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Abstract

The optimum design is applied to cost minimization of two types of welded steel structures in fire. Both
unprotected and protected structures are investigated. The compressed rod of welded square box cross-
section is designed to overall and local buckling. The bent beam of welded box section should fulfil the
stress, deflection and local buckling constraints. The cost function consists of cost of material, assembly,
welding, painting and fire protection. In the unprotected case the critical temperature method is used with
formulae given in Eurocode 3. At both structures the protected one is cheaper than the unprotected. This

difference is caused by the significant difference in thicknesses.

Keywords

Structural optimization, welded structure, fire resistant design, stability, cost calculation

1. INTRODUCTION
Requirements for modern load-carrying structures are the safety, fitness for production and economy. In
the optimum design procedure the safety and fitness for production are guaranteed by fulfilling of design

and fabrication constraints, and the economy is achieved by minimization of a cost function.

It is possible to design a lot of structural versions. The most suitable version can be selected by cost
comparison. For the purpose of economic design of welded steel structures a relatively simple cost
calculation method is developed [1, 2, 3]. The cost function consists of cost of material, assembly,

welding and painting.



Since the fire resistance of steel structures needs protection, the cost of various protection methods is also
calculated using numerical data from industry.

The search for better solutions is performed by change of structural characteristics such as material, type
of structure, profiles, main dimensions, fabrication technology and connections.

In general, the optimum design needs the solution of a constrained minimization of one or more objective
nonlinear multivariable functions. Therefore the problems can only be treated numerically and the results
are valid in general. In spite of this, when the numerical data of problems are selected as near as possible
to industrial application, the results are very useful for designers to find the most economic and
competitive structural versions.

In our research work we have worked out a lot of numerical problems of various metal structures. Our
aim is to show how to apply the economic design for fire-resistant welded steel structures. The
catastrophic damages and failures show that steel structures are very sensitive to high temperatures.
Therefore special design rules have been elaborated in relevant Eurocodes [4, 5, 6], which are applied in
the present paper.

Two numerical problems are solved as follows: (1) a centrally compressed rod of welded square box
cross-section, (2) a welded box beam loaded in bending and shear.

Costs of unprotected and protected versions are compared to each other. Since only optimized versions

can be compared, the both versions are optimized for minimum cost.
2. THE CRITICAL TEMPERATURE METHOD

Figure 1 shows the temperature versus time for fire gas and for a steel structure. The gas temperature can

be calculated as
@g :20+34510g(i—§+1j (1)

where 7'is the time in s.
The temperature of steel structure in a time interval is given by
40, = Ay Poes. AT (2)
Voc.pn
where ¢, is the specific heat of steel,
c, =425+7.73x10"'@, —1.69x107° O +2.22x10° O’ 3)

pm 18 the unit mass of steel, A4,,/V is for rods of constant cross-section the ratio of perimeter/cross-section
area, for a square box section
AV =1/t 4)

The design value of the net heat flux per unit area is



hnetd = hnetc + hnetr (5)
where the net convection heat flux is
h. =250, -06,) (6)
and the net radiative heat flux is
ey = 0.8x5.67x10°8|(@, +273) - (0, +273) | (7)
5.67x107 is the Boltzmann constant.
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Figure 1. The critical temperature method
The critical temperature is given by
1
® =3919/n —————-1|+482 8
¢ [0.9674;{3'833 j ®)
where
to = Nu/No )

is the utilization factor, N; and N, are the limiting compression forces in the case of fire and for ambient
temperature, respectively.
The fire resistance time R corresponding to the critical temperature can be obtained by step-by-step using

eqns. (1)-(9). Since until 600°C the parameters in eqn. (2). can be approximated by three linear intervals,
we use intervals of

@al = @cr /3’0112 = 2@cr /3’ @aS = @cr (10)

In this case the final R =} R; is calculated by three iterations using a MathCad program.
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3. A CENTRALLY COMPRESSED ROD WITH PINNED ENDS OF WELDED SQUARE BOX
CROSS-SECTION
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Figure 2. Compressed rod of welded square box section

3.1. Overall buckling constraint for ambient temperature

N<N, (12)
N, =4 (13)
the buckling factor
1 1 - _
g=———p=—|1+a(l-02)+ 7] (14)
b -2 2
where
I:i,zzﬁ,rz i,zEzzz £ (15)
Ay r A Sy
In the case of a square box section
A=4bt (16)
3 3
1= (17)

3 6



For fire design o = 0.49.

3.2. Overall buckling constraint in fire
N<N,,
Nﬁ.t = ZﬁAky@)ify /7Mﬁ

mi =1

tpm—— g = (14, + R2)

=
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Factors of k,¢; and kge; can be approximated by linear intervals of

kyoo =1 if 20°C < ®, <400°C

- 500-6

ky@l

6000,

koy =——%0.31+0.47 if 500°C <@, <600°C
100

and

Koo =1 if 20°C <@, <100°C

500-@

kpoy = ——%0.4+0.6 if 100°C <@, <500°C
400

600-6

kpoy =————20.29+0.31  if 500°C < ®, <600°C

100
3.3. Local buckling constraint

For ambient temperature

b/t<42¢,6=,[235/F,

For fire Eurocode 3 proposed a decreased value of

b/t<0.8x42¢ =33.6¢

According to the experiments of Knobloch [7] and calculations of Heidarpour & Bradford [8]

b/t<0.6x42¢ =252¢

100 «0.22+0.78 if 400°C <®, <500°C
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3.4. Cost function

The general formula for the welding cost is as follows [2, 3,4]:

wi“wi ™ pitwi

szkW[q@ kpV +1.3).C,.alC,L j (31)

where £, [$/min] is the welding cost factor, C; is the factor for the assembly usually taken as C; = 1
min/kg’>, @ is the factor expressing the complexity of assembly, the first member calculates the time of
the assembly, x is the number of structural parts to be assembled, pV is the mass of the assembled
structure, the second member estimates the time of welding, C, and n are the constants given for the
specified welding technology and weld type, Cp is the factor of welding position (for downhand 1, for

vertical 2, for overhead 3).
Furthermore C,; is the factor for the welding position (download 1, vertical 2, overhead 3), L,, is the weld
length, the multiplier 1.3 takes into account the additional welding times (deslagging, chipping, changing

the electrode).

Material cost

K, =k,pV,V=AL kA6 =1.08/kg (32)
Welding cost for 4 fillet welds of GMAW-C (Gas metal arc welding with CO,) [4]
K, =k, (C.O~KpV +13C,a2L, )k, =1.08 /min: C; = 1.0 min/kg"* (33)

The factor of complexity of assembly is @, = 2, number of assembled parts is ¥ = 4, fillet weld size a,, =
0.3¢, welding coefficient C,, = 0.3394x10’3, length of welds L,, = 4L.

Painting cost

-6 2 _
K, =kpS,kp =28.8x10" $/mm-, S=4bL (34)
Total cost
K=K,+K, +K, 35)

3.5. Numerical data and results

Centric compression force for fire N = 10’ [N]. This load is calculated from the actual ones using a
reduction factor 75 Rod length L = 6 m. Yield stress of steel f, = 235 MPa.
The optimization is performed by a systematic search using a MathCad program. Results are given in

Tables 1. and 2.



Table 1. Results for the unprotected structure for a fire resistance time R = 30 min. Optimum is marked

by bold letters
bmm tmm 10°4 K$ 6,°C Rmin 107N;7[N]
500 38 76.00 5541 556 312 1.013
500 37 7400 5372 551 302 0.977
510 37 7548 5451 555 305 1.003
520 36 7488 5359 554 299 0.856
530 35 7420 5265 553 294 0.857

Table 2. .Results for protected structure for fire resistance time R = 60 min. Optimum is marked by bold
letters. K is the cost according to eqn. (35) without the cost of protection. The result in the last row does

not fulfil the local buckling constraint

bmm tmm 104 KS$  10'Nur[N]  bit

630 20 5040 3385 1.012 31.5
660 19 50.16 3357 1.014 34.7
700 18 50.40 3361 1.028 38.9
720 17 4896 3271 1.003 42.4

3.6. Cost including protection

The following approximate cost data are from Hungarian industry.
(a) Intumescent paint ,,Polylack™ [9]

Cost factor k,; = 60 $/m?, superficies : § = 4x0.66x6 = 15.84 m
K, =k, S=950%

K, =K-K,+ K, =3357-456+950=3851§

Cost without protection K = 5451 §, thus, the cost savings is 29%.

(b) fire resistant plasterboard ,,Rigips” of thickness 12.5 mm [10]

Cost factor k,> = 5.0 $/m’, K,» = k,28=79.0 $, labour cost K, =70 $
K>=3357-456+79+70 =3050 $



Cost without protection K = 5451 $, thus, the cost savings is 44%.

4. A SIMPLY SUPPORTED UNIFORMLY LOADED WELDED BOX BEAM

Optimum design of this structure is treated for four cases as follows: unprotected and protected beam with
stress or deflection constraint. In Equations the following subscripts are used: unprotected stress
constraint o, unprotected deflection constraint w, protected stress constraint cl, protected deflection

constraint wi.
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Figure 3. A simply supported welded box beam

4.1. Optimum design

It is sufficient to solve the optimization problem for minimum cross-section area instead of minimum
cost, since the welding cost of four longitudinal fillet welds has no significant effect on the optimum
beam dimensions.

The formulation of the optimum design of a box beam is as follows: find the optimum values of the
dimensions 4, ., b, ty to minimize the whole cross-section area

A=ht, +2bt, (36)

and fulfil the following constraints:

(a) stress constraint

o =£S , or W 2£=WO 37
max W y X
X yl
3 2 2
1Y=h tW+2btf(ﬁj ;W;L:h b +bt,h (38)
} 6 2 h/?2 3 ‘

The bending moment is expressed as



M=plL/8,

the self mass of the sectorial plate is also taken into account, so

p.=15p+1.1pA, p;=7.85x10" N/mm’.

(b) deflection constraint

5p.L*
Wmax = _W S Wadm = £ ; C\/V = pd ; ¢ = 300
y 384FE
or
5p L
[>1, =P
384Ew,

For the deflection constraint the load intensity is calculated without safety factors, thus

p,=p+pA

(c) constraint on local buckling of webs

h Si; or t,=2p0h
t, /2 p

w

where 1/f = 698;l/ﬂﬁ = 698aﬁ,5= %

y

For unprotected beam ay; = 0.6, for protected one a; =1

(d) constraint for local buckling of compressed upper flange

b 1

t o

J Ji

Considering the local buckling constraint as active the stress constraint can be written as

3
W:,b’h +bt h =W,
3 P

substituting bt from eqn. (36) into one obtains

W, 48n°
h 3

A=

From the condition

4

-0
dh

one obtains the optimum value of / from the stress constraint

N
4p

Similarly from deflection constraint

—S—:425,L:425aﬁ, a;=0.6 or tfzéb

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(43)

(49)

(50)



ho=yfPloy 9 (51)
p L

The advantage of this optimization method is that the other characteristics of the optimum cross-section

can be expressed by #, or A,,. These characteristics are summarized in Table 3.

Table 3. Characteristics of optimum box sections

Stress constraint Deflection constraint
h, =3/0.75W,/ B h, =431,/
t1170/2:ﬂh0 t\'VW/zzﬂhW
A, =480 =3/36W2 A, =8pn’/13=.64p41,/3
b, =h_p/d6 b, =h,\B1(30)
tfa = ébo‘ tfw = ébw
I = 2,Bh;1 /3 I, = ,th./3
W, =4ph W, =2ph/3

Numerical data
p=90N/mm, L=15m, f,=235MPa,f,;=1/1.1 =213.6 MPa.

4.2. Optimum design of unprotected beam with stress constraint

Factored load in ambient temperature

p, =15p+1.1p A, (52)
Factored load in fire

P =1.5p+11p A, 4, =4ﬂﬁhj (53)
Bending moment for fire

M, =p,L"/8 (54)
Bending moment capacity in ambient temperature

M, =W, [ (55)

The utilization factor

a (56)

The ratio of perimeter/cross-section area for a box beam



1+\/ﬁ
ﬂ 2(hcr +b0) _ o — 61.4186‘(11» (57)

4 A, 2B,h, h

o

The search for the optimum #, is performed according to section 2 using the critical temperature method.
The result for fire resistance time R = 30 min is 4, = 1230 mm. The other data for the beam are given in
Table 4.

The maximum stress

O o = (58)

xXo

where W,, is calculated according to eqn. (38).

The maximum deflection

5p,4. L
W, = _Puioct (59)
384k, oEI

where kgg is calculated according to eqn. (27),

pwﬁo‘ :p+p1A0' (60)
For the cost calculation eqns. (32)-(35) are used with the following changes:

t

V.=ALS, =2Lh,+b,), a,, = 0.3% (61)
The costs are calculated similar to eqns. (32, 33, 34) with the following differences:

K,=k,pV,, K,=k,S, (62)

4.3. Optimum design of the protected beam with stress constraint

The optimization is performed using Table 3. Thus, subscripts of o1 are used. The optimum height of the

beam is 4, =990 mm.

Pal’
Umaxol = SVVIXO.I ’pol :1'5p+1'1p1Ao-l (63)
5Pyl
_—1' pwo1=p+p1Aol (64)

w =
meel 384FT

The costs are calculated similar to section 3.6.

It should be mentioned that the self mass of the protection can be neglected. (The specific mass of
plasterboard protection Rigips of thickness 12.5 mm is 10.5 kg/m?, and that of an intumescent painting of
thickness 2 mm is 3.5 kg/m>.)

The results are given in Table 4.



Table 4. Results for unprotected and protected beams with stress constraint. Dimensions in mm, stresses

in MPa, costs in $

Unprotected Protected
h,=1230 her =990
b, =960 by =775
twe = 60 twor = 30
ti, = 38 tip1 = 19
Omaxe = 69 Omaxo1 =202
Wnaxo = 22 Winaxor = 31
K, = 17280 K1 = 6965
K, =2670 K, =870
K,=1892 Kyro =3177, Kpro1 =476
K=121840 K;=11010, K, = 8311

Results in Table 4 show that the protected beam is much more cheaper than the unprotected one. The

protection with plasterboard Rigips is cheaper than the Polylack painting.
4.4. Optimum design of unprotected beam with deflection constraint

Formulae in the right side column of Table 3 with subscript w are used. Eqns. (52)-(55) are used with

subscript w instead of 6. eqn. (56) is changed to

Puwi _ Ealop _ k .6 (600°) _031

- =0.517 65
T, B, 6 (65)
Eqn. (57) is changed to
31 1+ ﬁ
A, 2(h, +b,) 35 ) 75.065a, o
V B AW B ﬂhw - hw

The critical temperature according to eqn. (8) is 579°C.

The optimum design procedure according to section 2 for fire resistant time R = 30 min results in 7,0y =
1500 mm.

In eqns. (58)-(62) the subscripts ¢ are changed to w.

The optimum beam dimensions and characteristics are summarized in Table 5.



4.5. Optimum design of the protected beam with deflection constraint

The optimization is performed using Table 3. Thus, subscripts w/ are used. The optimum height of the
beam is A,; = 1050 mm. In eqns. (63) and (64) subscripts c1 are changed to w/.

Results are given in Table 5.

Table 5. Results for unprotected and protected beams with deflection constraint. Dimensions in mm,

stresses in MPa, costs in $

Unprotected Protected
hy, =1500 hywi = 1050
b,, =680 by =475
tow = 74 Ly = 32
thw =27 thw1 =19
Omaxw =15 Omaxwi =255
Winaxw = 21 Winarw = 37

K, =17390
K, =3789
K,=1884
K=23070

It can be seen that the protected beam does not fulfil the stress constraint (255>213 MPa), thus the costs

are not calculated for this case.

Comparison of Tables 4 and 5 shows that the deflection constraint results in a more expensive beam than

that with the stress constraint.

Conclusions

A compressed rod of welded square box cross-section is designed for overall and local buckling. In the
case of a simply supported beam of welded box section loaded by bending and shear the stress, deflection
and local buckling constraints are considered.

In the optimization procedure the systematic search method is used with MathCad program. In the case of
bent box beam the optimum dimensions are derived by an analytical method.

The cost function consists of the cost of material, assembly, painting and fire protection. Two types of

protection are considered: intumescent painting Polylack and plasterboard Rigips.



The fire resistance time is 30 min for unprotected and 60 min for protected structures. The critical
temperature method is suitable for the design using formulae given by Eurocode 3.

In the case of bent beam the structure for stress constraint is cheaper than that for deflection constraint.

In both structures the protected ones are much more cheaper than the unprotected ones. This difference is

caused by the significant difference of section thicknesses.
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