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Abstract 

Special spectrum regions, like around the annihilation peak at 511 keV, the boron peak at 

478 keV, the Ge-triangles, as well as complicated multiplets or heavily distorted intense 

peaks require special attention when evaluating Prompt-gamma Activation Analysis 

(PGAA) spectra. A computer code and the related analytical practice of the Budapest 

PGAA facility is presented to improve the spectroscopy of these cases beyond the past 

practice relying on the well-known Hypermet-PC software.  
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Introduction 

In prompt-gamma activation analysis (PGAA) [1], the spectrum is acquired during the 

irradiation with a beam of neutrons. The source of the analytical information is in almost 

all cases the radiative neutron capture, i.e. the (n,) reaction. Some important exceptions, 

such as the (n,) reaction on 10B [2-4] and (n,n′) reaction in the HPGe crystal [5], however, 

create structures in the gamma spectra that are specific to PGAA, making the evaluation of 

such spectrum regions imprecise with the available methodology. In addition, the regions 
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containing the annihilation peak also require special attention due to its broadened peak 

width [6-7]. 

Due to the large number of peaks present in a PGAA spectrum [8], the interferences are 

more abundant and severe than in conventional gamma spectrometry, requiring adequate 

numerical methods to deal with the complicated multiplets, especially if at the same time 

the peak shapes become distorted due to high count rate [9] or due to the neutron damage 

of the crystal [10]. The missing right skew component of the peak shape model might make 

necessary in such cases to insert satellite peaks at the high-energy side of the peak and/or 

getting rid of the step component of the background, potentially biasing thereby the peak 

position and peak area determination of the main peak. 

During position-sensitive PGAI-NT measurements [11-12], or in beam catalysis 

experiments [13–15], tens or hundreds of similar spectra are collected. Here we don’t need 

to evaluate the entire spectrum, only selected regions, where the variations are expected, 

but these shall be fitted very consequently with the identical peak pattern throughout all 

spectra, in order to reveal the small (few percent) differences between them. In these cases, 

the definition of the initial peak positions and the peak pattern comes from a priori 

knowledge (spectra of pure materials, library data) rather than from peak search algorithms. 

We named this approach knowledge-driven batch fit. Batch fit generates a table of results 

that can directly serve as an input file to the ProSpeRo element analysis software [16], 

thereby including these fits in the concentration calculation stage. 

In the last 15 years, Hypermet PC [17–19] has been the ultimate evaluation software at the 

Budapest PGAA facility to analyze the prompt gamma spectra, allowing the generation of 

accurate nuclear data [20-21] and reliable element analysis results [22]. However, over the 

years, the above listed limitations of the software are realized and attempts were made to 

overcome them by developing an adequate piece of software.  

A utility relying on the Microsoft .NET framework 4.6.1 and running on Windows OS was 

coded to complement Hypermet PC’s features in this context. It was created with the 

intention to leave all control in the hands of the analyst. It can fit regular regions with many 

peaks (in Hypermet-PC, no more than 10 lines in a region is allowed), or regions containing 
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regular analytical lines together with the Doppler-broadened boron peak [23], annihilation 

peak or Ge inelastic scattering triangles. Its peak shape profile optionally includes the right 

skew term, to handle the distorted peaks. In the present code, each component of the peak 

shape and background function can be enabled or disabled. Although one or the other of 

these spectroscopic problems were already addressed in the literature (often just up to the 

proof-of-principle level), they were still not available in a single software package, and 

with a coherent implementation. 

Theory 

The peak shape function of regular peaks 

The software uses a peak shape inspired by the Hypermet [19, 24] and Hyperlab [25] 

programs, and also incorporated in the Hypergam package [26, 27]. This model is valid for 

all regular peaks in the PGAA spectrum, with the exceptions discussed hereafter. The 

parametrization proposed by Phillips and Marlow in mid-1970s [24] was modified to 

incorporate the high energy skew, just like in Hyperlab. With these notations, the value of 

the line profile function in the jth channel of a region can be calculated as follows:  
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 is the complementary error function. 

The first term of the Eq. (1) peak shape is a Gaussian that represents the statistical 

fluctuation of the charge creation and the electronic noise of the signal processing. Its 

parameters are the position x0, the amplitude Γ and the width  (that is √2 ). 

The second term is the so-called Left Skew to take into account the incomplete charge 

collection. In some cases, the detector measures lower energy than the photon energy that 

results in an exponential distribution. In a real spectrometer, this theoretical distribution is 

convolved with the above derived Gaussian, giving an Exponentially Modified Gaussian 

(EMG) function. It has a relative amplitude A and a skew parameter ; both are energy 

dependent. 
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Fig. 1. Semi-empirical model functions for peak fitting, after Fig. 3. of Ref. [24] 

 

In case of high count rate a distortion can be observed at the high-energy side of the 

peak due to the pile up effect. In order to deal with this, a Right Skew can be introduced. 

This is also an Exponentially Modified Gaussian with parameters R and . Its use must be 

judged based on the quality of the electronics and the acquisition conditions. This 

component is available in Hyperlab, as well as in the present code, but not in the original 

Hypermet-PC program. The peak shape function is at the end the sum of a Gaussian and 

one or two EMG functions, where the peak area is the sum of the areas of all these 

components. 
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The model function comprises terms to describe the background features. This includes 

a Step function, being the convolution of a Heaviside function with the Gaussian. This 

describes the photons of original energy E0 that were scattered in very narrow angle in the 
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collimator or in the insensitive layer of the Ge crystal. The value of S is about 0.001 – 0.003 

times the peak area and increases with the gamma-ray energy. Under the escape peaks a 

reverse step can be observed, because one or both annihilation photons can deposit a small 

energy in the active volume before escaping from the crystal. 

The other term of the background is the so-called Tail. This is yet another EMG 

function, but represents detector surface effects. Its amplitude (T) is about 0.1-0.01 times 

of the peak amplitude, and its decay parameter () is in this range of the peak width. It is 

most evident with low-energy but intense peaks. 
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The smooth baseline of the region is described with a polynomial up to second degree 

(Eq. (4)), but by default, only a0 is enabled. Here, unlike in Hypermet-PC, it is also possible 

to disable the slope of the baseline to make the baseline constant, or combine it with the 

Step function: 

 𝑙(𝑗) = 𝑎0 + 𝑎1𝑗 + 𝑎2𝑗2 (4) 

 

If there are m peaks in an M channel wide region, we set up the region to have smooth 

baseline at the two region boundaries and we fit a function with maximum n = 2m+11 free 

variables. They are the positions and amplitudes for each peak, plus the two parameters 

(rel. amplitude and decay parameter) of the Skew, Tail and Right Skew, the relative 

amplitude of the Step, the width parameter  and the maximum three polynomial 

coefficients. The b and a1, a2 background terms are optional. During a weighted nonlinear 

least squares fit, we minimize the below defined 𝜒2 merit function using the BFGS variable 

metric optimization technique: 
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where 𝑤(𝑗) is the weighting factor. Usually it is equal to the histogram value 𝑦(𝑗), but 

for regions that have only few counts per channel, the mean of three adjacent channels with 

indices (𝑗 − 1, 𝑗, 𝑗 + 1) are computed instead. In the optimum, the normalized 2 has an 

expectation value of one and a standard deviation √
2

𝑀−𝑛
.  
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Annihilation peak region 

The annihilation peak at 511.00 keV is known to be about twice as wide as regular peaks 

at this energy [6]. Hypermet-PC attempts to fit the annihilation peak with the superposition 

of many fictitious regular-shaped peaks, but the Chi-square usually does not reach its 

optimum this way, so the regular peaks nearby can be quantified only with a higher-than-

optimum uncertainty. In Hyperlab, however, the model has different width for each peak 

in the region which leads to numerical instability and poor reproducibility of peak areas. 

In the present model, the annihilation peak also has the shape as Eq. (1), but with its own 

amplitude and larger width parameters, whereas all other peaks share the same width and 

shape parameters. 

Boron peak region 

Boron is an element with exceptionally high sensitivity (=3837 barn), where the analytical 

signal emerges from the excited state of recoiled 7Li, following the emission of an alpha 

particle (Q=2790 keV, E: 1472 keV, E7Li: 841 keV). This makes the peak of boron about 

15-keV wide due to Doppler broadening [28]; moreover, its shape is influenced by the 

matrix composition via the ratio of deceleration time and the level’s mean lifetime [29]. 

Due to the wide peak shape, the chance for being in interference with lines from other 

elements, notably Na, Si, Li, W, Nd, Mn, Th, Dy is high. As the sensitivity of 10B is much 

higher than 11B, only the minor isotope can be measured, and the total boron content is 

reported with the assumption of natural isotope ratio. 

The theoretical and practical aspects of the underlying physics is discussed in the literature 

[30–32]. As different matrices slow down the 7Li* to a different degree, and the actual 

velocity and direction of 7Li* at the instant of gamma-emission determines the energy 

offset, the deceleration power of the matrix vs. the lifetime of the 7Li* first excited state 

determines the peak shape [29]. In the parametrization of Eq. (6) it is characterized by the 

matrix dependent D deceleration constant that can be considered as an empirical parameter 

of a fit, or can be taken from theoretical considerations, if matrix is a priori known (see in 

the Supplementary Information). 
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A line shape function, i.e. the density function of the emitted gamma rays as a function of 

energy, proposed by Kubo and coauthors [29] superseded earlier approximations [33–36], 

and, in combination with the accurate peak shape representation of Hypermet-PC, was 

proven to be an adequate model for the line shape evaluation [23] (see in the Supplementary 

Information).  
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(6) 

 

 

This g(E) has to be folded with the regular peak shape function of Eq. (1) (instead of the 

Dirac-) to represent the counts in the spectrum. This convolution is implemented here 

numerically. If the boron peak has a large peak area, i.e. the uncertainty of the histogram 

channel values is low, already the slight change (~5%) of the full energy peak efficiency 

over this 15 keV becomes noticeable, and therefore has to be taken into account, so the 

peak profile is normalized pointwise with the relative efficiency 𝜀(𝐸)/𝜀(𝐸0). 

Germanium triangles 

As the PGAA spectrum is taken during irradiation, neutrons scattered out from the beam 

path interact with the HPGe detector material [5, 37]. For thermal neutrons, we observe 

short-lived decay lines at 139.9 keV (74Ge(n,)75mGe) and 198.3 keV (70Ge(n,)71 mGe), that 

can be handled in the usual background correction phase. Fast neutrons can come from the 

beam, from a fissile component of the sample, or can emerge from the 6Li-enriched poly 

neutron shielding [38]. In the latter case, energetic tritons produced by the 6Li(n,t)He 

reaction, interact with the shielding material itself and produce secondary fast neutrons and 

gamma-rays. These neutrons undergo inelastic scattering within the active volume of the 

Ge crystal and produce triangle-like structures in logarithmic view at 595.8 keV, 691.0 keV 

and 834 keV [39]. 
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The usual representation of these structures is a Gaussian for the rising edge and 

exponential for the high-energy part [40, 41]. Here a single EMG is used instead, as if it 

was a gamma-ray peak with an extremely long right-side skew: 
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This formalism ensures that the curve is continuous everywhere, as there is no need to 

match two different functions. Using this model, it became possible to reliably quantify the 

analytical peaks appearing on the slope of the triangle. 

Results and discussion 

The developed algorithms and analysis practices were tested on the spectrum pool of 

the Budapest PGAA facility, encompassing spectra of pure elements, enriched isotopes, 

simple chemical compounds, as well as analytes from the fields of material science and 

cultural heritage. Representative screenshots of the implemented models are illustrated in 

Fig.2. Panel A) shows a region where the peak of Chlorine at 517 keV and the peak of 

Phosphorous at 512 keV are in interference with the annihilation peak. As these are the 

most intense lines of both elements, if discarded, the analytical sensitivities from their 

second most intense lines will be lower, resulting in higher detection limits and lower 

precision. Even a weak Cl line at 508 keV is observed on the left side of the annihilation 

peak. 

Panel B) displays a small Na peak on the top of a large boron peak, an abundant 

interference pair in geological matrices. The peak areas of Na and B could be separated 

with good accuracy with the applied model function. This fitting approach is preferred over 

the reference peak method [42-44] implemented in ProSpeRo, as that latter uses less intense 

peaks of the same element at other gamma-ray energies, inherently with lower statistical 

precision, i.e. giving a less reliable correction [23]. 
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Panel C) presents a region of a uranium-oxide sample around 695 keV, where due to 

neutron-induced fission of the 235U, energetic neutrons are emitted. In addition, the 

spectrum is rich in lines due to the gamma emissions of the short-lived fission fragments. 

Some of these lines appear on the top of a Ge triangle, where this model function is 

applicable.  

Panel D) is an example where the high-energy tailing of an intense peak is observed. 

Such fits with Hypermet-PC do not give a well-reproducible result, as the area and the 

position of the artificial satellite peak are ill-defined, biasing the parameters of the main 

peak and making the peak identification stage of the concentration calculation problematic. 

This is especially true if multiple spectra with the same fitting pattern have to be compared 

with as low as possible error margin. 

 

Fig 2. Major peak fitting challanges of PGAA that are beyond the capabilities of Hypermet 

PC: A: interference with the annihilation peak, B: sodium-boron interference, C: Ge 

triangle, D: distorted peaks with high-energy tailing 
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The software can read in spectra from files with several binary and ASCII formats, 

including Hypermet’s primary file format (*.MCA), and Canberra Genie 2000’s CNF. It is 

able to load the linear energy calibration (*.SET), nonlinearity (*.LIN) and efficiency files 

(*.EFF) of Hypermet-PC and use them for corrections. This way the peak positions and 

peak areas remain fully compatible with those of the Hypermet’s fits, so the results can be 

merged. Fitted data of the regions can be saved to a CSV-like PKF output file. The 

ProSpeRo PGAA concentration calculation code was modified to consider this PKF file if 

present, and to replace the relevant entries of the Hypermet’s peaklist (*.PKL) with these 

data before proceeding to the peak identification step. If a boron peak is analyzed by peak 

fitting, the interference correction by the reference peak method is disabled for this region. 

Conclusions 

A utility was programmed to extend capabilities of the well-known Hypermet-PC by 

implementing dedicated peak shape functions and fitting procedures to handle special 

spectroscopic cases appearing in PGAA. With this improvement, we addressed most of the 

practical issues that our PGAA spectrum analysis routine revealed over the past 15 years. 

The peak shapes used here are re-parametrized, but still remained compatible with those of 

Hypermet-PC and Hyperlab, allowing the easy integration of results to our well-established 

analysis workflow. The fit results can now be directly fed to the ProSpeRo concentration 

calculation Excel program. These refinements significantly improve the fitness of our 

laboratory to determine elements like P, Cl, Na, Si, Li, W, Nd, Mn, Th, Dy with PGAA, 

and, in general, the overall quality of our analysis results. In future, we plan to add a 

functionality to calibrate the model parameters (e.g. 𝛿, 𝛽, 𝜌, 𝑆, 𝑇, 𝜐) as a function of the 

energy for a given spectrometer, that would make the fits even more robust and 

reproducible, and would further reduce the workload of the analyst. 
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