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Abstract 

Introduction. Microarray, RT-qPCR based arrays and next-generation-sequencing (NGS) are available high-

throughput methods for miRNA profiling (miRNome). Analytical and biological performance of these methods 

were tested in identification of biologically relevant miRNAs in non-functioning pituitary adenomas (NFPA). 

Methods. miRNome of 4 normal pituitary (NP) and 8 NFPA samples was determined by these platforms and 

expression of 21 individual miRNAs was measured on 30 (20 NFPA and 10 NP) independent samples. Complex 

bioinformatics was used. 

Results. 132 and 137 miRNAs were detected by all three platforms in NP and NFPA, respectively, of which 25 

were differentially expressed (fold change>2). The strongest correlation was observed between microarray and 

TaqMan-array, while the data obtained by NGS were the most discordant despite of various bioinformatics 

settings. As a technical validation we measured the expression of 21 selected miRNAs by individual RT-qPCR 

and we were able to validate 35.1%, 76.2% and 71.4% of the miRNAs revealed by SOLiD, TLDA and microarray 

result, respectively. We performed biological validation using an extended number of samples (20 NFPAs and 8 

NPs). Technical and biological validation showed high correlation (p<0.001; R=0.96). Pathway and network 

analysis revealed several common pathways but no pathway showed the same activation score. Using the 25 

platform-independent miRNAs developmental pathways were the top functional categories relevant for NFPA 

genesis. 

Conclusion. The difference among high-throughput platforms is of great importance and selection of screening 

method can influence experimental results. Validation by another platform is essential in order to avoid or to 

minimalize the platform specific errors. 
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Introduction 

MicroRNAs (miRNAs) are short, noncoding RNA molecules that posttranscriptionally regulate gene 

expression through RNA interference. They target mRNAs at the 3’, 5` untranslated regions or even the coding 

sequence [1–4]. It has been shown that about 30-50% of all protein coding genes are regulated by miRNAs [5, 6], 

hence participating in the regulation of various physiological and pathophysiological cellular processes such as 

proliferation, differentiation, metabolism and apoptosis. 

Pituitary adenomas represent the second most frequent (15.3%) central nervous system tumors following 

meningiomas [7]. Clinically non-functioning pituitary adenomas (NFPAs) constitute approximately 30% of all 

tumor types of the anterior pituitary [8] and the majority of them are gonadotrophic and null cell adenomas [9]. 

The role of miRNAs in pituitary adenomas have been evaluated extensively and thoroughly reviewed by 

Sivapragasam [10] and Li [11]. In the past few years several high-throughput techniques such as hybridization-

based approaches (e.g. miRNA microarrays), reverse transcription PCR based arrays, or next generation 

sequencing (NGS) based methods become available for an initial screening to identify miRNome expression and 

to select  specific miRNA candidates for further validation. However, detection of miRNAs can be more 

challenging than gene transcripts due to their special structure making difficult the assay and probe designs. 

Firstly, miRNAs are short RNA sequences hence it is hard to achieve high sensitivity assays. It has been proved 

that a certain mature miRNA can sometimes comprise a distribution of sizes of 15-23 nt (centered around 22 nt.) 

rather than having a single length [12] which is called sequence heterogeneity and the miRNA “variants” are 

called ‘isomiRs’. Occurrence of isomiRs has been attributed to posttranscriptional modifications at 3’ and 5’ ends 

that seems to affect miRNA stability and function (especially if it occurs at the 5’ influencing seed region [12]. 

Mature miRNAs lack of polyA tail (or other common sequence) making unavailable application of universal 

primers/probes in their expression studies. Additionally, members of the same miRNA family can differ only in 

1-2 nucleotides making the discrimination difficult. Finally, among miRNA sequences the GC content show 

significant variance which results in difference in melting temperatures hence in multiplex assays it can create 

miRNA-specific biases [12]. 

Due to these difficulties it has been well known that miRNA expression profiles could be different using 

various platforms [13, 14]. Therefore our aim was to compare the results obtained by three high-throughput 

miRNA screening methods and by performing technical and biological validations to identify the differentially 

expressed miRNAs in NFPA compared to normal pituitary (NP). The functional relevance of differentially 

expressed miRNAs revealed by high-throughput methods was tested using pathway and network analysis. 

 

Methods 

Samples and RNA extraction 

In high-throughput experiments 8 NFPAs and 4 normal pituitary tissues, in validation phase 20 NFPA and 10 NP 

specimens were examined. Adenoma tissues were removed by transsphenoideal surgery at the Hungarian National 

Institute of Neurosurgery. All adenoma samples were gathered with the permission of the Local Committee on 

Human Research. The diagnosis of NFPA was based on clinical findings, hormone levels and 

immunohistochemistry analysis of the removed tumor tissue. Routine immunohistochemical examination 
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included immunostaining for anterior pituitary hormones (GH, PRL, ACTH, LH, FSH, SF1 and TSH) and staining 

for Ki-67 proliferation marker. All routine immunohistochemical studies were performed at the 1st Department 

of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary as previously 

described [15, 16]. Normal pituitary samples were obtained by autopsy within 6 h of death from patients with no 

evidence of any endocrine disease (University Clinical Centre, Belgrade, Serbia) [15]. We performed gene 

expression measurements in all isolated RNA specimens to measure the expression of genes encoding anterior 

hormones and Pit1. This later gene has been demonstrated that is expressed exclusively in the Rathke’s pouch and 

adenohypophysis during the development of pituitary in both chicken and mouse embryos and not in the 

neuroectoderm (Proszkowiec-Weglarz et al. 2011). By using these expressions it could be concluded that all 

pituitary samples used as normal contained all five adenohypophophysis specific cell types (data not shown) [15–

18]. Tumor tissue specimens were immediately frozen in liquid nitrogen after the adenoma removal, and stored 

at -80oC until use. Total RNA was extracted with miRNeasy Mini Kit (Qiagen Inc., Chatsworth, CA). RNA 

integrity (RIN) and concentration was measured using Agilent Bioanalyzer 2100 System (Agilent Tech Inc., Santa 

Clara, USA), samples having RNA integrity number (RIN) >7 were included. 

Next-generation sequencing and data analysis 

MicroRNA expression of 8 NFPA and 4 NP tissue specimens were analyzed using SOLiD next-generation-

sequencing in two pools. From total RNA small RNA enrichment was performed with miRNA Isolation Kit 

(Invitrogen). MicroRNA libraries were prepared according to the manufacturer’s protocol (Small RNA 

Expression Kit, Applied Biosystems). Briefly, 100 ng miRNA was hybridized and ligated overnight with adapter 

mix. cDNA was generated by reverse transcription from adaptors ligated to ends of the small RNA molecule. PCR 

products were cleaned and selected on agarose gels by size 105–150 bp. Template bead preparation, emulsion 

PCR were performed using the SOLiD V2 sequencing system (Applied Biosystems). Data analysis was carried 

out using Small RNA Analysis tool of CLCBio Genomics Workbench v5.0 using general settings for quality 

check and adapter trimming. We accepted reads having 15-23 nt in size as “expressed”. Then we aligned miRNA 

reads to miRBase mature miRNA sequences allowing 0 or 1 mismatches. Read numbers then were normalized 

for the total reads of each sample. Fold change was determined in NFPA samples compared to normal ones. The 

deep sequencing was performed at the Sequencing Platform, Institute of Biochemistry, Biological Research 

Centre of the Hungarian Academy of Sciences, Szeged, Hungary [19]. 

Microarray experiment and data analysis 

GeneChip® microRNA Galaxy Array v1 (Affymetrix, CA, USA), which comprises probe sets for 1015 human 

mature miRNAs was used for miRNA expression analysis. 500 ng pooled total RNA was processed for each 

group. Poly (A) tailing reaction and ligation of the biotinylated signal molecule to the target RNA sample was 

carried out using FlashTag Biotin HSR RNA Labeling Kit (Affymetrix, PN 703095) following the manufacturer’s 

instructions. Then, the labeled and biotinylated RNA and hybridization controls (GeneChip Eukaryotic 

Hybridization Control Kit, PN 900454) were hybridized to miRNA arrays for 16 h at 48oC. Hybridization and 

staining was performed using GeneChip® Hybridization, Wash, and Stain Kit (PN 702731) and each array was 

washed and stained in a GeneChip Fluidics station 450 (Affymetrix) and scanned by a GeneChip 3000 scanner 

(Affymetrix) according to the manufacturer’s instructions.  
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Data analysis was performed by Genespring GX 12 Software (Agilent Tech Inc, Santa Clara, CA, USA) using 

standard settings. Briefly, raw data was filtered by percentile (lower cut-off: 20). Fold change filter was set to 2-

fold, and then unpaired t-test was used to identify significant (p<0.05) gene expression changes with multiple 

testing correction (Benjamini-Hochberg) to control the false discovery rate. 

miRNA TaqMan Low Density Array and data analysis 

We used our previously published miRNA expression dataset obtained using TaqMan Low Density Array (TLDA) 

Human MicroRNA Panel v.2 (Applied Biosystems, Foster City, CA) on 8 NFPA and 4 normal pituitary samples. 

Procedures are described in details by Butz [20]. 

Individual miRNA qPCR and data analysis 

Expression level of following miRs: hsa-miR-128a (Assay ID: 4395327), hsa-miR-135a (Assay ID: 4373140), 

hsa-miR-135b (Assay ID: 4395372), hsa-miR-140-5p (Assay ID: 4373374), hsa-miR-155 (Assay ID: 4395459), 

hsa-miR-15a (Assay ID: 4373123), hsa-miR-16 (Assay ID: 4373121),hsa-miR-17-5p (Assay ID: 4395419), hsa-

miR-20a (Assay ID: 4373286), hsa-miR-383 (Assay ID: 4373018), hsa-miR-422a (Assay ID: 4395408), hsa-miR-

424 (Assay ID: 4373201), hsa-miR-486-3p (Assay ID: 4395204), hsa-miR-503 (Assay ID: 4373228), hsa-miR-

516a-3p (Assay ID: 4373183), hsa-miR-542-3p (Assay ID: 4378101), hsa-miR-543 (Assay ID: 4395487), hsa-

miR-582-3p (Assay ID: 4395510), hsa-miR-582-5p (Assay ID: 4395175), hsa-miR-93 (Assay ID: 4373302), hsa-

miR-98 (Assay ID: 4373009), RNU44 (Assay ID: 4373384), RNU48 (Assay ID: 4373383), U6 snRNA 

(MammU6, Assay ID: 4395470) were determined in pituitary samples using individual TaqMan MicroRNA 

Assays (Applied Biosystems) followed the protocol provided by the supplier and was described earlier in details 

by Butz [20]. Expression level was calculated by ddCt method, and fold changes were obtained using the formula 

2-ddCt [20]. 

Bioinformatics analysis 

Target prediction for miRNAs differentially expressed between NFPA and NP tissues was performed using 

Tarbase and miRecords databases. Only the experimentally observed miRNA targets were taken into 

consideration in order to increase the reliability of results. Then the target lists with the predicted expression 

alteration were submitted to Ingenuity Pathway analysis (http://www.ingenuity.com/ products/ipa). We also used 

miRNA-target interaction data obtained from each platform to build networks that were visualized by Cytoscape 

3.1.0. software as previously described [21, 22]. Briefly, following network structure analysis node’s color and 

size were indicated by indegree (number or targeting miRNA). Correlations were performed using R, p values 

were considered to be significant at p<0.05. 

 

Results 

1) miRNA expression profiles and correlations among platforms 

A final database was generated containing all miRNAs detected by all three platforms aligning miRNAs 

by sequences (MiRBase release 21). We included miRNAs expressed at least in one sample/platform and we 

filtered out miRNAs where sequences were not exact matches among the three platforms due to miRNA 

annotation differences among platforms. Therefore, in our merged database we compared 166, 718 and 440 

miRNAs by SOLiD, microarray and TLDA, respectively in NP and 180, 718 and 440 miRNAs in NFPA samples, 

respectively. Among which 132 (in NP) and 137 (in NFPA) were common in all three datasets (Figure 1A). 

http://www.ingenuity.com/%20products/ipa
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After correlating miRNA expression profiles obtained by the different platforms significant correlations 

between platforms, with the best correlation (R=0.75) between microarray and TLDA and the weakest between 

SOLiD-Microarray and SOLiD-TLDA data was observed (Figure 1B). We performed cross-correlation of four 

datasets: TLDA-NP (normal pituitary), TLDA-NFPA (non-functioning adenoma), SOLiD-NP and SOLiD-NFPA. 

We found that expression values obtained by the same platform correlated better than expression values obtained 

by different platforms for the same samples (e.g R=0.82 between TLDA-NP and TLDA-NFPA versus R=0.44 

between TLDA-NP and SOLiD-NP or R=0.52 between TLDA-NFPA and SOLiD-NFPA). This phenomenon was 

observed in all comparison (Microarray vs. TLDA and Microarray vs. SOLiD as well). Based on this result we 

can conclude that platform effect is more significant than the group (tissue) effect (Figure 1B). 

SOLiD showed the weakest correlation with the other two platforms. In order to investigate whether 

these results might be related to the bioinformatical analysis we evaluated how the different minimum read 

numbers influenced the correlation. We determined the correlation coefficients using 3, 5 or 10 reads as a 

minimum expression cut-off, but changing the minimum read number cut-off had only a minor influence on 

correlation coefficients (Table 1). It also has to be mentioned that lower correlation was observed in normal 

tissues compared to NFPA samples (Table 1). Based on these results we considered a miRNA to be expressed 

using the cut-off=5 reads. 

In order to find out the reasons for the low correlation observed between data obtained by SOLiD deep 

sequencing and the other two platforms additional bioinformatical analysis were carried out. miRNAs that were 

detectable by both the TLDA and microarray platforms but not by SOLiD had expression values in the lower 

detection range compared to those which were detected by SOLiD (Figure 2). In addition, a significant number 

of miRNAs (268 and 264 miRNA in NP and NFPA, respectively) were excluded from the statistical analysis 

because the reads mapping these miRNAs were either too short (<15 nt) or aligned to multiple positions in the 

miRNA reference database (Supplemental Table 1). Of these miRNAs we focused on those 28 miRNAs which 

were unidentified by SOLiD but were detected in NP and NFPA by both microarray and TLDA platforms. 

(Supplemental Table 2). No difference in the GC content of these miRNAs versus those detected was observed 

(data not shown). However we found some differences in the number of repeats in sequences: 39% and 31% of 

miRNAs contains more 3-6mer short repeats in the undetectable sequences compared to detectable ones by SOLiD 

in NP and NFPA, respectively (Supplemental Table 3). Regarding unbalanced nucleotide composition adenine 

or thymine at the first position in these miRNAs (21 out of 28 undetected miRNAs had A or T as the first base 

possibly influencing adapter ligation) may also be responsible for their failure through SOLiD system. 

Despite of low correlations, expression of 85 miRNAs changed in the same direction in all three high 

throughput methods (Supplementary Table 4). Of these, 25 miRNAs (12 downregulated and 13 upregulated in 

NFPA vs. NP) were identified whose expression significantly differed (>2 fold) in the same direction between 

NFPA and NP samples and their expression change occurred in the same direction in all the three platforms used 

(Table 2, Supplementary Figure 1). 

 

2) Technical and biological validation  

To reveal the impact of the differences in miRNAs profiles obtained by the different platforms, we 

validated the expression of 21 selected miRNAs by individual RT-qPCR using TaqMan miRNA Assays. These 

21 miRNAs were chosen to cover miRNAs whom expression was concordant among platforms or discordant 
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between SOLID and the other two platforms. Six out of 21 miRNAs (miR-17-5p, miR-20a, miR-543, miR-582-

5p, miR-93 and miR-98) showed the same expression pattern in all the three high throughput methods, 9 miRNAs 

(miR-128a, miR-135a, miR-135b, miR-16, miR-422a, miR-486-3p, miR-516a-3p, miR-542-3p and miR-582-3p) 

were not detectable by SOLiD but measured by microarray and TLDA. MiR-135a was not detectable in the 

microarray experiment. During the technical validation, in the same samples as were used for high throughput 

analysis (8 NFPAs and 4 NPs) we were able to validate 35.1%, 76.2% and 71.4% of the miRNAs revealed by 

SOLiD, TLDA and microarray measurements (Figure 3A). The technical validation was followed by biological 

validation using an extended number of samples (20 NFPAs and 8 NPs) (Figure 3B). The expression values 

measured in this extended sample size correlated well with the expression values measured during the technical 

validation (p<0.001; R=0.96) (Figure 3B-C).  

 

3) Pathway and molecular network analysis for miRNAs revealed by high throughput screening 

In order to investigate the biological significance of high-throughput data we carried out a complex 

bioinformatical pathway and network analysis in order to reveal molecular function, signaling pathways and 

cellular processes affected by these miRNAs. We generated the differentially expressed gene lists from each 

platform applying a fold change cut-off 2. 

 

Pathways for miRNAs identified by each, high throughput platform 

A target prediction for each miRNA identified during expression analysis by high throughput methods were 

performed and the results were narrowed for the experimentally validated targets. Then, these miRNA target lists 

were subjected to pathway and network analysis. The pathway called “Molecular Mechanisms of Cancer” was 

the most significant pathway altered by miRNAs revealed by all three platforms. In addition, other five pathways 

were common among the miRNAs revealed by high throughput screening (Supplementary Figure 2A).  

We also investigated the activation z-scores of pathways. The primary purpose of z‐score is to infer the activation 

states of predicted pathway. A significantly altered pathway implies that the genes involved in the pathway (both 

activators and inhibitors) are significantly enriched in the gene set we used. Therefore z-score analysis can give a 

more thorough information about the pathway function and that can explain the difference between the result of 

pathway and z-score analysis (Supplementary Figure 2a-b). However, no common signaling showing the same 

direction (activation or inhibition) by all three platforms was detected (Supplementary Figure 2B). 

 

Network for miRNAs identified by each platform 

Using Ingenuity Knowledge Database containing up-to-date information on molecular interactions we 

built networks of miRNAs and their experimentally validated target molecules. After analyzing network structure, 

remarkable differences according to the most significant miRNAs (defined as miRNAs with the highest number 

of targets) were observed. MiR-15a-5p, miR-98-5p and miR-155-5p were the most influential miRNAs having 

the most targets in SOLiD miRNA-target network, miR-124-3p, miR-1-3p and miR-497-5p in the microarray 

network and miR-506-3p, miR-206 and miR-424-5p in the TLDA network. Good overlap was found among the 

miRNA targets; PTEN, CDK6 and CCND1 being the most commonly influenced molecules by miRNAs in NFPA 

compared to NP. PTEN was targeted by 8, 10 and 7 miRNAs in SOLiD, Microarray and TLDA miRNA-networks. 
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CDK6 was targeted by 7, 10 and 7 miRNAs, while CCND1 was targeted by 7, 9 and 8 miRNAs in the SOLiD, 

Microarray and TLDA networks (Figure 4A-C). 

 

Pathways and molecular networks for common miRNAs among different high throughput methods 

As we mentioned earlier 25 miRNAs were significantly differentially expressed in the same direction between 

NFPA and normal pituitary samples measured by all three platforms (Table 2, Supplementary Figure 1). 

Investigating the potential pathways affected by the platform independent miRNAs we found a very similar result 

to those revealed by platform dependent miRNAs (Supplementary Figure 3). “Developmental biology”, “Wnt 

Signalling Pathway” and “TGF-beta Receptor Signaling Pathway” were the most significant signaling pathways 

(Supplementary Figure 3). We performed z-score analysis as well. In this analysis we presented the z-score of 

those pathways where the scores showed the same direction at least two studies. Interestingly, in case of “platform 

independent” miRNA analysis only the “Aryl Hydrocarbon Receptor Signaling” and “Cell Cycle: G1/S 

Checkpoint Regulation” showed significant alteration in z-scores whilst these two pathways did not have 

significant z-scores using the individual studies (Supplementary Figure 2B). 

The network analysis for these miRNAs revealed very similar results observed for platform dependent miRNAs. 

Of the 25 miRNAs miR-497, miR-34a and miR-429 were identified having the most targets in the network (Figure 

4B). GO analysis revealed the most important molecular functions and processes related to “RNA binding and 

transcription regulation”, “cell cycle” and “Wnt signaling Pathway” (Supplementary Figure 4). 

 

Discussion 

Various high throughput molecular biological methods in miRNA profiling are available for many tumor 

types including pituitary. However, miRNA profiling using deep sequencing has not been performed in non-

functioning pituitary tumors. Our study was carried out in order to evaluate how the high throughput method 

would influence the results in miRNA expression studies. We showed that the number of detected miRNAs were 

very different among the three platforms used and globally the correlation among these methods vary significantly. 

The strongest correlation was found between microarray and TLDA cards; and correlations between deep 

sequencing performed by SOLiD System and microarray or TLDA were weaker. These significant but not 

remarkably strong correlations are in line with earlier data. Git et al have found similar correlation between NGS 

read numbers and microarray hybridization intensity (correlation coefficient 0.66±0.12) [14], while in a study by 

Wang et al the inter-platform reproducibility correlation coefficients varied between 0.106±0.039 and 0.48±0.096 

among LNA microarray, beads arrays and TLDA [23]. It is thought that the disagreement arises from nonspecific 

contributions, varying degrees of cross-hybridization of miRNA family members or reduced discrimination 

between unprocessed and mature forms of the miRNAs [23]. 

To choose the best high throughput screening method seems essential in identification of differentially 

expressed miRNAs but the method itself may bias the results. Each technique has pros and cons reviewed by 

Pritchard [12]. Hybridization-based methods are widely used techniques requiring ng-ug total input RNA hence 

the sensitivity is limited and the dynamic range for detection is not that wide compared to PCR-based approaches. 

Also, due to the short sequence length, end region sequence variation (isomiRs) and high conservation among 

miRNA family members it is challenging to design specific probes that all affect the specificity. PCR based arrays 

are also broadly used for determining miRNA expression profile. It has a very wide detection range but also 
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requires probe design similarly to hybridization methods. A broadly accepted “gold standard” method in miRNA 

expression study is a two-step approach using looped miRNA specific reverse transcription primers and TaqMan 

probes for quantification. Next-generation-sequencing based approaches are becoming more and more popular in 

various molecular biological studies. Related to miRNA expression, compared to microarrays and PCR based 

methods, deep sequencing does not require predesigned probes hence it is able to identify novel miRNAs and can 

distinguish isomiRs. Although some NGS library preparation methods and the sequencing technology are not 

developed for short (<35bp) sequences. 

Our recent data showed that the inter-platform correlation was the weakest between NGS and the other 

two methods. We tested whether the bioinformatics settings i.e. the minimum expression level (min. read number) 

would affect the results. Our results showed that changing this cut-off number did not have a major effect on inter-

platform correlation. On the other hand, the unidentified miRNAs by SOLiD System but detected by the other 

two platforms were in the low detection range suggesting that that this early version of the SOLID System 

technology had a less sensitivity compared to PCR or hybridization based platforms. It has also to be mentioned 

that these undetected miRNAs are usually excluded from the statistical analysis because either of their short 

lengths or because of not unique alignment. We also observed that these reads contains more nucleotide repeats 

compared to those miRNAs that were detected by SOLiD and in 75% the first nucleotide of the “undetected reads” 

were A or T suggesting that the discrepancy may arise from improper adapter ligation. This observation is in line 

with others showing that the library preparation techniques can introduce sequence-bias by amplifying some 

miRNAs while reducing others due to the sequence preferences of the ligation enzymes or to the differences in 

the secondary structures of RNAs [24]. 

According to technical validation we found an acceptable percentage for all platforms. Although TLDA 

and individual TaqMan RT-qPCR are similar methodologically the percentage of validation (76.2%) could be 

expected higher. The differences between TLDA and RT-qPCR protocols (pooled reverse transcription in TLDA 

vs. individual RT and qPCR; preamplification used in TLDA measurement vs. without preamplification; 

differences in the reaction volume 1 μl in TLDA vs. 15 μl in individual RT-qPCR) can influence the efficiency of 

both the RT and qPCR leading to this discrepancy that was found between the two approaches. Also, high variance 

of the replicates at TLDA system (median: 8.3%; min-max: 0.3-19.1%) has been also described in literature [25]. 

Altogether, the small overlap among different platforms found by us can explain why it is difficult to 

compare different miRNA studies showing very different results. Until now three miRNA profiling studies have 

been presented. We checked the expression of the 21 miRNAs identified with concordant expression in these three 

datasets and it was found that 8 of 21 were common in Bottoni and our previous study, 13 of 21 were common in 

Liang and our previous publication but we could not find any common miRNA between the significant miRNA 

lists of Bottoni and Liang studies [26, 27] (Table 3). It is noteworthy that the adenoma groups were varied among 

the three studies which may additionally increase the weak overlap. 

Going further in the understanding of the biological role of miRNAs in NFPA tumorigenesis and keeping 

in mind the redundant effects of miRNAs it seems that the whole miRNome would characterize better one state 

than only a limited sets of miRNAs. Therefore, in order to decipher the biological relevance of miRNAs a pathway 

and network analysis were carried out. Network analysis is a relatively novel tool for analyzing high-throughput 

data. Comparing it to pathway analysis it is considered to be less biased because while pathway analysis basically 

performs a gene set enrichment analysis on pre-defined gene sets (groups of molecules belonging to certain 
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pathways) network analysis visualize and analyze single interactions among molecules. Several common 

pathways were recognized for individual miRNA lists but, interestingly, we could not identify a common signaling 

pathway showing the same activation score (activation score indicates the activation state of the pathways based 

on the expression level and direction of miRNAs). This finding is a probable consequence of the poor overlap of 

differentially expressed miRNAs in NFPA vs. NPs among the various platforms used. The same result was 

observed in the network analysis as well. However, the miRNA HUBs in the networks were different but there 

were a remarkable overlap among the miRNAs targeted gene HUBs. These data may underline again the 

redundancy of target prediction and may be related to the miRNAs’ divergent and convergent function.  

After having in hands these disappointing results we focused on the 25 miRNAs which were significantly 

differentially expressed between NFPA and normal pituitary samples measured by all three platforms. The Gene 

ontology and pathway analysis showed that these miRNAs are involved in regulation of developmental processes 

through targeting Wnt and TGF signaling. Wnt signaling is described to be activated in both pituitary 

organogenesis and its mature function [28]. In pituitary similarly to other tissue types Wnt signaling pathways 

control cell activity and may stimulate cell proliferation [28]. Indeed, Elston et al reported that Wnt pathway 

inhibitors are strongly down-regulated in pituitary tumors (both non-functioning and clinically functioning 

pituitary tumors) compared with normal pituitary controls in all pituitary subtypes [29]. They suggested that WIF1 

may be a tumor suppressor, specifically in NFPAs, and the Wnt pathway is important in pituitary tumorigenesis 

[29]. However, this finding was not validated by other reports showing no activation of canonical and non-

canonical Wnt pathway activation in pituitary adenoma [30, 31]. Based on these discrepant results further studies 

are warranted for clarification of the role of miRNAs targeting molecules involved in Wnt signaling in pituitary 

adenomagenesis. 

The second pathway for platform independent miRNAs was the TGF-β pathway. Several earlier studies, 

including ours, reported the possible involvement of this pathway in pituitary adenomagenesis [20, 32–34]. We 

showed the downregulation of the TGFβ pathway through miRNAs targeting Smad3 in NFPAs compared to NP, 

while Zhenye [34] reported that the activity of TGF-β signaling might be restrained in NFPAs and this result 

correlated with the development and invasion of NFPAs. The Smad3 and Phospho-Smad3 protein levels were 

found to be gradually decreased from normal anterior pituitaries, to non-invasive NFPAs and to invasive NFPAs 

[34]. All these data may confirm that TGFβ signaling seems to be important in development of NFPA. 

 

Conclusion 

Our study demonstrated that miRNA expression profiling has several limitations and the platform dependent 

effects may cause significant bias. However, it is also true that individual miRNA expression data obtained from 

high throughput techniques were replicable in an acceptable percentage by qRT-PCR suggesting these tools are 

useful in identification of miRNAs with potential biological function. On the other hand the redundancy observed 

in target prediction (and therefore in pathway and network analysis) may weaken or mask the differences of 

individual miRNAs showing a better overlap among pathways than significant miRNA lists obtained among 

different platforms. In summary it is highly warranted to validate the miRNA expression obtained by any high 

throughput method using another platform and an extended sample set. 



12 
 

Pathway and network analysis of platform-independent miRNAs and their potential targets demonstrated that 

differentially expressed miRNAs were likely involved in the tumorigenesis of NFPA through regulating 

developmental pathways. 
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Tables 

Table 1 Correlation of miRNA expression profiles between SOLiD, Microarray and TLDA platform. See 

details in the text. 

Comparison 

NP NFPA 

Correlation 

(p-value) 

Correlation 

(p-value) 

Microarray vs TLDA 0.46 (6.09e-08) 0.75 (7.05e-74) 

      

SOLiD (cut off=3 reads) vs Microarray 0.32 (0.1) 0.61 (4.10e-19) 

SOLiD (cut off=5 reads) vs Microarray 0.33 (0.33) 0.65 (3.23e-21) 

SOLiD (cut off=10 reads) vs Microarray 0.35 (2.12e-05) 0.60 (3.27e-15) 

      

SOLiD (cut off=3 reads) vs TLDA 0.44 (2.92e-08) 0.52 (1.48e-11) 

SOLiD (cut off=5 reads) vs TLDA 0.42 (3.72e-07) 0.52 (3.18e-14) 

SOLiD (cut off=10 reads) vs TLDA 0.42 (3.72e-07) 0.52 (2.97e-10) 

 

Table 2 Expression of 25 platform independent miRNAs in non-functional pituitary adenomas vs. normal 

pituitary 

miRNA_name MIMAT Seq 

SOLiD 

log2FC 

TLDA 

log2FC 

ARRAY 

log2FC 

mir-134 MIMAT0000447 TGTGACTGGTTGACCAGAGGGG -2 -3.38 -3.04 

mir-137 MIMAT0000429 TTATTGCTTAAGAATACGCGTAG 3.11 2.68 5.79 

mir-149 MIMAT0000450 TCTGGCTCCGTGTCTTCACTCCC 3.14 2.46 1.75 

mir-182 MIMAT0000259 TTTGGCAATGGTAGAACTCACACT 1.67 2.71 1.04 

mir-183 MIMAT0000261 TATGGCACTGGTAGAATTCACT 1.44 1.8 1.36 

mir-193a MIMAT0004614 TGGGTCTTTGCGGGCGAGATGA -1.22 -3.24 -1.27 

mir-214 MIMAT0000271 ACAGCAGGCACAGACAGGCAGT -2.32 -2.81 -1.41 

mir-301a MIMAT0000688 CAGTGCAATAGTATTGTCAAAGC 1.53 1.23 2.97 

mir-34a MIMAT0000255 TGGCAGTGTCTTAGCTGGTTGT -1.05 -1.04 -1.04 

mir-370 MIMAT0000722 GCCTGCTGGGGTGGAACCTGGT -7.21 -5.48 -2.86 

mir-379 MIMAT0000733 TGGTAGACTATGGAACGTAGG -1.82 -5.03 -2.00 

mir-382 MIMAT0000737 GAAGTTGTTCGTGGTGGATTCG -1.59 -5.27 -2.47 

mir-429 MIMAT0001536 TAATACTGTCTGGTAAAACCGT 2.37 1.61 3.41 

mir-433 MIMAT0001627 ATCATGATGGGCTCCTCGGTGT -1.35 -4.71 -3.35 

mir-487b MIMAT0003180 AATCGTACAGGGTCATCCACTT -1.58 -4.64 -2.25 

mir-497 MIMAT0002820 CAGCAGCACACTGTGGTTTGT -3.50 -1.56 -1.99 

mir-510 MIMAT0002882 TACTCAGGAGAGTGGCAATCAC -1.58 -2.74 -1.83 

mir-582 MIMAT0003247 TTACAGTTGTTCAACCAGTTACT 4.44 7.32 1.82 

mir-628 MIMAT0004809 ATGCTGACATATTTACTAGAGG 3.21 1.66 2.23 

mir-660 MIMAT0003338 TACCCATTGCATATCGGAGTTG 4.21 2.14 1.69 

mir-770 MIMAT0003948 TCCAGTACCACGTGTCAGGGCCA -2 -4.40 -1.81 

mir-885 MIMAT0004947 TCCATTACACTACCCTGCCTCT 1.77 1.26 1.37 

mir-935 MIMAT0004978 CCAGTTACCGCTTCCGCTACCGC 6.5 4.22 1.62 

mir-95 MIMAT0000094 TTCAACGGGTATTTATTGAGCA 1.8 1.39 3.94 

mir-96 MIMAT0000095 TTTGGCACTAGCACATTTTTGCT 2.89 1.82 4.16 
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Table 3 Comparison of different studies. PA: pituitary adenoma (containing GH, PRL, ACTH-secreting and non-

functioning adenomas), NP: normal pituitary, NFPA: non-functioning pituitary adenoma, GO: gonadotrope adenoma, 

TLDA: TaqMan Low Density Array, NGS: next generation sequencing 

miRN

A 

name 

Chrom

osome 

Map 

Mature miRNA 

sequence 

Bottoni et al, 

2007 

(microarray) 

Liang et al, 

2013 

(microarray) 

Butz et al, 

2011 

(TLDA) 

current study 

NGS microarray 

Concordant expression 

miR-

127 

14q32.

2 

CTGAAGCTCAGAG

GGCTCTGAT 

downregulated 

in NFPA vs. 

other types of 

PA 

 
downregulated 

in NFPA vs. 

NP 

upregulated in 

NFPA vs. NP 

downregulat

ed in NFPA 

vs. NP miR-

148a 
7p15.2 

TCAGTGCACTACA

GAACTTTGT 

downregulated 

in NFPA vs. 

other types of 

PA 

 
downregulated 

in NFPA vs. 

NP 

downregulated 

in NFPA vs. 

NP 

downregulat

ed in NFPA 

vs. NP miR-

203 

14q32.

22 

GTGAAATGTTTAG

GACCACTAG 

downregulated 

in NFPA vs. 

other types of 

PA 

 
downregulated 

in NFPA vs. 

NP 

downregulated 

in NFPA vs. 

NP 

  

miR-24 
9q22.3

2 

TGGCTCAGTTCAG

CAGGAACAG 

downregulated 

in NFPA vs. 

other types of 

PA 

 
downregulated 

in NFPA vs. 

NP 

   

miR-

136 
14q32 

ACTCCATTTGTTTT

GATGATGGA 

downregulated 

in PA vs. NP 
 

downregulated 

in NFPA vs. 

NP 

   

miR-

137 
1p21.3 

TTATTGCTTAAGA

ATACGCGTAG 

upregulated in 

NFPA vs. other 

types of PA 

 
upregulated in 

NFPA vs. NP 

upregulated in 

NFPA vs. NP 

upregulated 

in NFPA vs. 

NP miR-

149 
2q37.3 

TCTGGCTCCGTGT

CTTCACTCCC 

upregulated in 

PA vs. NP 
 

upregulated in 

NFPA vs. NP 

upregulated in 

NFPA vs. NP 

upregulated 

in NFPA vs. 

NP miR-

191 
3p21 

CAACGGAATCCCA

AAAGCAGCTG 

upregulated in 

PA vs. NP 
 

upregulated in 

NFPA vs. NP 
   

miR-31 9p21.3 
AGGCAAGATGCTG

GCATAGCT 
 

downregulated 

in NFPA and 

GO vs. NP 

downregulated 

in NFPA vs. 

NP 

  
downregulat

ed in NFPA 

vs. NP miR-

363 
Xq26.2 

AATTGCACGGTAT

CCATCTGTA 
 

downregulated 

in NFPA and 

GO vs. NP 

downregulated 

in NFPA vs. 

NP 

   

miR-

424 
Xq26.3 

CAGCAGCAATTCA

TGTTTTGAA 
 

downregulated 

in NFPA and 

GO vs. NP 

downregulated 

in NFPA vs. 

NP 

downregulated 

in NFPA vs. 

NP 

downregulat

ed in NFPA 

vs. NP miR-

450 
Xq21.1 

TTTTGCGATGTGTT

CCTAATAT 
 

downregulated 

in NFPA and 

GO vs. NP 

downregulated 

in NFPA vs. 

NP 

downregulated 

in NFPA vs. 

NP 

  

miR-

493 

14q32.

2 

TGAAGGTCTACTG

TGTGCCAGG 
 

downregulated 

in NFPA and 

GO vs. NP 

downregulated 

in NFPA vs. 

NP 

  
downregulat

ed in NFPA 

vs. NP miR-

503 
Xq26.3 

TAGCAGCGGGAAC

AGTTCTGCAG 
 

downregulated 

in NFPA and 

GO vs. NP 

downregulated 

in NFPA vs. 

NP 

upregulated in 

NFPA vs. NP 

downregulat

ed in NFPA 

vs. NP miR-

506 
Xq27.3 

TAAGGCACCCTTC

TGAGTAGA 
 

downregulated 

in NFPA and 

GO vs. NP 

downregulated 

in NFPA vs. 

NP 

  
downregulat

ed in NFPA 

vs. NP miR-

508 
Xq27.3 

TGATTGTAGCCTTT

TGGAGTAGA 
 

downregulated 

in NFPA and 

GO vs. NP 

downregulated 

in NFPA vs. 

NP 

downregulated 

in NFPA vs. 

NP 

downregulat

ed in NFPA 

vs. NP miR-

509 
Xq27.3 

TACTGCAGACAGT

GGCAATCA 
 

downregulated 

in NFPA and 

GO vs. NP 

downregulated 

in NFPA vs. 

NP 

downregulated 

in NFPA vs. 

NP 

downregulat

ed in NFPA 

vs. NP miR-

513 
Xq27.3 

TAAATTTCACCTTT

CTGAGAAGG 
 

downregulated 

in NFPA and 

GO vs. NP 

downregulated 

in NFPA vs. 

NP 

downregulated 

in NFPA vs. 

NP 

downregulat

ed in NFPA 

vs. NP miR-

139 

11q13.

4 

TCTACAGTGCACG

TGTCTCCAGT 
 

upregulated in 

GO vs. NP 

upregulated in 

NFPA vs. NP 
   

miR-

182 
7q32.2 

TTTGGCAATGGTA

GAACTCACACT 
 

upregulated in 

NFPA vs. NP 

upregulated in 

NFPA vs. NP 

upregulated in 

NFPA vs. NP 

upregulated 

in NFPA vs. 

NP miR-

373 

19q13.

42 

GAAGTGCTTCGAT

TTTGGGGTGT 
 

upregulated in 

NFPA vs. NP 

upregulated in 

NFPA vs. NP 
  

downregulat

ed in NFPA 

vs. NP Discordant expression 

miR-

140 

16q22.

1 

TACCACAGGGTAG

AACCACGG 

downregulated 

in PA vs. NP 
 

upregulated in 

NFPA vs. NP 

downregulated 

in NFPA vs. 

NP 

upregulated 

in NFPA vs. 

NP miR-

153 
7q36 

TTGCATAGTCACA

AAAGTGATC 

downregulated 

in PA vs. NP 
 

upregulated in 

NFPA vs. NP 
  

upregulated 

in NFPA vs. 

NP miR-96 7q32 
TTTGGCACTAGCA

CATTTTTGCT 

downregulated 

in PA vs. NP 
 

upregulated in 

NFPA vs. NP 

upregulated in 

NFPA vs. NP 

upregulated 

in NFPA vs. 

NP miR-

124a 
8q12.2 

TAAGGCACGCGGT

GAATGCC 

downregulated 

in PA vs. NP 

upregulated in 

NFA vs. NP 
   

upregulated 

in NFPA vs. 

NP miR-

144 

17q11.

2 

GGATATCATCATA

TACTGTAAG 

downregulated 

in PA vs. NP 

upregulated in 

NFA vs. NP 
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miR-

181b 

1q31.2-

q32.1 

AACATTCATTGCT

GTCGGTGGGT 

downregulated 

in PA vs. NP 

upregulated in 

NFPA vs. NP 
    

miR-

150 
19q13 

TCTCCCAACCCTT

GTACCAGTG 

upregulated in 

PA vs. NP 
 

dowregulated 

in NFPA vs. 

NP 

   

miR-

212 

17p13.

3 

TAACAGTCTCCAG

TCACGGCC 

upregulated in 

PA vs. NP 

dowregulated 

in NFPA vs. 

NP 

  
upregulated in 

NFPA vs. NP 

downregulat

ed in NFPA 

vs. NP miR-

188 

Xp11.2

3 

CATCCCTTGCATG

GTGGAGGG 
 

upregulated in 

NFPA vs. NP 

dowregulated 

in NFPA vs. 

NP 

   

miR-

520b 

19q13.

42 

AAAGTGCTTCCTT

TTAGAGGG 
 

upregulated in 

NFPA and GO 

vs. NP 

downregulated 

in NFPA vs. 

NP 
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Legends 

Figure 1 a Numbers of detected miRNAs by SOLiD, Microarray and TLDA platforms in normal pituitary (NP) 

and non-functioning pituitary adenoma (NFPA) b Multiplex correlation among samples and platforms. Numbers 

indicate correlation coefficient (R), scales show normalized expression. Above the diagonal line the scatter plots, 

below the diagonal line the correlation coefficients are indicated for each comparison. See the text for detailed 

explanation 

Figure 2 miRNAs that were not detected by SOLiD NGS but were identified by both microarray and TLDA, 

were in the low detection range. Columns represent mean expression, error bars indicating standard error (SE), 

*: p<0.0001 

Figure 3 Validation of selected 21 miRNAs’ expression a Technical validation shows the miRNA expression 

determined by individual RT-qPCR on the same samples as used for SOLiD, Microarray and TLDA experiment. 

b Technical vs. biological validation. Biological validation was performed on an extended number of samples 

(20 NFPAs and 10 NPs). c Correlation among different platforms (log2fold change) regarding biological 

validation. Red and green colours represent over- and underexpression in NFPAs compared to NPs, black 

indicates not identified miRNAs. “TM” refers to individual RT-qPCR measurements using individual TaqMan 

assays 

Figure 4 Network analysis of miRNA-target interactions of different platforms (a SOLiD; b microarray; c 

TLDA; d 25 platform independent miRNAs). Node (molecule) size and colour represent the number of targeting 

miRNAs (indegree) 

 

Supplementary Figure 1 Numbers of differentially expressed miRNAs in the same direction with a fold change 

cut-off 2 identified by different platforms 

Supplementary Figure 2 a Pathway analysis of experimentally validated targets of differentially expressed 

miRNA lists obtained by different platforms b Comparison of most significant pathway activation z-scores of 

different platforms. Z-scores of pathways are presented where the scores showed the same direction at least two 

studies. Z‐score infers the activation states of predicted pathway by investigating the activator or inhibitor 

function of the enriched genes in the particular pathway 

Supplementary Figure 3 Pathway analysis of “platform independent” miRNAs 

Supplementary Figure 4 Gene ontology analysis of “platform independent” miRNAs 

 

Supplementary Table 1 Alignment characteristics of miRNAs that were detectable by both the TLDA and 

microarray platforms but not by SOLiD 

Supplementary Table 2 28 miRNAs unidentified by SOLiD but detected in NP and NFPA as well by both 

microarray and TLDA platforms 

Supplementary Table 3 Repeats in miRNA sequences in detected and non-detected miRNAs by SOLiD 

Supplementary Table 4 Expression of 85 miRNAs changed in the same direction in all three high throughput 

methods 

 


