 0,05 0,02 1 0 0,03 0,29 0 0,01 0,07 
F11 0,64 1 0 0,10 0 0,77 0,01 0,11 0 0 0,40 0,65 
F12 0,10 0 0 0,10 0 1 0,01 0,03 0,27 0 0,22 0,18 
F13 0,35 0,19 0 0,32 0 1 0,03 0,18 0,23 0,01 0,35 0,24 
Σ 2 5 11 0 7 0 3 0 5 12 0 0 

 
We used convergence plots in Table 5 to measure the convergence rate of search 
algorithms. Convergence rate shows how quickly the heuristic algorithms can find 
the optimum. The data points are the best fitness found in each iteration, averaged 
for 50 Monte Carlo simulations. 
 

Table 4. 
Convergence plots for Ackley's (F1) and Complex (F11, F12, F13) functions 

 



Name Convergence plot 

Ackley's 
function (F1) 

 

Complex 
function with 

Euclidean 
distance-

based 
weighting 

(F11) 

 

Complex 
function with 

Gaussian 
weighting 

(F12) 

 

Complex 
function with 

Gabor-like 
weighting 

(𝛕𝟏 = 𝟑, 𝛕𝟐 =
𝟖) (F13) 

 

0,0000001

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

10

100
0 10 20 30 40 50 60 70 80 90

Be
st

 fi
tn

es
s v

al
ue

 

Iteration number 

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA

0,0001

0,001

0,01

0,1

1

10
0 10 20 30 40 50 60 70 80 90

Be
st

 fi
tn

es
s v

al
ue

 

Iteration number 

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA

0,00001

0,0001

0,001

0,01

0,1

1

10
0 10 20 30 40 50 60 70 80 90

Be
st

 fi
tn

es
s v

al
ue

 

Iteration number 

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA

0,001

0,01

0,1

1

10
0 10 20 30 40 50 60 70 80 90

Be
st

 fi
tn

es
s v

al
ue

 

Iteration number 

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA



5.2 Benchmark conclusion 
 
We used twelve search algorithms for the thirteen benchmark problems. The test 
functions had quite diverse characteristics, like unimodal and multimodal problems 
with varying number and distribution of local extremes. Three complex benchmark 
problems were constructed by us with the software we created. After we examined 
the significant amount of statistical data, we get a picture of the algorithms' overall 
performance. If we take a look at Table 4, we can see the superiority of swarm 
intelligence methods. Bees Algorithm (BA) and Particle Swarm Optimization 
(PSO) almost always found the global optima, even in case of very difficult and 
noisy functions. The third best algorithm was an evolutionary method, the 
Differential Evolution, however sometimes it trapped at local optima. To improve 
the performance of slowly converging methods (HS, SA), we should increase the 
number of iterations. The rate of convergence could be observed very well on the 
convergence plots of Table 5. The three best algorithms' rate of convergence is 
relatively fast, and this characteristic proved to be crucial for success. Furthermore, 
the convergence plots showed the weighting functions really affect the difficulty of 
complex functions. The averaged fitness function values revealed the Complex 
function with Euclidean distance-based weighting (F11) was a thousand times 
harder to solve then the basis function (F1). However the use of Gaussian weighing 
function resulted in smoother edges, which decreased the number and distribution 
of local extremes, making it easier to find the global optima for the search 
algorithms. Probably the hardest test function was Complex function with Gabor-
like weighting, because the weighting function generated significant noise. In case 
of this test problem, the best algorithm was Differential Evolution, however its 
solution is ten times worse than the best algorithm of Euclidean distance-based 
weighting. As final conclusion, we can say that the complex functions with 
different weighting proved to be great benchmark problems. 
 
6. SUMMARY 
 
The field of numerical optimization is an always evolving science. Several new 
evolutionary optimization techniques appeared lately. We created a software 
solution, which provides practically endless possibilities to create arbitrarily 
difficult complex test functions. We benchmarked twelve optimization algorithms 
with thirteen test functions. In the future, we would like to create more difficult, 
self-made test problems, and benchmark further heuristic techniques. Based on the 
benchmark result, we will try to create novel, more efficient hybrid heuristic 
algorithms, which could be utilized in real-life structural and logistical optimization 
problems. 
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