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Abstract

Statistical post-processing techniques are now widely used to correct systematic

biases and errors in calibration of ensemble forecasts obtained from multiple runs of

numerical weather prediction models. A standard approach is the ensemble model

output statistics (EMOS) method, a distributional regression approach where the fore-

cast distribution is given by a single parametric law with parameters depending on

the ensemble members. Choosing an appropriate parametric family for the weather

variable of interest is a critical, however, often non-trivial task, and has been the focus

of much recent research. In this article, we assess the merits of combining predictive

distributions from multiple EMOS models based on different parametric families. In

four case studies with wind speed and precipitation forecasts from two ensemble pre-

diction systems, we study whether state of the art forecast combination methods are

able to improve forecast skill.

Key words: ensemble model output statistics, ensemble post-processing, forecast com-

bination, precipitation, probabilistic forecasting, wind speed.
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1 Introduction

Nowadays, weather forecasts are typically based on the output of numerical weather predic-

tion (NWP) models which describe the dynamical and physical behavior of the atmosphere

through nonlinear partial differential equations. Single deterministic predictions produced

by single runs of such models fail to account for uncertainties in the initial conditions and

the numerical model. Therefore, NWP models are nowadays typically run several times

with varying initial conditions and model physics, resulting in an ensemble of forecasts, see

Palmer (2002) and Gneiting and Raftery (2005) for reviews. Examples of ensemble pre-

diction systems (EPSs) are the 51-member European Centre for Medium-Range Weather

Forecasts (ECMWF) ensemble (Molteni et al., 1996), the eight-member University of Wash-

ington Mesoscale ensemble (UWME; Eckel and Mass, 2005), and the 11-member Aire Limitée

Adaptation dynamique Développement International-Hungary Ensemble Prediction System

(ALADIN-HUNEPS; Horányi et al., 2006) of the Hungarian Meteorological Service (HMS).

The transition from single deterministic forecasts to ensemble predictions can be seen as

an important step towards probabilistic forecasting, however, ensemble forecasts are often

underdispersive and subject to systematic bias. They thus require some form of statistical

post-processing.

Over the past decade, various statistical post-processing methods have been proposed in

the meteorological literature. In the Bayesian model averaging (BMA; Raftery et al., 2005)

approach the forecast distribution is given by a weighted mixture of parametric densities,

each of which depends on a single ensemble member with mixture weights being determined

by the performance of the ensemble members in the training period. Within this article we

build on the conceptually simpler ensemble model output statistics (EMOS) approach pro-

posed by Gneiting et al. (2005), where the conditional distribution of the weather variable

of interest given the ensemble predictions is modeled by a single parametric family. The pa-

rameters of the forecast distribution are connected to the ensemble forecast through suitable

link functions. For example, the original EMOS approach models temperature with a Gaus-

sian predictive distribution where the mean is an affine function of the ensemble member

forecasts, and the variance is an affine function of the ensemble variance.

Over the last years the EMOS approach has been extended to other weather variables such

as wind speed (Thorarinsdottir and Gneiting, 2010; Lerch and Thorarinsdottir, 2013; Baran

and Lerch, 2015; Scheuerer and Möller, 2015), precipitation (Scheuerer, 2014; Scheuerer and

Hamill, 2015; Baran and Nemoda, 2016), and total cloud cover (Hemri et al., 2016). The

success of statistical post-processing relies on finding appropriate parametric families for the

weather variable of interest. However, the choice of a suitable parametric model is a non-

trivial task and often a multitude of competing models is available. The relative performance

of these models usually varies for different data sets and applications.

Regime-switching combination models proposed by Lerch and Thorarinsdottir (2013)

partly alleviate the limited flexibility of single parametric family models by selecting one of
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several candidate models based on covariate information. However, the applicability of this

approach is subject to the availability of suitable covariates. For some weather variables, full

mixture EMOS models can be formulated where the parameters and weights of a mixture

of two forecast distributions are jointly estimated (Baran and Lerch, 2016). However, such

approaches are limited to specific weather variables, and the estimation is computationally

demanding.

In this article we investigate the feasibility of another, more generally applicable route

towards improving the forecast performance that has recently received some interest, and

has for example been suggested in Yang et al. (2017). Motivated by promising results of

Möller and Groß (2016) and Bassetti et al. (2017), we study whether combining predictive

distributions from individual post-processing models is able to significantly improve the

forecast performance. In a first step, individual EMOS models based on single parametric

distributions are estimated. In a second step the forecast distributions are combined utilizing

state of the art forecast combination techniques such as the (spread-adjusted) linear pool, the

beta-transformed linear pool (Gneiting and Ranjan, 2013), and a recently proposed Bayesian,

essentially non-parametric calibration approach (Bassetti et al., 2017). Further, we propose

a computationally efficient ’plug-in’ approach to determining combination weights in the

linear pool that is specific to post-processing applications.

The remainder of this article is organized as follows. Section 2 contains a description of

the ensembles and the observation data. In Section 3, the EMOS method is reviewed, and

the individual EMOS models for wind speed and precipitation are introduced. Thereafter,

Section 4 provides a description of the forecast combination approaches and the application

to post-processing. The various EMOS models and forecast combination approaches are

compared in four case studies in Section 5. The article concludes with a discussion in

Section 6.

2 Data

We consider two different weather variables, wind speed and precipitation accumulation,

and two distinct data sets of ensemble forecasts and corresponding validating observations

for each weather quantity. The wind speed data sets are identical to data used in Baran

and Lerch (2015, 2016), whereas the precipitation data coincide with those studied in Baran

and Nemoda (2016). For detailed descriptions of the ensemble forecasts and corresponding

observations we refer to these articles and references therein.

Ensemble members that are generated with the help of random perturbations of initial

conditions are statistically indistinguishable, and are referred to as exchangeable. The notion

of exchangeability of ensemble members is important for the formulation of post-processing

models, see Section 3 for details.



4

2.1 University of Washington mesoscale ensemble

The UWME covers the Pacific Northwest region of North America with a horizontal resolu-

tion of 12 km and consists of eight members generated from different runs of the fifth gen-

eration Pennsylvania State University–National Center for Atmospheric Research mesoscale

model (Grell et al., 1995). The initial and boundary conditions of the model runs are

provided by different sources, the individual ensemble members can therefore be clearly dis-

tinguished and are considered to be non-exchangeable. The data set at hand contains 48 h

ahead forecasts and corresponding validating observations for 10 m maximal wind speed

(given in m/s) and 24 h precipitation accumulation (given in mm) for 152 stations in the

Automated Surface Observing Network (National Weather Service, 1998) in the U.S. states

of Washington, Oregon, Idaho, California and Nevada.

We focus on calendar year 2008 with additional forecasts and observations from the last

months of 2007 used to allow for training periods of equal length for the model estimation.

After removing days and locations with missing predictions and/or observations, stations

where data are available only on very few days are also removed resulting in 101 stations

with 27 481 individual forecast cases for wind speed and 75 stations with 20 448 individual

forecast cases for precipitation.

2.2 ALADIN-HUNEPS ensemble

The ALADIN-HUNEPS system covers large parts of continental Europe on an 8 km grid.

It is obtained with dynamical downscaling of the global ARPEGE based PEARP system

of Météo France (Horányi et al., 2011; Descamps et al., 2015) and consists of 11 ensemble

members, 10 of which are exchangeable forecasts from perturbed initial conditions, and one

of which is a control member from the unperturbed analysis.

We use ensembles of 42 h ahead forecasts of 10 m instantaneous wind speed (in m/s)

and 24 h precipitation accumulation (in mm) issued for 10 major cities in Hungary together

with the corresponding validation observations. Wind speed data are available for a one-year

period from 1 April 2012 to 31 March 2013, and precipitation data are available between

1 October 2010 and 25 March 2011. Days with missing forecasts and/or observations are

excluded from the analysis for both wind speed (6 days) and precipitation (2 days).

3 Ensemble model output statistics

Successful statistical post-processing of ensemble forecasts relies on finding and estimating

appropriate parametric models for the conditional distribution of the weather variable of

interest given the ensemble predictions. In case of the EMOS approach, the forecast dis-

tribution is given by a single parametric law with parameters depending on the ensemble
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forecast. While temperature can be modeled by a normal distribution (Gneiting et al., 2005),

the choice of a suitable parametric family is much less straightforward for weather variables

such as wind speed or precipitation. A multitude of post-processing approaches and model-

ing strategies has been proposed over the last years. In the following short review, we focus

on EMOS models for wind speed and precipitation, and subsequently investigate methods

to combine forecast distributions from different models.

3.1 EMOS models for wind speed

Non-negative weather variables such as wind speed require skewed predictive distributions

with non-negative support like Weibull (Justus et al., 1978) or gamma distributions (Garcia

et al., 1988). Recently developed EMOS approaches utilize truncated normal (TN; Tho-

rarinsdottir and Gneiting, 2010), gamma (Scheuerer and Möller, 2015), generalized extreme

value (GEV; Lerch and Thorarinsdottir, 2013) and log-normal (LN; Baran and Lerch, 2015)

distributions to model the conditional distribution of wind speed given the ensemble predic-

tions. Here, we focus on the truncated normal and log-normal model.

3.1.1 Truncated normal EMOS model

We denote by N0

(
µ, σ2

)
the TN distribution with location µ, scale σ > 0, and cut-off

at zero with probability density function (PDF)

g(x|µ, σ) :=
1
σ
ϕ
(
(x− µ)/σ

)
Φ
(
µ/σ

) , if x ≥ 0, and g(x|µ, σ) := 0, otherwise,

where ϕ and Φ are the PDF and the cumulative distribution function (CDF) of the

standard normal distribution, respectively. The predictive distribution of the EMOS model

proposed by Thorarinsdottir and Gneiting (2010) is

N0

(
a0 + a1f1 + · · ·+ aKfK , b0 + b1S

2
)

with S2 :=
1

K−1

K∑
k=1

(
fk − f

)2
, (3.1)

where f1, f2, . . . , fK denote the ensemble of distinguishable forecasts of wind speed for a

given location and time, and f is the ensemble mean. Location parameters a0, a1, . . . , aK ∈
R and scale parameters b0 ∈ R, b1 ≥ 0 of model (3.1) can be estimated from the training

data, consisting of ensemble members and verifying observations from the preceding n days,

by optimizing an appropriate verification score, see Section 3.3.

However, most operational EPSs generate forecasts using random perturbations of the

initial conditions resulting in statistically indistinguishable ensemble members which are re-

ferred to as exchangeable. Examples include the 51-member ECMWF ensemble, as well

as sub-ensembles of forecasts from single models that form groups of exchangeable mem-

bers within multi-model EPSs such as the THORPEX Interactive Grand Global Ensemble
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(Swinbank et al., 2016) or the GLAMEPS ensemble (Iversen et al., 2011). To account for the

generation of the forecasts, ensemble members within a given group of exchangeable mem-

bers should share the same coefficients in the post-processing model (Fraley et al., 2010;

Gneiting, 2014).

To formalize this notion, a generalized formulation of model (3.1) for the case of M

ensemble members divided into K groups, where the kth group contains Mk ≥ 1

exchangeable ensemble members (
∑K

k=1 Mk = M) introduced in Baran and Lerch (2015) is

given by

N0

(
a0 + a1

M1∑
`1=1

f1,`1 + · · ·+ aK

MK∑
`K=1

fK,`K , b0 + b1S
2

)
.

Analogous concepts apply to all EMOS models discussed in the subsequent sections.

3.1.2 Log-normal EMOS model

As an alternative to the TN EMOS model, Baran and Lerch (2015) introduce an EMOS

approach based on log-normal forecast distributions where the mean m and variance v of

the predictive distribution are linked to the ensemble members as

m = α0 + α1f1 + · · ·+ αKfK and v = β0 + β1S
2. (3.2)

These quantities uniquely determine the location µ and shape σ > 0 of the underlying

LN distribution LN
(
µ, σ

)
with PDF

h(x|µ, σ) :=
1

xσ
ϕ
(
(log x− µ)/σ

)
, if x ≥ 0, and h(x|µ, σ) := 0, otherwise,

via transformations

µ = log

(
m2

√
v +m2

)
and σ =

√
log
(

1 +
v

m2

)
.

Similar to the TN EMOS model, estimates of parameters α0, α1, . . . , αK ∈ R and β0 ∈
R, β1 ≥ 0 are obtained by optimizing the mean of an appropriate verification score over all

forecast cases in the training data.

3.1.3 Combination and mixture models

The TN and LN models described above model the conditional distribution of wind speed

given the ensemble predictions with a single parametric forecast distribution. This approach

relies on the choice of a suitable parametric family, and limits the flexibility of the model. For

instance, it can be demonstrated that the heavier tails of the LN model are more appropriate

for modeling higher wind speeds in the right tail of the distribution, whereas the TN model

is more appropriate for the bulk of the distribution, see Baran and Lerch (2016) for details.
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Therefore, different combination and mixture models have been proposed in the literature.

In the regime-switching combination approach (Lerch and Thorarinsdottir, 2013; Baran and

Lerch, 2015) one of the candidate models is selected based on covariate information with

suitably adapted parameter estimation procedures. For example, a TN model can be used

if the median ensemble forecast is below a threshold η, and an LN model is used in case

of median ensemble forecasts exceeding this threshold. Such combination models have been

demonstrated to improve the predictive performance compared to the individual models,

however, they require the choice of a suitable covariate, and the threshold parameter η has

to be determined by repeating the model estimation over a grid of potential values, thereby

limiting the flexibility and increasing the computational cost of such approaches.

In order to flexibly combine the advantages of lighter and heavier-tailed distributions and

to avoid these problems in the process, Baran and Lerch (2016) propose a mixture model of

the form

ψ(x|µTN , σTN ;µLN , σLN ;ω) := ωg(x|µTN , σTN) + (1− ω)h(x|µLN , σLN), (3.3)

where the parameters of the component distributions g and h depend on the ensemble

forecasts as specified in (3.1) and (3.2). The EMOS coefficients and the weight ω ∈ [0, 1]

of the mixture model (3.3) are estimated jointly using optimum score approaches. This mix-

ture model approach results in significantly improved calibration (Baran and Lerch, 2016),

however, it is computationally very demanding and hinders using standard optimum score

estimation based on the continuous ranked probability score due to the lack of an analytic

expression of the objective function, see Section 3.3 for details. Similar mixture models where

the different component distributions focus on specific regions of interest such as the bulk

and the tail above a threshold value have been tested, but models based on truncated normal

and generalized Pareto distributions result in worse predictive performance, see Baran and

Lerch (2016).

In contrast to the joint estimation of all parameters in (3.3), the forecast combination

approaches introduced in Section 4 are two-step procedures where in a first step, EMOS

models based on a single parametric family are estimated, and in a second step, these models

are combined as a weighted mixture by estimating an appropriate weight. In Section 5 the

full mixture model (3.3) is used as a benchmark, whereas the regime-switching combination

approach will not be considered any further.

3.2 EMOS models for precipitation

The discrete-continuous nature of precipitation accumulation requires a non-negative predic-

tive distribution assigning positive mass to the event of zero precipitation. A popular choice

is to consider a continuous distribution that can take both positive and negative values and

left censor it at zero (Scheuerer, 2014; Scheuerer and Hamill, 2015; Baran and Nemoda,

2016), which thereby assigns the mass of negative values to zero precipitation accumulation.
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3.2.1 Censored and shifted gamma EMOS model

Let G(·|κ, θ) denote the CDF of the Γ(κ, θ) distribution with shape κ > 0 and scale

θ > 0 and let δ > 0. Then the CDF of the shifted gamma distribution left censored at

zero (CSG) Γ0(κ, θ, δ) with shape κ, scale θ and shift δ is given by

G0(x|κ, θ, δ) := G(x+ δ|κ, θ), if x ≥ 0, and G0(x|κ, θ, δ) := 0, otherwise, (3.4)

that is, mass G(δ|κ, θ) is assigned to the origin. In the CSG EMOS approach of Baran

and Nemoda (2016) the mean m = κθ and variance σ2 = κθ2 of the uncensored gamma

distribution Γ(κ, θ) are affine functions of the ensemble and ensemble mean, respectively,

that is

m = a0 + a1f1 + · · ·+ aKfK and σ2 = b0 + b1f. (3.5)

3.2.2 Censored generalized extreme value EMOS model

The CDF of a GEV distribution GEV
(
µ, σ, ξ

)
with location µ, scale σ > 0 and shape ξ

equals

H(x|µ, σ, ξ) :=

exp
(
−
[
1 + ξ(x−µ

σ
)
]−1/ξ

)
, ξ 6= 0;

exp
(
− exp

(
− x−µ

σ

))
, ξ = 0,

if 1 + ξ(x− µ)/σ > 0,

and zero otherwise, which for −0.278 < ξ < 1 has a positive skewness and an existing mean

m =

{
µ+ σ Γ(1−ξ)−1

ξ
, ξ 6= 0;

µ+ σγ, ξ = 0,

where γ denotes the Euler-Mascheroni constant.

The EMOS model for precipitation accumulation proposed by Scheuerer (2014) is based

on a censored GEV distribution GEV0

(
µ, σ, ξ

)
with CDF

H0(x|µ, σ, ξ) = H(x|µ, σ, ξ), if x ≥ 0, and H0(x|µ, σ, ξ) := 0, otherwise, (3.6)

where

m = α0 + α1f1 + · · ·+ αKfK + νp0 and σ = β0 + β1 MD(f), (3.7)

with

p0 :=
1

K

K∑
k=1

1{fk=0} and MD(f) :=
1

K2

K∑
k,`=1

∣∣fk − f`∣∣,
where 1A denotes the indicator function of the set A.
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3.2.3 Mixture models

Similar to wind speed, general mixture models with CSG and GEV component distributions

of the form

%(x|κ, θ, δ;µ, σ, ξ;ω) := ωg0(x|κCSG, θCSG, δCSG) + (1− ω)h0(x|µGEV , σGEV , ξGEV ), (3.8)

can be formulated, where g0(·|κ, θ, δ) and h0(·|µ, σ, ξ) denote the generalized PDFs of

the CSG and censored GEV distributions, respectively, and the dependence of parameters

κCSG, θCSG and µGEV , σGEV on the ensemble is given by (3.5) and (3.7).

However, joint optimum score estimation of the parameters is more involved than in

the case of the TN-LN mixture model (3.3) for wind speed due to the larger number of

parameters and the discrete-continuous nature of the forecast distribution %. As initial

tests with the precipitation data sets introduced in Section 2 indicated problematic behavior

of the numerical optimization algorithms potentially caused by the non-smooth dependence

of the objective functions on the parameters, we do not pursue this approach any further

and only consider the forecast combination approaches introduced in Section 4. Compared

to jointly estimating all parameters, these methods separate the estimation into two steps

and thereby result in more stable optimization problems.

3.3 Forecast evaluation and parameter estimation

In probabilistic forecasting the general aim is to maximize the sharpness of the predictive

distribution subject to calibration (Gneiting et al., 2007). Calibration refers to the statis-

tical consistency between the forecast and the observation, and given that the predictive

distribution is calibrated, it should be as concentrated (or sharp) as possible. Calibration

and sharpness can be assessed simultaneously with the help of proper scoring rules.

Proper scoring rules are loss functions that assign a numerical value to pairs of forecasts

and observations. In the atmospheric sciences the most popular scoring rules are the contin-

uous ranked probability score (CRPS; Matheson and Winkler, 1976; Gneiting and Raftery,

2007) and the logarithmic score (LogS; Good, 1952). Given a predictive CDF F (y) and an

observation x, the CRPS is defined as

CRPS
(
F, x

)
:=

∫ ∞
−∞

(
F (y)− 1{y≥x}

)2
dy (3.9)

=

∫ x

−∞
F 2(y)dy +

∫ ∞
x

(
1− F (y)

)2
dy

= E|X − x| − 1

2
E|X −X ′|,

where X and X ′ are independent random variables with CDF F and finite first moment.

The last representation in (3.9) implies that the CRPS can be expressed in the same unit
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as the observation. The logarithmic score is the negative logarithm of the predictive density

f(y) evaluated at the verifying observation, i.e.,

LogS(F, x) := − log(f(x)).

Both CRPS and LogS are proper scoring rules (Gneiting and Raftery, 2007) which are

negatively oriented, that is, smaller scores indicate better forecasts.

Proper scoring rules provide valuable tools for the estimation of model parameters. Fol-

lowing the general optimum score estimation approach of Gneiting and Raftery (2007), the

parameters of a predictive distribution can be determined by optimizing the average value

of a proper scoring rule as a function of the parameters over a suitably chosen training

set. Optimum score estimation based on minimizing the LogS then corresponds to classical

maximum likelihood (ML) estimation. If closed form expressions of the integral in (3.9) are

available, minimum CRPS estimation, i.e. optimum score estimation based on minimizing

the mean CRPS, often provides a valuable, more robust alternative to ML estimation.

Analytic expressions of the CRPS are available for all individual EMOS models for wind

speed and precipitation introduced in Sections 3.1 and 3.2, thereby allowing for efficient

parameter estimation procedures by minimizing the mean CRPS over the forecast cases in

the training periods. The closed form solutions are provided in the corresponding articles

(Thorarinsdottir and Gneiting, 2010; Baran and Lerch, 2015; Scheuerer, 2014; Scheuerer

and Hamill, 2015). Implementations for the statistical programming language R (R Core

Team, 2016) are for example available in the scoringRules package (Jordan et al., 2016).

The parameter estimation for the EMOS models is performed using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm (Press et al., 2007, Section 10.9) implemented in the

optim function in R. In the case of precipitation we use a constrained version of the BFGS

algorithm to ensure positivity of the EMOS coefficients. See Section 5 for details on the

selection of the training sets over which the parameters are estimated.

By contrast, the CRPS is not available in closed form for the mixture models (3.3) and

(3.8), or any of the forecast combination models introduced in Section 4. Therefore, each step

of the optimization procedure requires numerical integration resulting in high computational

costs. In case of the mixture model (3.3) for wind speed, we instead use ML estimation of

the parameters. The forecast combination approaches introduced below partly alleviate

this issue by separating the parameter estimation into two steps rather than estimating all

parameters jointly.

4 Forecast combination methods and application to

statistical post-processing

We now describe state of the art methods for combining predictive distributions, which we

will employ in a post-processing context. The combination approaches constitute two-step
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methods. The first step is given by the estimation of component models in the form of EMOS

models based on suitable single parametric families. In a second step, the component models

are combined by estimating the mixture weight and possibly more combination parameters.

Compared to the previously discussed mixture model (3.3), the two-step approaches reduce

the dimensionality of the optimization problem. Further, the combination approaches can

be flexibly applied to any weather variable of interest given that suitable component models

are available, the model formulation is thus given in a general form.

Let G(x|f ; ν) and H(x|f ; θ) be predictive CDFs belonging to two different families

of distributions depending on the ensemble f via parameter vectors ν and θ, respec-

tively. The EMOS models introduced in Sections 3.1 and 3.2 are later used as component

distributions for wind speed and precipitation, respectively.

4.1 Linear pool and spread-adjusted linear pool

We start by introducing the linear and spread-adjusted linear pool of forecast distributions

which have been applied to post-processing ensemble forecasts by Möller and Groß (2016).

The classical linear pool (LP) employs a mixture model with a predictive CDF of the general

form

F LP(x|f ; ν, θ, ω) := ωG(x|f ; ν) + (1− ω)H(x|f ; θ), ω ∈ [0, 1]. (4.1)

As demonstrated by Gneiting and Ranjan (2013), linear pooling of predictive distribu-

tions increases the dispersion of the forecasts. They propose spread-adjusted and beta-

transformed linear pooling approaches that allow to correct for this deficiency. The spread-

adjusted linear pool (SLP) results in a predictive distribution

F SLP(x|f ; ν, θ, ω) := ωG
(x
c

∣∣f ; ν
)

+ (1− ω)H
(x
c

∣∣f ; θ
)
, ω ∈ [0, 1] (4.2)

with spread adjustment parameter c > 0. The linear pool is obtained for c = 1.

As noted by Gneiting and Ranjan (2013), the forecasts of the Bayesian model averaging

approach of Raftery et al. (2005) take a similar functional form, but differ in that the

combination parameters and the parameters of the individual component distributions are

estimated simultaneously. Further, the forecast distributions of the mixture components in

the BMA approach depend on a single ensemble member only, whereas the EMOS predictive

distributions used here depend on the entire ensemble through suitable link functions with

coefficients ν, θ.

The weight ω ∈ [0, 1] and the spread adjustment parameter c > 0 have to be estimated

from past forecast cases. Note that these need to be training samples where post-processed

forecast distributions are available. Möller and Groß (2016) suggest to choose sets of candi-

date parameter values, e.g. ω ∈ {0, 0.05, . . . , 0.95, 1} and c ∈ {0.7, 0.75, . . . , 1.25, 1.3}, and

to apply the combination formulas (4.1) and (4.2) for all possible parameter combinations in
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order to select those parameter values corresponding to the lowest mean CRPS in the train-

ing sample. The CRPS of the forecast distributions is thereby computed using numerical

integration. However, as tests indicated improvements in the predictive performance and

lower computational costs, we instead determine the optimal parameter values by numerical

optimization with the CRPS as a target functional. To allow for a direct comparison with

the component models, we use forecast-observation pairs from the same training sets that

were used to estimate the EMOS coefficients. The use of training sets expanding over time

or separately estimating the combination parameters for all stations could potentially result

in further improvements. Various alternative approaches to estimate the combination weight

in case of the linear pool have been proposed in the literature, including approaches based

on other scoring rules such as the LogS (Hall and Mitchell, 2007) or weighted scoring rules

(Opschoor et al., 2017), as well as Bayesian approaches (Billio et al., 2013; Del Negro et al.,

2016).

4.1.1 A plug-in variant of the linear pool for post-processing applications

In the following we propose a simple plug-in variant to determine the weight parameter in

the linear pool that only requires a single numerical integration step rather than repeated

numerical integration during the optimization procedure. In tables and figures of Section 5,

this approach is abbreviated by LP-PI.

Let G(x|f ; ν) and H(x|f ; θ) be predictive CDFs as above, and let (xk,fk), k =

1, 2, . . . , n, denote the pairs of verifying observations and ensemble forecasts in the training

data. The basic idea of the proposed plug-in variant of the linear pool is to utilize the

current EMOS parameters estimated for day n + τ where τ is the forecast horizon

to compute the parameters of the corresponding component distributions over the entire

training sample. In contrast to utilizing the respective EMOS coefficient vectors (νk) and

(θk) for k = 1, 2, . . . , n, this reduces the number of required numerical integrations at

the cost of not using the specific parameter values estimated for those days in the training

period. Since no spread adjustment is applied, this approach shares the deficiencies of the

standard linear pool described above.

As before, consider a linear pool mixture model with predictive CDF

F LP(x|f ; ν, θ, ω) := ωG(x|f ; ν) + (1− ω)H(x|f ; θ), ω ∈ [0, 1]. (4.3)

Short calculation based on the integral representation in the second line of (3.9) shows

CRPS
(
F LP(·|f ; ν, θ, ω), x

)
= ω2 CRPS

(
G(·|f ; ν), x

)
+ (1− ω)2 CRPS

(
H(·|f ; θ), x

)
+ 2ω(1− ω)

[∫ x

−∞
G(y|f ; ν)H(y|f ; θ)dy +

∫ ∞
x

(
1−G(y|f ; ν)

)(
1−H(y|f ; θ)

)
dy

]
.

Let ν◦ and θ◦ denote the optimal parameters of the individual models in the training
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set estimated in the first step for day n+ τ , that is

ν◦ := arg min
ν

CRPS(G, ν) and θ◦ := arg min
θ

CRPS(H, θ),

where

CRPS(G, ν) :=
1

n

n∑
k=1

CRPS
(
G(·|fk; ν), xk

)
, CRPS(H, θ) :=

1

n

n∑
k=1

CRPS
(
H(·|fk; θ), xk

)
.

We propose to use ν◦ and θ◦ as parameters of the mixture model (4.3) and then, in

the modified second step, to optimize

CRPS(F LP, ω) :=
1

n

n∑
i=1

CRPS
(
F LP(·|fk; ν◦, θ◦, ω), xk

)
as a function of ω. The minimum point of CRPS(F LP, ω) is

ω∗◦ =
CRPS(H, θ◦)−M(G,H, ν◦, θ◦)

CRPS(G, ν◦) + CRPS(H, θ◦)− 2M(G,H, ν◦, θ◦)
,

where

M(G,H, ν, θ) :=
1

n

n∑
k=1

[∫ xk

−∞
G(y|fk; ν)H(y|fk; θ)dy+

∫ ∞
xk

(
1−G(y|fk; ν)

)(
1−H(y|fk; θ)

)
dy

]
,

and short calculation shows

ω∗◦ =

∑n
k=1

∫∞
−∞H(y|fk; θ◦)

(
H(y|fk; θ◦)−G(y|fk; ν◦)

)
dy∑n

k=1

∫∞
−∞

(
H(y|fk; θ◦)−G(y|fk; ν◦)

)2
dy

−
∑n

k=1

∫∞
xk

(
H(y|fk; θ◦)−G(y|fk; ν◦)

)
dy∑n

k=1

∫∞
−∞

(
H(y|fk; θ◦)−G(y|fk; ν◦)

)2
dy
.

Now, as ω∗◦ might fall outside the unit interval [0, 1], we use

ω◦ := min
{

max {0, ω∗◦}, 1
}

as our final estimate of the weight. Finally, one can easily show that within the training

sample

CRPS(F LP, ω◦) ≤ min
{

CRPS(G, ν◦),CRPS(H, θ◦)
}
, (4.4)

so the mean CRPS of the mixture model (4.3) with parameters (ν◦, θ◦, ω◦) cannot exceed

the optimal mean CRPS values of the components. Obviously, (4.4) gives no guarantee that

for a new out-of-sample pair (x̃, f̃) the CRPS of the mixture CRPS
(
F LP(·| f̃ ; ν◦, θ◦, ω◦), x̃

)
does not exceed any of the corresponding individual CRPS values.

The above method can be generalized to a convex combination of r different parametric

families. However, in this case the optimal weight vector is a coordinate-wise non-negative

solution of a quadratic optimization problem with a single linear constraint, where the main

diagonal of the corresponding r× r symmetric matrix consists of the mean CRPS values of

the component models, whereas the other entries, which are similar to M(G,H, ν, θ), can

be expressed via integrals.
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4.2 Beta-transformed linear pool

As an alternative to the spread-adjusted linear pool that allows for correcting for the lack

of dispersion of the linear pool, Gneiting and Ranjan (2013) propose the beta-transformed

linear pool (BLP) with predictive CDF

FBLP(x|f ; ν, θ, ω) := Bα,β (ωG(x|f ; ν) + (1− ω)H(x|f ; θ)) , ω ∈ [0, 1]. (4.5)

Here, Bα,β denotes the CDF of the beta distribution with parameters α > 0 and β > 0.

Similar to the linear and spread-adjusted linear pool, the combination parameters α, β, ω

have to be estimated from suitably chosen training data. We proceed as before and estimate

the parameters by numerically optimizing the mean CRPS over the forecast cases that coin-

cide with the training period used to determine the coefficients of the EMOS models. Note

that the representation in the second line of equation (3.9) with lower bound 0 is beneficial to

avoid numerical issues when computing the CRPS using numerical integration, particularly

for precipitation forecasts.

4.3 Bayesian non-parametric combination approach

Bassetti et al. (2017) recently proposed an extension of the BLP approach. Motivated by

results on mixture distributions from theoretical statistics, they propose a forecast aggrega-

tion method based on a mixture of beta distributions. In case of a finite mixture with L

components, the resulting predictive CDF is

FBML(x|f ; ν, θ, ω) :=
L∑
`=1

w`Bα`,β` (ωG(x|f ; ν) + (1− ω)H(x|f ; θ)) , ω ∈ [0, 1], (4.6)

where α` > 0, β` > 0, w` ≥ 0, ` = 1, 2, . . . , L, are the parameters of the beta mixture

components. The BLP approach in (4.5) arises as a special case for L = 1.

As the number L of components is usually unknown, Bassetti et al. (2017) propose a

Bayesian inference approach that allows to treat L as unbounded and random. This infinite

beta mixture approach, referred to as BMC approach in the following, has CDF

FBM∞(x|f ; ν, θ, ω) :=
∞∑
`=1

w`Bα`,β` (ωG(x|f ; ν) + (1− ω)H(x|f ; θ)) , ω ∈ [0, 1]. (4.7)

Based on the slice sampling algorithm of Walker (2007) and Kalli et al. (2011) for infi-

nite mixtures, Bassetti et al. (2017) give an algorithm that results in samples from mixture

parameters α`, β`, w` and ω, allowing to generate draws from the predictive distribution

(4.7). Note that the algorithm in fact deals with finite mixtures, however, the number of

components may differ from draw to draw. In order to obtain an estimate of a verification

score for a given location and time, we average over the predictive CDFs obtained though
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iterations of the algorithm and compute the score for the mean CDF by discrete approx-

imation of the first integral of (3.9) over a dense grid. Note that this approach is in line

with theoretical considerations on forecast evaluation based on simulation output discussed

in Krüger et al. (2016).

In a case study based on wind speed data from a single observation station in Bassetti et

al. (2017), the BMC method shows very promising results and substantially outperforms the

linear pool. Here, we apply the BMC method to larger data sets of ensemble forecasts of wind

speed and precipitation at multiple stations. Due to the point mass at zero precipitation

in the forecast distributions, some minor adjustments of the sampling algorithm described

in Bassetti et al. (2017) are required. Specifically, in steps 4 and 5 of the Gibbs sampling

algorithm described in Section S1.2 of the supplementary materials of Bassetti et al. (2017),

in case of zero observed precipitation, random values from the intervals between zero and the

corresponding probabilities of no precipitation are chosen as values of the component CSG

and GEV predictive CDFs. We found that without this adjustment, the marginal predictive

CDF generally underestimates precipitation accumulation substantially. The value of the

resulting CDF at 0, i.e., FBM∞(0|f ; ν, θ, ω), is approximated by linear interpolation of the

values at the first two grid points.

5 Case studies

Here, we report the results of four case studies for the wind speed and precipitation data

sets introduced in Section 2. Note that BMC results for each forecast case are based on

the forecast distribution given by the mean of 50 predictive CDFs obtained from the post

burn-in iterations of the sampling algorithm described in Bassetti et al. (2017).

5.1 Wind speed

The post-processing models introduced in Section 3 are estimated using the optimum score

estimation approach described in Section 3.3. The TN and LN component models are es-

timated by minimizing the mean CRPS over the training sets, whereas ML estimation is

employed for the full mixture model (3.3). Following previous work (Baran and Lerch,

2015, 2016), we use rolling training periods of length 30 days (UWME data) and 43 days

(ALADIN-HUNEPS data), and estimate the parameters regionally by combining forecast

cases from all available observation stations to form a single training set for all stations.

Note that alternative similarity-based semi-local approaches to selecting the training sets

have been investigated in Lerch and Baran (2017).

Given the estimated coefficients of the component models, the combination parameters in

the two-step combination approaches are estimated over the corresponding rolling training

periods as described in Section 4. For the UWME data, forecast cases from calendar year
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Figure 1: Illustration of mixture weights and other combination parameters for the LP, LP-

PI, SLP and BLP combination methods over the corresponding verification periods for both

wind speed data sets.
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Table 1: Mean CRPS for probabilistic wind speed forecasts of the raw ensemble, the TN,

LN and TN-LN (ML) EMOS models, and the forecast combination approaches.

Forecast UWME ALADIN-HUNEPS

Ensemble 1.353 0.804

TN 1.114 0.735

LN 1.113 0.740

TN-LN (ML) 1.100 0.731

LP 1.111 0.735

LP-PI 1.111 0.735

SLP 1.111 0.737

BLP 1.110 0.738

BMC 1.106 0.738

2007 were used to obtain training periods of equal length for all models which are validated

on the data of calendar year 2008. For the ALADIN-HUNEPS data, the first 43 days are

not included in the evaluation period (27 June 2012 – 31 March 2013) in order to compare

all models over equal training periods.

Figure 1 graphically illustrates the resulting combination parameters for the LP, LP-PI,

SLP and BLP methods. Here, the BMC method is excluded as the parameters vary over the

random draws of the algorithm and do not allow for a straightforward summary. For both

data sets, the estimated weight parameters are generally very similar for all methods, with

minor deviations for the LP-PI and BLP approaches. The spread-adjustment parameter c

in the SLP method does not vary much over time, whereas the α, β parameters in the BLP

approach fluctuate much more rapidly.

Table 1 shows the mean CRPS values for all post-processing models and combination

approaches for both data sets. All post-processing and combination methods substantially

improve the raw ensemble forecasts. Among the post-processing models, the full TN-LN

mixture model performs best, and the ranking of the TN and LN model depends on the

data set at hand. For the UWME data, all forecast combination methods outperform the

individual TN and LN component models, but are unable to compete with the TN-LN

mixture model. The relative differences between the combination approaches are small,

with the BLP and BMC approaches showing slightly better results. By contrast, none

of the combination methods is able to perform better than the TN EMOS model for the

ALADIN-HUNEPS data, and the SLP, BLP and BMC approaches result in slightly worse

forecasts. Note that the BLP and SLP methods result in worse forecasts compared to the

LP approach even though the latter arises as a special case for α = β = 1 and c = 1.
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A potential explanation for these observations is the danger of over-fitting in choosing the

optimal combination parameter values in the training sample that might not be optimal for

the corresponding out of sample evaluation set. Further, the ALADIN-HUNEPS data set

is comprised of only 10 observation stations. The training sets thus contain fewer forecast

cases compared to the UWME data which might favor combination methods with a lower

number of parameters.

To assess the variability of the observed score differences and the statistical significance

of these findings, we utilize moving block bootstrap resampling (Künsch, 1989) and Diebold-

Mariano (DM; Diebold and Mariano, 1995) tests described in the following. Both approaches

allow to account for the temporal dependencies in the forecast errors. For a pair of forecast

methods F1, F2, denote the vector of CRPS differences by (d1, . . . , dn), with

di(F1, F2) = CRPS(F
(i)
1 , xi)− CRPS(F

(i)
2 , xi),

where F
(i)
j denotes the forecast distribution Fj, j = 1, 2, for forecast case i = 1, . . . , n in

the evaluation set, and xi denotes the corresponding observation.

The moving block bootstrap resampling proceeds as follows: Randomly draw a starting

date t ∈ {1, . . . , T − b+1}, where T denotes the number of days in the evaluation set, and

b is the block length. Then select all entries of (d1, . . . , dn) that correspond to any of the

b consecutive days starting at t, i.e. select entries from all observation stations made at

days t, t+ 1, . . . , t+ b− 1 and compute the mean value of this subset of (d1, . . . , dn). This

procedure is repeated M times, and we subsequently assess the proportion of bootstrap

resampling repetitions with negative mean score differences indicating a superior predictive

performance of F1.

Figure 2(a) graphically summarizes the results of the block bootstrap resampling with

a block length of b = 50 days, and M = 10 000 repetitions. Note that the size of the

individual bootstrap samples thus differs for the two data sets due to the different number

of observation stations. For the UWME data illustrated in the upper triangle, the differ-

ences between the component models and the combination approaches are clearly visible

and much more pronounced compared to the differences among the combination approaches

where no clear trend can be detected. For the ALADIN-HUNEPS data (lower triangle),

the combination methods exhibit some differences. In particular, the BLP approach per-

forms considerably worse compared to the LP and LP-PI methods. For both data sets, the

superiority of the full TN-LN mixture model forecasts is clearly visible.

DM tests are formal statistical tests of equal predictive performance based on the test

statistic

tn =
√
n
d̄

σ̂d
,

where d̄ = 1
n

∑n
i=1 di and σ̂d is an estimator of the asymptotic variance of the score

difference. Under standard regularity conditions, tn is asymptotically standard normal

under the null hypothesis of equal predictive performance of F1 and F2. Negative values
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Figure 2: Summary of (a) block bootstrap resampling and (b) DM test results for both

wind speed data sets and all pair-wise comparisons of forecasts. In both plots, the upper

triangle contains results for the UWME data, and the lower triangle contains results for the

ALADIN-HUNEPS data. In (a), the entry in row i and column j contains the proportion

of bootstrap repetitions with negative mean score differences between F1 and F2, where F1

is the forecast of the model in the i-th row, and F2 is the forecast of the model in the j-th

column, color-coded so that green (red) entries indicate superior performance of the model

in the corresponding row (column). Similarly, values of the DM test statistic tn are shown

for comparisons of F1 and F2 in (b). The values of tn are color-coded by the corresponding

p-values of the test statistic under the null hypothesis of equal predictive performance.

of tn indicate superior predictive performance of F1, and F2 is preferred if tn is positive.

As an estimator σ̂2
d , we use the sample autocovariance up to lag τ − 1 in case of τ step

ahead forecasts, see Baran and Lerch (2016) for details.

The corresponding results are summarized in Figure 2(b). Similar to the results of the

block bootstrap resampling, the DM tests reveal a high level of significance of the score

differences between the component models and the forecast combination approaches for the

UWME data (upper triangle). By contrast, the score differences among the combination

methods are not significant. Similar results can be observed for the ALADIN-HUNEPS

data (lower triangle), where, however, the differences between the component and combined

models are generally smaller and less significant. The only significant score differences among

the combination methods are observed between BLP and the approaches based on the linear

pool.

The improved predictive performance of the forecast combination approaches compared

to the individual EMOS models based on single parametric distributions can be partially ex-

plained by the improved calibration of the predictive distributions that will be demonstrated
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Figure 3: Verification rank histogram of raw ensemble forecasts and PIT histograms for

post-processed and combined forecast distributions for the UWME data.
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in the following. Calibration of the raw ensemble and the post-processed forecasts can be

assessed graphically with the help of verification rank and probability integral transform

(PIT) histograms, respectively. The former is the histogram of ranks of the validating ob-

servations with respect to the corresponding ensemble predictions computed for all forecast

cases (see e.g. Wilks, 2011, Section 7.7.2). For a calibrated ensemble, the observations and

the ensemble forecasts should be exchangeable, resulting in a uniform verification rank his-

togram. The PIT is the value of the predictive CDF evaluated at the verifying observation

(Raftery et al., 2005), PIT histograms can therefore be seen as continuous counterparts of

verification rank histograms. The visual inspection of deviations from the desired uniform

distribution of the verification ranks and PIT values allows to further detect possible reasons

of miscalibration (Gneiting et al., 2007).

A verification rank histogram of the raw ensemble forecast and PIT histograms of the

post-processed and combined forecast distributions for the UWME data are shown in Fig-

ure 3. Note that for the BMC forecasts PIT values are calculated for all 50 predictive CDFs

of a given forecast case. Compared to the U-shaped verification rank histogram of the under-

dispersive raw ensemble forecasts where the observation takes too many high and low ranks,

all post-processing approaches are better calibrated which is indicated by smaller deviations

from the desired uniform distribution of the PIT values. The calibration of the individual

TN and LN component models is not perfect, with the TN model showing systematic over-

predictions of high wind speeds, and the LN model over-predicting low wind speed values.

By contrast, all forecast combination approaches are able to correct for these deficiencies

and are well calibrated, similar to the full TN-LN mixture model. The differences in cal-

ibration among the combination methods are small, as the PIT histograms are virtually

indistinguishable. The results for the ALADIN-HUNEPS data are qualitatively similar, the

corresponding Figure 6 is shown in Appendix A.

5.2 Precipitation

Similar to wind speed, the post-processing models introduced in Section 3 are estimated

using optimum score estimation approaches. The coefficients of the EMOS models (3.4) and

(3.6) based on single CSG and GEV distributions are obtained using rolling training periods

of lengths 70 (UWME) and 55 days (ALADIN-HUNEPS), which ensures comparability with

Baran and Nemoda (2016).

Given the estimated coefficients of the CSG and GEV component models, the parameters

of the two-step combination approaches are estimated as described for wind speed. For the

UWME data, forecast cases from calendar year 2007 are again used to obtain training periods

of equal length for all models, whereas the first 55 days are excluded from the evaluation

period of the ALADIN-HUNEPS data. In this way UWME forecasts are again validated

on data from calendar year 2008, whereas the verification period for ALADIN-HUNEPS

precipitation forecasts is 21 January – 25 March 2011.
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Figure 4: Illustration of mixture weights and other combination parameters for the LP, LP-

PI, SLP and BLP combination methods over the corresponding verification periods for both

precipitation data sets.
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Table 2: Mean CRPS for probabilistic precipitation accumulation forecasts of the raw en-

semble, the CSG and GEV EMOS models, and the forecast combination approaches.

Forecast UWME ALADIN-HUNEPS

Ensemble 2.884 0.269

CSG 2.198 0.258

GEV 2.227 0.264

LP 2.189 0.259

LP-PI 2.189 0.262

SLP 2.190 0.263

BLP 2.184 0.261

BMC 2.288 0.267

The estimates of the combination parameters over the evaluation period are shown in

Figure 4. The mixture weights of the LP, LP-PI, SLP and BLP approaches exhibit relatively

similar developments over time, and the spread-adjustment parameter c shows slightly

higher variability compared to the wind speed forecasts.

Mean CRPS values for all post-processing models and forecast combination methods for

both data sets are shown in Table 2. Compared to wind speed, the relative improvements

of both EMOS models over the raw ensemble forecasts are smaller, particularly for the

ALADIN-HUNEPS data. This observation is in line with various comparative studies of

post-processing models for different variables (see for example Hemri et al., 2014). The

CSG model outperforms the GEV model, and in case of the UWME data, the predictive

performance is further improved by combining the forecasts via the LP, LP-PI, SLP and

BLP approaches which show small relative differences. In light of the larger relative score

differences in favor of the CSG method it is worth noting that the estimated mixture weights

of the CSG component in these combination approaches are between 0.3 and 0.7 for a large

number of forecast cases, see Figure 4. As observed for wind speed, none of the combination

methods is able to outperform the best component model for the ALADIN-HUNEPS data.

Forecasts produced by the BMC method are worse than both component models for both

data sets and only marginally better than the raw ensemble forecasts in case of the ALADIN-

HUNEPS data.

The variability and statistical significance of the observed score differences is again as-

sessed using moving block bootstrap resampling and DM tests with the setup described

above. The results are summarized in Figure 5. For the ALADIN-HUNEPS data, the block

bootstrap resampling indicates clear differences between the raw ensemble forecasts and all

post-processing and forecast combination approaches. Further, the GEV model forecasts

are substantially improved by the LP, LP-PI, SLP and BLP combination methods. These
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1.00 0.00 1.00 NA 0.69 0.50 0.51 1.00

1.00 0.00 NA 0.00 0.11 0.27 0.15 0.94

1.00 NA 0.80 0.06 0.55 0.39 0.38 1.00

NA 0.00 0.01 0.00 0.00 0.00 0.00 0.28

 < 5%

 < 10%
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 > 75%
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 > 95%

F2
F

1

BMC

BLP

SLP

LP−PI

LP

GEV

CSG

ENS

BMCBLPSLPLP−PILPGEVCSGENS

−0.20 2.01 0.71 1.95 3.21 0.99 1.76 NA

−0.81 1.23 −1.07 1.02 −0.19 −1.15 NA <−5.00

−0.56 1.32 −0.30 1.20 0.49 NA 2.19 <−5.00

−0.70 1.07 −0.86 0.83 NA −0.19 1.21 <−5.00
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p < 0.01

p < 0.05

p < 0.1

not signif.

p < 0.1

p < 0.05

p < 0.01

Figure 5: Summary of (a) block bootstrap resampling and (b) DM test results for both

data sets and all pair-wise comparisons of forecasts similar to Figure 2, but for precipitation

accumulation. In both plots, the upper triangle contains results for the UWME data, and

the lower triangle contains results for the ALADIN-HUNEPS data.

differences are less pronounced in the DM tests where none of the score differences show a

high level of significance. For the UWME data, the differences between the individual post-

processing models and the forecast combination approaches are more pronounced, specifically

in terms of the DM tests. The score differences between the LP, LP-PI, SLP and BLP ap-

proaches are not significant, however, as expected the BMC forecasts perform substantially

worse compared to all alternatives for both data sets.

In contrast to the wind speed forecast discussed above, the EMOS models for precipi-

tation accumulation provide relatively well calibrated forecasts for both data sets, and the

forecast combination methods only result in slightly improved calibration. The correspond-

ing verification rank and PIT histograms are provided in Figures 7 and 8 in Appendix A.

6 Conclusions

We have investigated the feasibility of using forecast combination approaches to improve

the predictive performance of statistical post-processing models based on single parametric

families. In general, the results strongly depend on the data set at hand, and forecast com-

bination may either provide slight improvements, or even result in worse forecasts compared

to the best mixture component. However, none of the forecast combination methods is able

to outperform a jointly estimated full TN-LN mixture EMOS models for wind speed.

The relative improvements obtained through forecast combination are larger in the case of
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wind speed where the PIT histograms reveal complementary systematic errors in calibration.

All combination approaches result in calibrated forecast distributions and are thus able to

correct the over-prediction of high (LN) or low (TN) wind speed values. The differences

among the combination approaches are generally small, except for precipitation accumulation

where the BMC method leads to considerably worse forecasts. The provisional adaptation

described in Section 4.3 fixes problems that occurred in a naive application of the BMC

sampling algorithm. However, the worse results compared to the competing combination

methods call for an extension of the methodology towards forecast distributions with point

masses that is beyond the scope of the present paper.

Compared to previous work of Möller and Groß (2016) and Bassetti et al. (2017), we

generally do not find as substantial differences in predictive performance between the in-

dividual EMOS models and the combination approaches. Further, compared to the case

study of wind speed data in Bassetti et al. (2017) the LP and BMC method show much less

significant differences. It might thus be interesting to investigate which features of the data

and mixture component models are beneficial for which of the combination approaches.

The larger relative improvements of forecast combination for the UWME data sets may

indicate that longer training periods are generally better suited to determine the combination

parameters. Therefore, training sets expanding with time might improve the predictive

performance. Further, local estimation of the combination parameters using only data from

the single observation station of interest, or alternative similarity-based semilocal approaches

(Lerch and Baran, 2017) might be better able to account for locally varying station-dependent

features of the forecast errors of the individual EMOS models. Here we used equal regional

training periods for all models to ensure direct comparability, and leave such extensions for

future work.

The BLP and SLP methods result in worse forecasts compared to the LP approach for

both ALADIN-HUNEPS data sets even though the latter arises as a special case. As dis-

cussed above, this is likely due to over-fitting in choosing the optimal combination parameter

values in the training sample that might not be optimal for the out of sample evaluation

period. The LP method may be more robust in this sense due to the smaller number of

estimated parameters.

We have proposed a plug-in variant of the linear pool that utilizes the most recent

EMOS coefficient estimates to replace those in the training period used to determine the

mixture weight, and thereby reduces the number of required numerical integrations to a

single one. Despite discarding potentially useful information for forecast combination, the

LP-PI approach results in very similar mixture weights and predictive performance compared

to the traditional linear pool, and may thus offer an alternative option if the computational

costs of estimating the mixture weight are high.

Forecast combination methods may also offer a new approach to post-processing multi-

model ensemble predictions such as the TIGGE forecasts (Swinbank et al., 2016). Instead of
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utilizing forecasts from all models as input of an EMOS model based on a single parametric

distribution it might be helpful to post-process the ensemble predictions of the different

models independently, and then subsequently combine the forecast distributions with the

approaches discussed above. A further interesting starting point for future research might

be the application of the combination methods to other weather variables such as total cloud

cover (Hemri et al., 2016).

An entirely different approach to post-processing that completely circumvents the prob-

lem of choosing suitable parametric forecast distributions is the use of non-parametric meth-

ods, see for example Hamill and Whitaker (2006); Flowerdew (2014), and Taillardat et al.

(2016). However, these approaches suffer from the limitation that the support of the forecast

distribution is restricted to the range of observed values in the training sets. Further, these

methods require sufficiently long training periods, and generally lead to high computational

costs.
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Künsch, H.R., 1989. The jackknife and the bootstrap for general stationary observations.

Ann. Stat. 17, 1217–1241.

http://www2.mmm.ucar.edu/mm5/documents/mm5-desc-doc.html
http://www2.mmm.ucar.edu/mm5/documents/mm5-desc-doc.html
https://cran.r-project.org/web/packages/scoringRules
https://cran.r-project.org/web/packages/scoringRules
https://arxiv.org/abs/1608.06802


29

Lerch, S. and Baran, S., 2017. Similarity-based semilocal estimation of post-processing mod-

els. J. Roy. Stat. Soc. C 66, 29–51.

Lerch, S. and Thorarinsdottir, T.L., 2013. Comparison of non-homogeneous regression mod-

els for probabilistic wind speed forecasting. Tellus A 65, 21206.

Matheson, J.E. and Winkler, R.L., 1976. Scoring rules for continuous probability distribu-

tions. Manag. Sci. 22, 1087–1096.

Molteni, F., Buizza, R., Palmer, T.N. and Petroliagis, T., 1996. The ECMWF ensemble

prediction system: Methodology and validation. Q. J. R. Meteorol. Soc. 122, 73–119.
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Figure 6: Verification rank histogram of raw ensemble forecasts and PIT histograms for

post-processed and combined forecast distributions for the ALADIN-HUNEPS wind speed

data.
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Figure 7: Verification rank histogram of raw ensemble forecasts and randomized PIT his-

tograms for post-processed and combined forecast distributions for the UWME precipitation

data. Note that to account for the discrete-continuous nature of the models for precipita-

tion accumulation, in case of zero observed precipitation the PITs are randomized in that

a random value is chosen uniformly from the interval between zero and the probability of

no precipitation (Sloughter et al., 2007). Similarly, in case of precipitation accumulation

zero observations are randomized among all zero forecasts to compute the verification rank

histograms for the raw ensemble forecasts.
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Figure 8: Verification rank histogram of raw ensemble forecasts and randomized PIT his-

tograms for post-processed and combined forecast distributions for the ALADIN-HUNEPS

precipitation data.
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