
NEW EVOLUTIONARY OPTIMIZATION TECHNIQUES AND TEST
FUNCTIONS FOR THEIR EVALUATION

Gábor Zoltán Marcsák1, Csaba Barcsák2, Károly Jármai3,

1 MSc. student, 2 software engineer, Evosoft Ltd., 3 Professor, University of Miskolc,
Egyetemváros, Hungary

1. INTRODUCTION

The process of optimization is finding the best solution to a given problem, when
the amount of available resources is often restricted. Despite the rapid development
of computer science, most optimization problems can't be solved by evaluating all
feasible solutions. For example, the class of NP-hard problems, such as the
Traveling salesman problem (also known as TSP), might have an enormously large
search space, which requires exponential computation time to be fully explored. To
solve these kinds of problems, many heuristic algorithms have been developed.
Heuristic algorithms can find approximate solutions, even when the search space is
excessively huge. In this paper, we benchmarked twelve optimization techniques, to
compare their efficiency in finding the global minima of different continuous
mathematical test functions. Mathematical function optimization is very important,
because most real world optimization problems can be modelled in this general
framework. Numerous mathematical test functions can be found in the literature,
additionally we created a software solution, which utilizes a novel method to
construct customized test functions.

2. BENCHMARK PROBLEMS

As mentioned before, a lot of mathematical test functions can be found in the
literature [1]. The complexity of test functions is determined by the number of
variables and the number and distribution of local extremes. We studied continuous
test functions with two variables, since those problems can be plotted as 3d
surfaces. Table 1 summarizes the ten test functions we used in alphabetical order.
The Ackley's function has a nearly flat outer region, and a large valley at its centre.
This widely used multimodal test function can easily trap heuristic algorithms at
one of its local optima. De Jong's function is a very simple convex, unimodal
benchmark problem. Drop-Wave function is very complex, with expanding ripples,
like when an object is dropped into liquid surface. Easom's function is unimodal
like De Jong's, however more complicated, because the global optima is relatively
small compared to the search space. Griewangk's function looks similar to De
Jong's either, but it has a rugged surface with many regularly distributed local
optima. Matyas's function is a plate shaped problem, it doesn't have any local
extremes, only the global one, which is relatively easy to find. However,
convergence to the global optima is difficult, so that this is a great benchmark
problem to measure the accuracy and convergence rate of search algorithms.
Rastrigin's function, also known as egg holder is a widely used, highly multimodal
problem with regularly distributed local extremes. Rosenbrock's valley is unimodal,

the global minimum can be found in a narrow, parabolic valley. Schaffer's second
function is an extremely noisy optimization problem, with a lot of local optima very
close to each other. Last but not least, Three-hump camelback looks very much like
Rosenbrock's valley, however it has two local extremes.

Table 1.
Numerical data of benchmark problems

Name Definition Search range and

global optimum

Ackley's
function (F1)

𝑓(𝑥) = −20 × exp (−0,2 × �
1
𝑛�(𝑥𝑖2)

𝑛

𝑖=1

− exp(
1
𝑛� cos (2𝜋𝑥𝑖)) + 20 + exp (1)

𝑛

𝑖=1

−32,768 ≤ 𝑥𝑖 ≤ 32,768

𝑥𝑖 = 0, 𝑖 = 1, … ,𝑛
f(𝑥)=0

De Jong's
function (F2)

𝑓(𝑥) = �𝑥𝑖2
𝑛

𝑖=1

−5,12 ≤ 𝑥𝑖 ≤ 5,12

𝑥𝑖 = 0, 𝑖 = 1, … ,𝑛
f(𝑥)=0

Drop-Wave
function (F3)

𝑓(𝑥) = −
1 + cos (12 × �𝑥12 + 𝑥22

1
2 (𝑥12 + 𝑥22) + 2

+ 1
−5,12 ≤ 𝑥𝑖 ≤ 5,12

𝑥𝑖 = 0, 𝑖 = 1, 2
f(𝑥)=0

Easom's
function (F4)

𝑓(𝑥) = − cos(𝑥1) × cos(𝑥2)

× exp(−(𝑥1 − 𝜋)2 − (𝑥2 − 𝜋)2) + 1

−10 ≤ 𝑥𝑖 ≤ 10

𝑥𝑖 = 𝜋, 𝑖 = 1, 2
f(𝑥)=0

Griewangk's
function (F5)

𝑓(𝑥) =
1

4000
× �𝑥𝑖2

𝑛

𝑖=1

−� cos �
𝑥i
√i
� + 1

n

i=1

−600 ≤ 𝑥𝑖 ≤ 600

𝑥𝑖 = 0, 𝑖 = 1, … ,𝑛
f(𝑥)=0

Matyas's
function (F6)

𝑓(𝑥) = 0,26 × (𝑥12 + 𝑥22) − 0,48 × 𝑥1 × 𝑥2

−10 ≤ 𝑥𝑖 ≤ 10

𝑥𝑖 = 0, 𝑖 = 1, 2
f(𝑥)=0

Rastrigin's
function (F7)

𝑓(𝑥) = 10 × 𝑛 + �[𝑥𝑖2 − 10 × cos (2𝜋𝑥𝑖)]
𝑛

𝑖=1

−5,12 ≤ 𝑥𝑖 ≤ 5,12

𝑥𝑖 = 0, 𝑖 = 1, … ,𝑛
f(𝑥)=0

Rosenbrock's
valley (F8)

𝑓(𝑥) = �[100 × (𝑥𝑖+1 − 𝑥𝑖2)2 + (1 − 𝑥𝑖)2]
𝑛−1

𝑖=1

−2,048 ≤ 𝑥𝑖 ≤ 2,048

𝑥𝑖 = 1, 𝑖 = 1, … ,𝑛
f(𝑥)=0

Schaffer's N. 2.
function (F9)

𝑓(𝑥) = 0,5 +
𝑠𝑖𝑛2(𝑥12 − 𝑥22) − 0,5

[1 + 0,001 × (𝑥12 + 𝑥22)]2

−10 ≤ 𝑥𝑖 ≤ 10

𝑥𝑖 = 0, 𝑖 = 1, 2
f(𝑥)=0

Three-hump
camelback

(F10)
𝑓(𝑥) = 2𝑥12 − 1,05𝑥14 +

𝑥16

6
+ 𝑥1𝑥2 + 𝑥22

−2,048 ≤ 𝑥𝑖 ≤ 2,048

𝑥𝑖 = 0, 𝑖 = 1, 2
f(𝑥)=0

3. COMPOSITION OF TEST FUNCTIONS

In [2] the authors proposed a novel theoretical method to create more complex test
functions from given basis functions. A practical framework has been described in
[3], which extends the above theory. We have developed a software solution, which
utilizes the practical framework to easily create customized arbitrarily difficult test
problems.

3.1 Theoretical Method

In order to generate arbitrarily difficult complex test functions, the algorithm
requires several input parameters:

̶ [Xmin, Xmax]D: search range of the complex function
̶ D: number of dimensions
̶ fi(θ): list of basic functions
̶ [xmin, xmax]D: search range of the basic functions
̶ oi: the position of the global optima for the i-th basic function
̶ bias (ψ): a vector to define the global optima. It allows the user to shift the

optimum values of the basic functions.

To define the position of global and local optimums, we have to shift the value of
the basic function's global optimum points. In order to achieve this, the basic
functions have to be evaluated outside the defined search range. Therefore the given
global optimum positions of the basic functions have to be independent of the
search range. The complex test functions can be determined using the following
formulas:

𝐹(𝜃) = ��𝑤𝑖 �
fi(ϑi)
fi(𝑜i)

+ 𝑏𝑖𝑎𝑠𝑖�� (1)

ϑi =
𝜃 − �𝑋𝑚𝑖𝑛 − 𝑥𝑚𝑖𝑛𝑖κi + 𝜓𝑖�

κi
 (2)

Where wi is the weighting function, which ensures to keep the predefined optimum
positions and values. The closer we get to a basic functions global optimum position
(oi), the bigger weighting coefficient it gets. At the same time, the other basic
functions get smaller weighting coefficients. We used three different types of
weighting functions.

3.1.1 Euclidean distance-based weighting

The first weighting function is based on the Euclidean distance between the
complex function's given point (𝜗) and the optimum points (oi) of the basic
functions.

𝑤𝑖 = Euclidean_distance(ϑi, 𝑜i) (3)

We have to normalize the distances:

𝑤𝑖 =
𝑤𝑖

∑𝑤
 (4)

𝑤𝑖 = 1 − 𝑤𝑖 (5)

If 𝑤𝑖 ≠ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑤), and 𝑛 is the number of basic functions:

𝑤𝑖 =
1 −𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑤)

(𝑛 − 1)
 (6)

3.1.2 Gaussian weighting

Smoother edges can be achieved by using the Gaussian functions to determine
weighting coefficients.

𝑤𝑖 = e
(𝜗i−𝑜i)2

6 (7)

3.1.3 Gabor-like weighting

We can create more difficult optimization problems if the weighting function
generates noise. However we have to make sure not to shift the original optimum
values. The weighting function should return values between 0 and 1, its global
maxima should be at the complex function's global optimum.

𝑤𝑖 = �� cos(ϑi(k)τ1) e−
∑ ϑi(k)2k

τ2

k

� (8)

Where ϑi(k) is the k-th element of the ϑi vector, τ1 is the noisiness parameter, and
τ2 is the convergence range. Increasing the τ1 parameter results in more noise. If
𝑤𝑖 ≠ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑊𝑒𝑖𝑔ℎ𝑡(𝑤), and 𝑛 is the number of basic functions:

𝑤𝑖 =
1 −𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑊𝑒𝑖𝑔ℎ𝑡(𝑤)

(𝑛 − 1)
 (9)

3.2 Practical Example

We have generated a complex test function to demonstrate the method and expand
the number of benchmark problems used in this paper. The input parameters are the
following:

̶ [𝑋𝑚𝑖𝑛,𝑋𝑚𝑎𝑥]𝐷: the search range of the complex function is [−10, 10]𝐷
̶ 𝐷: the number of dimensions is 2
̶ 𝑓𝑖(𝜃): we used 7 basic functions, all of them are Ackey's functions (F1).
̶ [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥]𝐷: since we shift the optimum points of the basic functions, we don't

have to define the basic functions' search range.
̶ 𝑜(𝑥): the 𝑥 coordinates for the basic functions: [7,5; 5; 5; 0; -7,5; -5; 0]
̶ 𝑜(𝑦): the 𝑦 coordinates for the basic functions: [0; 5; -5; -5; 0; 5; 0]
̶ bias (𝜓): a vector to shift the basic functions: [3; 1; 2; 0,5; 1; 4,5; 0]

Table 2.

Surface and contour plot of complex benchmark problems

Name Surface plot Contour plot

Complex
function with

Euclidean
distance-based

weighting
(F11)

Complex
function with

Gaussian
weighting

(F12)

Complex
function with

Gabor-like
weighting

(𝛕𝟏 = 𝟑, 𝛕𝟐 = 𝟖)
(F13)

In Table 3 you can see the generated Complex functions, which all consists of 7
Ackley's basic functions. The different characteristics of the three weighting
functions are also observable. The basic functions global optimum values have been
shifted, therefore the complex function's global optimum value is 𝑓(𝑥) = 0, can be
found at 𝑥 = 0, 𝑦 = 0 coordinates.

3.4 Novel software solution to easily generate complex test functions

We have developed a software solution which utilizes the above framework to
easily create customized arbitrarily difficult test problems. All the coding was done
in C#, the program uses the .NET Framework. The best feature of the software is
the automatic source code generation. As the user builds the complex function in a
visual editor, at the same time the program generates the function's C# source code.
Therefore the newly created optimization problem can be used straight away.

4. MAIN CHARACTERISTICS OF HEURISTIC ALGORITHMS

As mentioned before, the biggest advantage of heuristic algorithms is that they can
find approximate solutions, even when the search space is excessively huge.
However, finding the global optimum cannot be guaranteed, since they don't
evaluate all feasible solutions. A good heuristic algorithm has to maintain balance
between local search and global search. On one hand, it has to explore the entire
search space properly, on the other hand search around the current best positions
efficiently. In other words, quickly find regions with quality solutions, and don't
waste too much time in low quality areas. Most of the time, heuristic algorithms
have stochastic behaviour. Ideally, the final solutions, through slightly different,
will converge to the optimal solution of the given problem. However, the way
heuristic algorithms get to the solution is always a bit different because of the
stochastic factor. Nowadays a lot of nature inspired heuristic algorithms emerge.
We benchmarked twelve optimization techniques, like evolutionary (Differential
Evolution, Cultural Algorithm, Memetic Algorithm), physical (Simulated
Annealing, Harmony Search), biological (Artificial Immune Network) and swarm
intelligence (Bacterial Foraging, Bees Algorithm, Krill Herd, Particle Swarm)
optimization methods. We made the algorithms' source code available on the
Internet. The algorithms search for the global minima, if the Rastrigin's function in
the source code [4].

4.1 Benchmarked heuristic algorithms

- Artificial Immune Network (AiNet) algorithm was developed by de Castro and

Von Zuben to solve a clustering problem in 2000 [5]. According to its
principles, the algorithm is related to the field of Artificial Immune Systems.

- Bacterial Foraging Algorithm (BFOA) was first described by Liu and Passino
in 2002 [6]. It's a relatively new swarm intelligence search algorithm. These
techniques use the collective intelligence of numerous homogenous individuals.
In principle, an individual entity may not be able to solve a problem on its own.

However, if a large number of individuals form a group, the group's collective
intelligence may be enough to solve the task. Bacterial Foraging is based on the
foraging behavior of E. Coli bacteria colonies.

- Bees Algorithm (BA) was published by Pham in 2005 [7]. Primarily it was
developed to search for the global optima of continuous mathematical
functions. It belongs to the field of swarm intelligence procedures. The Bees
Algorithm, as the name suggests, was inspired by the foraging behavior of bees.

- Cultural Algorithm (CA) was described by Reynolds in 1994 [8]. This
evolutionary algorithm simulates the cultural evolution of human society.

- Differential Evolution (DE) algorithm was developed by Storn and Price in
1995. It belongs to the field of evolutionary algorithms. Differential Evolution
is mainly based on Darwin's Theory of Evolution, because its main principle is
natural selection [9].

- Harmony Search (HS) was published by Geem, Kim and Loganathan in 2001
[10]. It was inspired by Jazz musicians. When they start a musical performance,
they adapt their music to the band, creating musical harmony. If a false sound
occurs, the band makes modifications to improve their performance.

- Krill Herd (KH) algorithm is a novel swarm intelligence method, developed by
Gandomi and Alami in 2012 [11]. It is inspired by the foraging behavior of the
Antarctic krill (Euphausia superba). These krill search for food in dense
swarms, the number of krill can be up to 10-30 thousand per cubic meters. On
one hand, the swarm guarantees protection against predators, on the other hand
krill can find food easier, because the swarm can scout larger areas.

- Memetic Algorihm (MA) was developed by Moscato in 1989 [12]. The
algorithm simulates the creation and inheritance of cultural information among
individuals. Meme is the basic unit of cultural information (an idea, discovery,
etc), which name derives from the biological term gene.

- Nelder-Mead (NM) algorithm was named after its creators. Nelder and Mead
created this heuristic in 1965 [13]. In the literature its often referred as Amoeba
Method. Basically Nelder-Mead algorithm is a simplex search method [14].

- Particle Swarm Optimization (PSO) was developed by Eberhart and Kennedy.
Nowadays its one of the most promising metaheuristic optimization algorithms.
Particle Swarm's operation was inspired by the foraging movement of bird and
fish swarms [15].

- Random Search (RS) algorithm, as the name suggests, is a simple random
search algorithm. It takes any position in the search space with equal
probability. The new solutions are always independent from the previous ones.

- Simulated Annealing (SA) method was described by Kirkpatrick, Gelatt and
Vecchi in 1983. The operation of the algorithm is based on a physical
phenomenon. In metallurgy certain materials gain beneficial properties when
heated and then cooled under controlled conditions. The materials' crystal
structure is transformed during the process, because the particles take more
favorable positions. The heuristic algorithm emulates this process to search for
better solutions to a given problem [16].

5. NUMERICAL EXPERIMENTS

Benchmarking heuristic optimization algorithms is a quite difficult and complex
process. Due to the algorithms' stochastic factors, we had to use statistical methods
to present satisfactory results. The heuristic algorithms did 50 Monte Carlo searches
per test function. We specified the iteration limit for each search to be 100. The
input parameters for the algorithms are determined based on the proposals found in
the literature indicated.

5.1 Statistical results

We created a statistical table, which summarizes the performance of algorithms
broken down by test functions. Table 4 gives an overview regarding algorithms'
efficiency and reliability. The values are normalized, so that the optima in each row
is 0, and the maximum is 1. These are not the absolute minima found by each
algorithm, but the average minima for 50 Monte Carlo simulations.

Table 3.
Mean normalized optimization results for thirteen benchmark functions.

 AiNet BFOA BA CA DE HS KH MA NM PSO RS SA

F1 0,58 1 0 0,10 0 0,77 0,01 0,11 0 0 0,40 0,65
F2 0,12 0 0 0,29 0 1 0 0,01 0 0 0,08 0,03
F3 0,28 0,56 0 0,31 0,04 1 0,11 0,16 0,35 0 0,47 0,71
F4 0,28 0,56 0 0,31 0,04 1 0,11 0,16 0,35 0 0,47 0,71
F5 0,43 0,05 0,04 0,06 0 0,68 0,10 0,30 1 0 0,05 0,27
F6 0,08 0,17 0 0,01 0 0,13 0 0,01 0,01 0 0,04 1
F7 0,12 0 0 0,07 0,06 1 0,01 0,13 0 0 0,04 0,15
F8 0,09 0 0,05 0,08 0,01 0,82 0,01 1 0 0 0,07 0,01
F9 0 0,04 0 0,11 0,01 1 0,04 0,07 0,41 0 0,02 0,37

F10 0 0 0 0,05 0,02 1 0 0,03 0,29 0 0,01 0,07
F11 0,64 1 0 0,10 0 0,77 0,01 0,11 0 0 0,40 0,65
F12 0,10 0 0 0,10 0 1 0,01 0,03 0,27 0 0,22 0,18
F13 0,35 0,19 0 0,32 0 1 0,03 0,18 0,23 0,01 0,35 0,24
Σ 2 5 11 0 7 0 3 0 5 12 0 0

We used convergence plots in Table 5 to measure the convergence rate of search
algorithms. Convergence rate shows how quickly the heuristic algorithms can find
the optimum. The data points are the best fitness found in each iteration, averaged
for 50 Monte Carlo simulations.

Table 4.
Convergence plots for Ackley's (F1) and Complex (F11, F12, F13) functions

Name Convergence plot

Ackley's
function (F1)

Complex
function with

Euclidean
distance-

based
weighting

(F11)

Complex
function with

Gaussian
weighting

(F12)

Complex
function with

Gabor-like
weighting

(𝛕𝟏 = 𝟑, 𝛕𝟐 =
𝟖) (F13)

0,0000001

0,000001

0,00001

0,0001

0,001

0,01

0,1

1

10

100
0 10 20 30 40 50 60 70 80 90

Be
st

 fi
tn

es
s v

al
ue

Iteration number

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA

0,0001

0,001

0,01

0,1

1

10
0 10 20 30 40 50 60 70 80 90

Be
st

 fi
tn

es
s v

al
ue

Iteration number

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA

0,00001

0,0001

0,001

0,01

0,1

1

10
0 10 20 30 40 50 60 70 80 90

Be
st

 fi
tn

es
s v

al
ue

Iteration number

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA

0,001

0,01

0,1

1

10
0 10 20 30 40 50 60 70 80 90

Be
st

 fi
tn

es
s v

al
ue

Iteration number

AiNet BFOA BA CA DE HS

KH MA NM PSO RS SA

5.2 Benchmark conclusion

We used twelve search algorithms for the thirteen benchmark problems. The test
functions had quite diverse characteristics, like unimodal and multimodal problems
with varying number and distribution of local extremes. Three complex benchmark
problems were constructed by us with the software we created. After we examined
the significant amount of statistical data, we get a picture of the algorithms' overall
performance. If we take a look at Table 4, we can see the superiority of swarm
intelligence methods. Bees Algorithm (BA) and Particle Swarm Optimization
(PSO) almost always found the global optima, even in case of very difficult and
noisy functions. The third best algorithm was an evolutionary method, the
Differential Evolution, however sometimes it trapped at local optima. To improve
the performance of slowly converging methods (HS, SA), we should increase the
number of iterations. The rate of convergence could be observed very well on the
convergence plots of Table 5. The three best algorithms' rate of convergence is
relatively fast, and this characteristic proved to be crucial for success. Furthermore,
the convergence plots showed the weighting functions really affect the difficulty of
complex functions. The averaged fitness function values revealed the Complex
function with Euclidean distance-based weighting (F11) was a thousand times
harder to solve then the basis function (F1). However the use of Gaussian weighing
function resulted in smoother edges, which decreased the number and distribution
of local extremes, making it easier to find the global optima for the search
algorithms. Probably the hardest test function was Complex function with Gabor-
like weighting, because the weighting function generated significant noise. In case
of this test problem, the best algorithm was Differential Evolution, however its
solution is ten times worse than the best algorithm of Euclidean distance-based
weighting. As final conclusion, we can say that the complex functions with
different weighting proved to be great benchmark problems.

6. SUMMARY

The field of numerical optimization is an always evolving science. Several new
evolutionary optimization techniques appeared lately. We created a software
solution, which provides practically endless possibilities to create arbitrarily
difficult complex test functions. We benchmarked twelve optimization algorithms
with thirteen test functions. In the future, we would like to create more difficult,
self-made test problems, and benchmark further heuristic techniques. Based on the
benchmark result, we will try to create novel, more efficient hybrid heuristic
algorithms, which could be utilized in real-life structural and logistical optimization
problems.

7. ACKNOWLEDGEMENTS

The research was supported by the TÁMOP 4.2.4.A/2-11-1-2012-0001 priority
project entitled ‘National Excellence Program - Development and operation of
domestic personnel support system for students and researchers, implemented

within the framework of a convergence program, supported by the European Union,
co-financed by the European Social Fund. The research was supported also by the
Hungarian Scientific Research Fund OTKA T 109860 project and was partially
carried out in the framework of the Center of Excellence of Innovative Engineering
Design and Technologies at the University of Miskolc.

8. REFERENCES

[1] MOLOGA M., SMUTNICKI C.: Test functions for optimization needs, 2005. pp. 1-10,
 www.bioinformaticslaboratory.nl

[2] LIANG J., SUGANTHAN N., DEB K.: Novel composition test functions for numerical
 global optimization, Swarm Intelligence Symposium, Proceedings, 2005. pp. 68-75.

[3] BARCSÁK CS., JÁRMAI K.: Benchmark for testing evolutionary algorithms,
 10th World Congress on Structural and Multidisciplinary Optimization, May 19 -24,
 2013, Orlando, Florida, USA

[4] C# source code of heuristic algorithms:
 https://drive.google.com/folderview?id=0BxE6yHbGFZBAOHBpN2VIV08yS0k&usp=sharing

[5] DE CASTRO L. N. and VON ZUBEN F. J.: An evolutionary immune network for data
 clustering. In Proceedings Sixth Brazilian Symposium on Neural Networks, IEEE Computer
 Society, 2000. pp. 84–89.

[6] LIU Y. and PASSINO K. M.: Biomimicry of social foraging bacteria for
 distributed optimization: Models, principles, and emergent behaviours, Journal of
 Optimization Theory and Applications, 2002. pp. 603–628.

[7] PHAM D. T., GHANBARZADEH A., KOC E., OTRI S., RAHIM S., and ZAIDI
 M.: The bees algorithm. Technical report, Manufacturing Engineering Centre, Cardiff
 University, 2005.

[8] REYNOLDS R. G.: An introduction to cultural algorithms. In Proceedings of the
 3rd Annual Conference on Evolutionary Programming, World Scientific Publishing,
 1994. pp. 131–139.

[9] STORN R. and PRICE K.:. Differential evolution: A simple and efficient adaptive
 scheme for global optimization over continuous spaces, Technical Report TR-95-
 012, International Computer Science Institute, Berkeley, CA, 1995.

[10] GEEM Z. W., KIM J. H., and LOGANATHAN G. V.: A new heuristic optimization
algorithm: Harmony search. Simulation, 76:60–68, 2001.

[11] GANDOMI A. H. and ALAVI A. H.: “Krill herd: a new bio-inspired optimization
 algorithm”, Communications in Nonlinear Science and Numerical Simulation, vol. 17, no.
 12, 2012. pp. 4831–4845.

[12] MOSCATO P.: On evolution, search, optimization, genetic algorithms and martial arts:
 Towards memetic algorithms. Technical report, California Institute of Technology, 1989.

[13] NELDER J. A.; MEAD R.: "A simplex method for function minimization". Computer
 Journal 7, 1965. pp. 308–313.

[15] KENNEDY J. and EBERHART R. C.: Particle swarm optimization, In Proceedings
 IEEE int’l conf. on neural networks Vol. IV, 1995. pp 1942–1948.

[16] KIRKPATRICK S.: Optimization by simulated annealing: Quantitative studies.
 Journal of Statistical Physics, 1983. pp 975–986.

	1. Introduction
	2. Benchmark Problems
	3. Composition of Test Functions
	3.1 Theoretical Method
	3.1.1 Euclidean distance-based weighting
	3.1.2 Gaussian weighting
	3.1.3 Gabor-like weighting

	3.2 Practical Example

	4. Main characteristics of Heuristic Algorithms
	4.1 Benchmarked heuristic algorithms
	- Artificial Immune Network (AiNet) algorithm was developed by de Castro and Von Zuben to solve a clustering problem in 2000 [5]. According to its principles, the algorithm is related to the field of Artificial Immune Systems.
	- Bacterial Foraging Algorithm (BFOA) was first described by Liu and Passino in 2002 [6]. It's a relatively new swarm intelligence search algorithm. These techniques use the collective intelligence of numerous homogenous individuals. In principle, an ...
	- Bees Algorithm (BA) was published by Pham in 2005 [7]. Primarily it was developed to search for the global optima of continuous mathematical functions. It belongs to the field of swarm intelligence procedures. The Bees Algorithm, as the name suggest...
	- Cultural Algorithm (CA) was described by Reynolds in 1994 [8]. This evolutionary algorithm simulates the cultural evolution of human society.
	- Differential Evolution (DE) algorithm was developed by Storn and Price in 1995. It belongs to the field of evolutionary algorithms. Differential Evolution is mainly based on Darwin's Theory of Evolution, because its main principle is natural selecti...
	- Harmony Search (HS) was published by Geem, Kim and Loganathan in 2001 [10]. It was inspired by Jazz musicians. When they start a musical performance, they adapt their music to the band, creating musical harmony. If a false sound occurs, the band mak...
	- Krill Herd (KH) algorithm is a novel swarm intelligence method, developed by Gandomi and Alami in 2012 [11]. It is inspired by the foraging behavior of the Antarctic krill (Euphausia superba). These krill search for food in dense swarms, the number ...
	- Memetic Algorihm (MA) was developed by Moscato in 1989 [12]. The algorithm simulates the creation and inheritance of cultural information among individuals. Meme is the basic unit of cultural information (an idea, discovery, etc), which name derives...
	- Nelder-Mead (NM) algorithm was named after its creators. Nelder and Mead created this heuristic in 1965 [13]. In the literature its often referred as Amoeba Method. Basically Nelder-Mead algorithm is a simplex search method [14].
	- Particle Swarm Optimization (PSO) was developed by Eberhart and Kennedy. Nowadays its one of the most promising metaheuristic optimization algorithms. Particle Swarm's operation was inspired by the foraging movement of bird and fish swarms [15].
	- Random Search (RS) algorithm, as the name suggests, is a simple random search algorithm. It takes any position in the search space with equal probability. The new solutions are always independent from the previous ones.
	- Simulated Annealing (SA) method was described by Kirkpatrick, Gelatt and Vecchi in 1983. The operation of the algorithm is based on a physical phenomenon. In metallurgy certain materials gain beneficial properties when heated and then cooled under c...

	5. NUMERICAL EXPERIMENTS
	5.1 Statistical results
	5.2 Benchmark conclusion

	6. Summary
	7. Acknowledgements
	8. References

