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Abstract 

Cellular plates are constructed from two base plates and an orthogonal grid of stiffeners welded 

between them. Halved rolled I-section stiffeners are used for fabrication aspects. The torsional 

stiffness of cells makes the plate very stiff. In the case of uniaxial compression the buckling 

constraint is formulated on the basis of the classic critical stress derived from the Huber’s equation 

for orthotropic plates. The cost function contains the cost of material, assembly and welding and is 

formulated according to the fabrication sequence. The unknown variables are the base plate 

thicknesses, height of stiffeners and numbers of stiffeners in both directions. The cellular plate is 

lighter and cheaper than the plate stiffened on one side. The Particle Swarm Optimization and the 

IOSO techniques are used to find the optimum. PSO contains crazy bird and dynamic inertia 

reduction criteria, IOSO is based on a response surface technology. 

Keywords: cellular plates, stiffened plates, cost calculation, structural 

optimization, welded structures, buckling strength 

Introduction 

Cellular plates can be applied in various structures e.g. in floors and roofs of 

buildings, in bridges, ships, machine structures etc. Cellular plates have the 

following advantages over the plates stiffened on one side: (a) because of their 

large torsional stiffness the plate thickness can be decreased, which results in 

decrease of welding cost, (b) their planar surface is more suitable to corrosion 

protection, (c) their quasi-symmetric welds do not cause residual distortion. 

In previous studies (Farkas 1985, Farkas & Jármai 2006) it has been shown that 

cellular plates can be calculated as isotropic ones, bending moments and 

deflections can be determined by using classic results of isotropic plates for 

various load and support types.  
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A large research project was performed by Williams (1969) who used a welded 

cellular plate model for double bottom of ships. Pettersen (1979) has worked out a 

detailed analysis of double-bottom plates of ships. Evans and Shanmugam (1984), 

Shanmugam and Evans (1984) and Shanmugam and Balendra (1986) have treated 

the analytical problems of cellular plates relating to the ship construction. 

A base plate for transportation of heavy structures may be built by using an 

orthogonal grid welded from rolled I-beams. The lower face plate has been joined 

to the grid by plug welds Sahmel (1978). In the revolving frame of surface mining 

equipment (dragline) a platform for boom, cab, power unit and other structural 

parts forms an all-welded multi-cell structure Birchfield (1981). Laser welding 

technology has been used for welding of “Norsial” metallic sandwich plates and a 

corrugated sheet sandwiched between them (Haroutel 1982).  

In the book Farkas & Jármai (1997) some problems can be found about cellular 

plates. Welded cellular plates for ships investigated in (Farkas & Jármai 1999, 

2003) consist of two face sheets and some longitudinal ribs of square hollow 

section welded between them using arc-spot welding technology. For stiffened 

plates we have investigated both the uniaxial and biaxial compression and 

bending.  

In the present study the load is uniaxial compression, the stiffening is constructed 

with longitudinal halved rolled I-section stiffeners, the material is a higher-

strength steel with yield stress of 355 MPa, the fabrication technology is welding 

(continuous longitudinal fillet submerged arc – SAW- welds). Our another study 

related to cellular plate in bending can be found in Farkas & Jármai 2008. Further 

study is needed to consider combined loading, compression and bending. 

We have developed a cost calculation method mainly for welded structures 

(Farkas & Jármai 1997, 1999, 2003, 2008), by which it is possible to give a 
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realistic cost comparison of optimized structural versions. The cost function 

includes the costs of material, assembly, welding, post-welding works and 

painting. 

The basic formulae of cellular plates 

The Huber’s equation for the deflection w(x,y) orthotropic plates in the case of a 

uniaxial compression Nx 
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is the torsional stiffness of an orthotropic plate, ν = 0.3 is the Poisson’s ratio. 

The corresponding bending and torsional stiffnesses are defined as 
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E = 2.1x105 MPa is the elastic modulus. 

For cellular plates with the shear modulus G 
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The solution of Eq. (1) is given by 
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The overall buckling constraint 

The buckling constraint is given by 
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The classic critical buckling stress σE should be decreased using the above 

formulae, since it does not include the effect of initial imperfections and residual 

welding stresses. The DNV design rules are used for this decreasing (DNV 1995). 

fy is the yield stress. 
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Figure 1. Orthogonally stiffened cellular plate and its cross-section 
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where ny and nx are the spacings of stiffeners in y and x directions (Fig.1). 

The effective widths of plate parts can be calculated according to Eurocode 3 Part 

1-5 (2006) as 

xxexxxexyyeyyyey ssssssss 22112211 ,,,       (11) 

where 
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12 x   if 673.02 px      (15b) 

The distances of the gravity centres are expressed as 
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and the moments of inertia are given by 

1

2

111

3

12

11
24296

yGy

ww

Gyeyy Iz
ththth

ztsI 







     (18a) 

2

211

22

2

11

1
22 



























 Gy

f

eyGy

f

fy z
ttth

tsz
tth

btI   (18b) 

1

2

111

3

12

11
24296

xGx

ww

Gxexx Iz
ththth

ztsI 







     (19a) 

2

211

22

2

11

1
22 



























 Gx

f

exGx

f

fx z
ttth

tsz
tth

btI   (19b) 

The fabrication constraint makes it possible to weld the fillet welds connecting 

the web of the stiffeners to the upper base plate 

mmbs xy 300,           (20) 

The unknowns are as follows: x1=t1 upper cover plate thickness, x2=t2 lower cover 

plate thickness, x3=h height of the I beam, x4=nx number of stiffeners in x-

directions, x5=ny number of stiffeners in y-directions. 

The cost function 

There are relatively few papers using cost calculation (Krack et al. 2011, 

Pavlovcic et. al. 2004, Sarma and Adeli 2002, Kravanja et al. 2008). In this paper 

the cost consists of the cost of material (KM) and welding (KW). 

VkK MM           (21) 

where kM = 1.0 $/kg, ρ = 7.85x10-6 kg/mm3, V is the volume. 

The general formula for the welding cost is as follows (Farkas & Jármai 1997, 

1999, 2003, 2008) 
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where kw [$/min] is the welding cost factor, C1 is the factor for the assembly 

usually taken as C1 = 1 min/kg0.5, Θ is the factor expressing the complexity of 

assembly, the first member calculates the time of  the assembly, κ is the number of 

structural parts to be assembled, ρV is the mass of the assembled structure, the 

second member estimates the time of welding, Cw and n are the constants given 

for the specified welding technology and weld type, Cp is the factor of welding 

position (for downhand 1, for vertical 2, for overhead 3) 

Lw is the weld length, the multiplier 1.3 takes into account the additional welding 

times (deslagging, chipping, changing the electrode). 

The welding costs are formulated according to the fabrication sequence. 

(a) Welding the upper base plate with SAW (submerged arc welding) butt 

welds. The weld length is  001 3 baLW  , the structural volume  ,1001 tbaV   

,21   number of elements .161   kW = 1.0 $/min. 

For 151 t mm  2

1

3101346.0 txaC n

WW

       (23a) 

and for  t1< 15 mm  94.1

1

3101033.0 txaC n

WW

     (23b) 

 11111 3.1 W

n

WWWW LaCVkK   .     (24) 

(b) Welding of longitudinal stiffeners to the upper base plate with two SAW fillet 

welds. 

     wWywfyyW tanthbtaVVnnaL 4.0,12/,2,12 1012202   , 

.32           (25) 

 2

23

2222 102349.03.1 WWWW LaxxVkK   .    (26) 
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(c) Welding of transverse stiffener parts to the upper base plate and to the 

longitudinal stiffeners, the webs with double fillet welds (GMAW-C gas metal arc 

welding with CO2) and flanges with butt welds. 

  ,12/1023  xwf nthbtbVV   ,113  xy nn  

    bhnbnL yxW  103 21       (27) 

 Wf

n

fWfWWWW LtCLaxxVkK 3.1103394.03.1 3

23

3323   ,  (28) 

For 15ft mm ,101496.0 9029.13

f

n

fWf txtC       (29a) 

for tf < 15 mm  .101939.0 23

f

n

fWf txtC       (29b) 

 12  xyWf nbnL          (30) 

(d) Welding of lower base plate elements to the flanges of stiffeners with 

SAW fillet welds. 

  ,7.0,2,1, 21004420034 tanbnaLnntbaVV WxyWyx     (31) 
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The total cost is 

4321 WWWWM KKKKKK  .      (33) 

The Particle Swarm Optimization technique 

Several methods have been developed to escape from being caught in local 

optima. The Particle Swarm Method of global optimization is one of such 

methods. A swarm of birds searches for food, protection, etc. in a very typical 

manner. If one of the members of the swarm sees a desirable path to go, the rest of 

the swarm will follow quickly. Every member of the swarm searches for the best 

in its locality - learns from its own experience.  

Additionally, each member learns from the others, typically from the best 

performer among them. Even human beings show a tendency to learn from their 
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own experience, their immediate neighbours and the ideal performers. The 

Particle Swarm method of optimization mimics this behaviour Kennedy & 

Eberhart (1995). Every individual of the swarm is considered as a particle in a 

multidimensional space that has a position and a velocity. These particles fly 

through hyperspace and remember the best position that they have seen. Members 

of a swarm communicate good positions to each other and adjust their own 

position and velocity based on these good positions. The Particle Swarm method 

of optimization testifies the success of bounded rationality and decentralized 

decision making in reaching at the global optima. It has been used successfully to 

optimize extremely difficult multimodal functions. 

Each particle keeps track of its coordinates in the problem space which are 

associated with the best solution (fitness) it has achieved so far. (The fitness value 

is also stored.) This value is called pbest. Another "best" value that is tracked by 

the particle swarm optimizer is the best value, obtained so far by any particle in 

the neighbours of the particle. This location is called lbest. when a particle takes 

all the population as its topological neighbours, the best value is a global best and 

is called gbest. 

The particle swarm optimization concept consists of, at each time step, changing 

the velocity of (accelerating) each particle toward its pbest and lbest locations 

(local version of PSO). Acceleration is weighted by a random term, with separate 

random numbers being generated for acceleration toward pbest and lbest 

locations.  

Another reason that PSO is attractive is that there are few parameters to adjust. 

One version, with slight variations, works well in a wide variety of applications.  
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The method is derivative free, and by its very nature the method is able to locate 

the global optimum of an objective function. Constrained problems can simply be 

accommodated using penalty methods (Fourie and Groenwold 2000). 

Lately, the PSO was successfully applied to the optimum shape and size design of 

structures by Fourie and Groenwold (2000). An operator, namely craziness, was 

re-introduced, together with the use of dynamic varying maximum velocities and 

inertia.  

 

The pseudo code of the procedure can be written as follows: 

I) For each particle: 

     Initialize particle 

II) Do: 

     a) For each particle: 

          1) Calculate fitness value 

          2) If the fitness value is better than the best fitness value (pbest) in history 

          3) Set current value as the new pbest 

        End 

     b) For each particle: 

           1) Find in the particle neighbourhood, the particle with the best fitness 

           2) Calculate particle velocity according to the velocity equation (34) 

           3) Apply the velocity constriction 

           4) Update particle position according to the position equation (35) 

           5) Apply the position constriction 

         End 

     While maximum iterations or minimum error criteria is not attained. 
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A more precise and detailed description of the particular PSO algorithm, as 

applied to penalty function formulation and used in this study now follows.  

Basic PSO Algorithm  

Given M, kmax, Nmax. Set (time) instant k=0, . 
g

F
g

F  
b
iF before    Initialise a 

random population (swarm) of M particles (swarm members), by assigning an 

initial random position 0

ix  (candidate solution), as well as a random initial 

velocity 0

iv , to each particle i, i=1,2,…,M. Then compute simultaneous trajectories, 

one for each particle, by performing the following steps. 

 

1) At instant k, compute the fitness of each individual particle i at discrete 

point k

ix , by evaluating )F k

ix( . With reference to the minimization of (1.4), the 

lower the value of )F k

ix( , the greater the particle’s fitness.  

2) For i=1,2,…,M: 

      if b

i

k

i F)F x(  then set k

i

b

i

k

i

b

i  and )FF xpx  (   {best point on trajectory i} 

      if k

i

bk

i

ggk

i  and  )FF   setthen F)F xgxx  ((  {best global point} 

3) If  1NN  setelse  ,N  setthen F  F g

before

g  1 . 

4) If  N> Nmax  or  k> kmax then STOP and set x* = gb; else continue. 

5) Compute new velocities and positions for instant k+1, using the rule: 

  for i=1,2,…,M: 

  )rc)rc: k

i

bk

i

b

i

k

i xgxpvv
1k

i  (( 2211 ,     (34) 

  t: 1k

i

k

i

1k

i

  vxx ,       (35) 

where 1r  and 2r  are independently generated random numbers in the interval [0,1], 

and 1c , 2c  are parameters with appropriately chosen values. 
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6) Set   and   1kk 
gg

before FF  ; go to step 2. 

 

Figure 2. PSO with 2000 particles in action for a test function 

The technique is modified in order to be efficient in technical applications. It uses 

dynamic inertia reduction and craziness for some particles (Fourie & Groenwold 

2000). Figure 2 shows the PSO in action, solving a test problem with 2000 

particles, introducing crazy bird operation. 

The IOSO technique 

Main features of IOSO technology 

IOSO Technology (Indirect Optimization on Self-Organization) is based on the 

response surface technology. That is why our strategy differs significantly from 

the well-known approaches to optimization. Our strategy has higher efficiency 

and provides wider range of capabilities than standard algorithms. The main 

advantage one can get from using the IOSO Technology is ability to solve very 

complex optimization tasks. 
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There are several response surface technology algorithms. Some of them are very 

attractive (Xiong 2011). IOSO algorithms are specifically developed for solving 

optimization problems. They are accurate in predicting the direction towards the 

optimum. We can approximate objective functions with complex topology 

(including the ones with local optima) using minimal number of points in the 

experiment plan, particularly including the case when the number of points is less 

than the number of design variables. For example, we start solution of the 

optimization problem with 140 design variables using only 40 points. 

Each iteration of IOSO algorithm consists of two steps. The first step is the 

creation of an analytical approximation of objective function(s) and constrained 

parameters. The second step is the optimization of these approximation functions. 

Multi-objective optimization problem solution is based on the use of 

approximation functions for individual objectives and constraints.  

The distinctive feature of IOSO multi-objective algorithm is an extremely low 

number of trial points to initialize the search procedure (typically 30 to 50 values 

of the objective function for the optimization problems with nearly 100 design 

variables). During the IOSO operation, the information concerning the behaviour 

of the objective function in the vicinity of the Pareto set is stored, and the 

response function is made more accurate only for this search area. 

The main benefits of IOSO algorithm are its outstanding reliability in avoiding 

local minima and its computational speed.  

Objective function Type Efficiency of IOSO 

 

Monotonious 1.0 
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Stochastic 0.85 

 

Non differentiable 0.75 

 

Mixed continuous-

discrete variables 

0.56 

 

Non calculated area 0.42 

Figure 3. IOSO test on different problem-solving 

The efficiency of IOSO is visible on Figure 3, considering some test examples. 

Most of the real-life engineering optimization problems require simultaneous 

optimization of more than one objective function. In these cases, it is often 

impossible that the same values of design parameters will lead to the optimal 

values for all goals. Hence, to ensure a satisfactory design some trade-off between 

the objectives is necessary. For this purpose we use the multiobjective approach to 

optimize the overall efficiency (Egorov 1998, Egorov et al. 1997, Egorov & 

Kretini 1992, Dulikravich et al. 1999). 

IOSO can be easily integrated with different applications for engineering analysis 

both in-house and commercial, such as NASTRAN, ANSYS, StarCD, 

FineDesign, Fluent etc. 
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Novelty and distinctive features of IOSO 

• multiobjective optimization for large-dimensionality problems (up to 100 

independent design variables and up to 100 constraints), which allows to reach 

the increase of efficiency by 2 - 7 times higher than that of middle-

dimensionality optimization tasks (20-40 design variables); 

• low expenditures for optimal solution search (reduction of the number of 

analysis code direct calls up to 20 times in comparison with traditional 

approaches and genetic algorithms (GA), depending on the complexity and 

dimensionality of the task); 

• full automatic optimization technology algorithms with easy to use procedure 

of task setting; 

• the possibility to solve multidisciplinary optimization problems; 

• multiobjective optimization for stochastic problems (up to 100 independent 

design variables), having complex topology of objective and the large number 

of constraints. Now it is well-known that many methods are capable of solving 

the tasks having up to 10 - 20 variables, and it is not known the analogues to 

IOSO  optimizer that is designed for large-dimensional multiobjective tasks 

(100 independent design variables and 20 objectives); solving all classes of 

optimization problems including stochastic, multiextreme and having non-

differential peculiarities. 

The optimum design data and results 

The unknowns are as follows: h, t1, t2, nx, ny. 

Numerical data 

b0 = 8000 mm,  a0 = 24000 mm,  N = 3x107 [N], fy = 355 MPa, E = 2.1x105 MPa. 

Ranges of variables are as follows: t = 4 – 40 mm, h = 152.4 – 910.4 mm, the 

maximum value of n is given by the fabrication constraint (Eq. 20 or 36) 
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300

0




b

b
nmax

         (36) 

The nmax values are given in the Table 1. 

Table 1. nmax- values for rolled I-sections – dimensions in mm 

h 353.4 403.2 454.6 533.1 607.6 683.5 762.2 840.7 910.4 1008.1 

b 126.0 142.2 152.9 209.3 228.2 253.7 266.7 292.4 304.1 302.1 

nmax 18 18 17 15 15 14 14 13 13 13 

 

Approximate formulae have been used to determine the UB profile dimensions in 

the function of the heigth h. 
 

Calculation of the flange thickness tf (y = tf ; x = h) 
 

  y = a+bx+cx2+dx3+ex4+fx5+gx6+hx7+ix8    (37) 
 

  a = -26.93815960004096  

  b = 0.7030053163805572  

  c = -0.00569333794408951  

  d = 2.383106250400329x10-05  

  e = -5.605511588090933x10-08 

  f = 7.662794270183799x10-11 

  g = -5.902409057606285x10-14 

  h = 2.267417890058806x10-17 

  i = -2.999371273581411x10-21 
 

Calculation of the web thickness tw (y = tw ; x = h) 
 

  y = a+bx+cx2+dx3+ex4+fx5+gx6+hx7+ix8     (38) 
 

  a = 4.598131596507252  

  b = -0.1667245080692302  

  c = 0.002662252638593643  

  d = -1.662919423768273x10-05 

  e = 5.42570607199179x10-08 

  f = -1.003562930723944x10-10 

  g = 1.063362616433473x10-13 

  h = -6.028516559742138x10-17 

  i = 1.419727612597333x10-20 
 

Calculation of the flange width b 
 

  y = a+bx+c/x+dx2+e/x2+fx3+g/x3+hx4+i/x4+jx5+k/x5   (39) 
 

  a = -1108926.658794802 

  b = 2054.96457373585 

  c = 394347552.4221416 

  d = -2.475920494568994 

  e = -91315532919.66857 

  f = 0.001858445891156483 
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  g = 13189053888762.85 

  h = -7.856977790442618x10-07 

  i = -1073670362507492 

  j = 1.422535840934241x10-10 

  k = 3.744384150518803x1016 

 

Table 2 shows the discrete optima using PSO and IOSO techniques. The number 

of stiffeners in x direction is relatively small.  

Table 2. Optimum values for the cellular plate – dimensions in mm, cost in USD 

Technique x1=t1 

[mm] 

x2=t2 

[mm] 

x3=h 

[mm] 

x4=nx x5=ny Cost 

[$] 

Iteration 

number 

Number of 

particles 

PSO 6 5 533.1 2 12 46043.97  50 

PSO 8 5 454.6 2 13 44849.55  500 

IOSO 11 4 454.6 2 11 45867.42 211  

IOSO 8 4 454.6 2 14 43769.13 522  

 

The discrete values are found finding the continuous ones. At IOSO a parametric 

study is needed to do this. At PSO there is a built in calculation for this. The 

number of stiffeners and height of stiffeners have no conflict as it is given in 

Table 1. 

Conclusions 

Cellular plates are constructed from two base plates and an orthogonal grid of 

stiffeners welded between them. Such plates have a large torsional stiffness, 

which makes the plate very stiff and economic.  

In the case of uniaxial compression the overall buckling constraint is derived from 

the Huber’s equation for orthotropic plates. The local buckling of plate elements 

is considered by effective widths. The fabrication constraint expresses that the 
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distance between the stiffeners should be sufficient for welding the stiffeners to 

the upper face plate. 

The unknowns are as follows: upper and lower cover plate thickness, height of the 

halved rolled I-stiffeners, number of stiffeners in x- and y-directions. The cost 

function contains the cost of material, assembly and welding and is formulated 

according to the fabrication sequence.  

The Particle Swarm Optimization and the IOSO techniques are used to find the 

optimum. The two optimizers give nearly the same solution. Both of them are 

very robust techniques.  
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