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Abstract 

The optimum design is applied to cost minimization of two types of welded steel structures in fire. Both 

unprotected and protected structures are investigated.  The compressed rod of welded square box cross-

section is designed to overall and local buckling. The bent beam of welded box section should fulfil the 

stress, deflection and local buckling constraints. The cost function consists of cost of material, assembly, 

welding, painting and fire protection. In the unprotected case the critical temperature method is used with 

formulae given in Eurocode 3. At both structures the protected one is cheaper than the unprotected. This 

difference is caused by the significant difference in thicknesses. 
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1. INTRODUCTION 

Requirements for modern load-carrying structures are the safety, fitness for production and economy. In 

the optimum design procedure the safety and fitness for production are guaranteed by fulfilling of design 

and fabrication constraints, and the economy is achieved by minimization of a cost function. 

 

It is possible to design a lot of structural versions. The most suitable version can be selected by cost 

comparison. For the purpose of economic design of welded steel structures a relatively simple cost 

calculation method is developed [1, 2, 3]. The cost function consists of cost of material, assembly, 

welding and painting. 



Since the fire resistance of steel structures needs protection, the cost of various protection methods is also 

calculated using numerical data from industry. 

The search for better solutions is performed by change of structural characteristics such as material, type 

of structure, profiles, main dimensions, fabrication technology and connections. 

In general, the optimum design needs the solution of a constrained minimization of one or more objective 

nonlinear multivariable functions. Therefore the problems can only be treated numerically and the results 

are valid in general. In spite of this, when the numerical data of problems are selected as near as possible 

to industrial application, the results are very useful for designers to find the most economic and 

competitive structural versions. 

In our research work we have worked out a lot of numerical problems of various metal structures. Our 

aim is to show how to apply the economic design for fire-resistant welded steel structures. The 

catastrophic damages and failures show that steel structures are very sensitive to high temperatures. 

Therefore special design rules have been elaborated in relevant Eurocodes [4, 5, 6], which are applied in 

the present paper. 

Two numerical problems are solved as follows: (1) a centrally compressed rod of welded square box 

cross-section, (2) a welded box beam loaded in bending and shear. 

Costs of unprotected and protected versions are compared to each other. Since only optimized versions 

can be compared, the both versions are optimized for minimum cost. 

 

2. THE CRITICAL TEMPERATURE METHOD 

 

Figure 1 shows the temperature versus time for fire gas and for a steel structure. The gas temperature can 

be calculated as 
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where T is the time in s. 

The temperature of steel structure in a time interval is given by 
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where  ca is the specific heat of steel,  

       (3) 36231 102221069110737425 aaaa x.x.x.c ΘΘΘ −−− +−+=

ρm is the unit mass of steel,  Am/V is for rods of constant cross-section the ratio of perimeter/cross-section 

area, for a square box section 

  Am/V = 1/t           (4) 

The design value of the net heat flux per unit area is 
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where the net convection heat flux is 

  ( )agnetch ΘΘ −= 25           (6) 

and the net radiative heat flux is 
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5.67x10-8 is the Boltzmann constant. 

 
Figure 1. The critical temperature method 

 

The critical temperature is given by 
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where   

  μ0  = Nfi/N0           (9) 

is the utilization factor, Nfi and No are the limiting compression forces in the case of fire and for ambient 

temperature, respectively. 

The fire resistance time R corresponding to the critical temperature can be obtained by step-by-step using 

eqns. (1)-(9). Since until 6000C the parameters in eqn. (2). can be approximated by three linear intervals, 

we use intervals of  

  cracracra ,/,/ ΘΘΘΘΘΘ === 321 323        (10) 

In this case the final R = ∑Ri  is calculated by three iterations using a MathCad program. 
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3. A CENTRALLY COMPRESSED ROD WITH PINNED ENDS OF WELDED SQUARE BOX 

CROSS-SECTION 
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Figure 2. Compressed rod of welded square box section 

 

3.1. Overall buckling constraint for ambient temperature 
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the buckling factor  
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In the case of a square box section 
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For fire design  α = 0.49. 

 

3.2. Overall buckling constraint in fire 
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Factors of  kyΘi  and  kEΘi  can be approximated by linear intervals of 

  kyΘ0 = 1            if  200C < Θa <4000C      (22) 
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3.3. Local buckling constraint 

 

For ambient temperature  

  yf/,t/b 23542 =≤ εε          (28) 

For fire Eurocode 3 proposed a decreased value of 

  εε 6334280 .x.t/b =≤          (29) 

According to the experiments of Knobloch [7] and calculations of Heidarpour & Bradford [8] 

  εε 2254260 .x.t/b =≤          (30) 

 

 



3.4. Cost function 

 

The general formula for the welding cost is as follows [2, 3,4]: 
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where kw [$/min] is the welding cost factor, C1 is the factor for the assembly usually taken as C1 = 1 

min/kg0.5, Θ is the factor expressing the complexity of assembly, the first member calculates the time of  

the assembly, κ is the number of structural parts to be assembled, ρV is the mass of the assembled 

structure, the second member estimates the time of welding,  Cw and n are the constants given for the 

specified welding technology and weld type, Cp is the factor of welding position (for downhand 1, for 

vertical 2, for overhead 3). 

 

Furthermore Cpi is the factor for the welding position (download 1, vertical 2, overhead 3), Lw is the weld 

length, the multiplier 1.3 takes into account the additional welding times (deslagging, chipping, changing 

the electrode). 

 

Material cost 

  kg/$.k,ALV,VkK mmm 01=== ρ        (32) 

Welding cost for 4 fillet welds of GMAW-C (Gas metal arc welding with CO2) [4] 

  ( ) min/$.k,LaC.VCkK wwwwcww 0131 2
1 =+= κρΘ : C1 = 1.0 min/kg0.5   (33) 

 

The factor of complexity of assembly is  Θc = 2, number of assembled parts is κ = 4, fillet weld size aw = 

0.3t, welding coefficient  Cw = 0.3394x10-3, length of welds Lw = 4L. 

Painting cost 

  $/mm2, S = 4bL       (34) 610828 −== x.k,SkK ppp

Total cost 

            (35) pwm KKKK ++=

 

3.5. Numerical data and results 

 

Centric compression force for fire N = 107 [N]. This load is calculated from the actual ones using a 

reduction factor  ηfi.  Rod length L = 6 m. Yield stress of steel fy = 235 MPa.  

The optimization is performed by a systematic search using a MathCad program. Results are given in 

Tables 1. and 2. 



 

Table 1. Results for the unprotected structure for a fire resistance time R = 30 min. Optimum is marked 

by bold letters  

b mm t mm 10-3A K $ Θcr 
0C R min 10-7Nfi.T [N] 

500 38 76.00 5541 556 31.2 1.013 

500 37 74.00 5372 551 30.2 0.977 

510 37 75.48 5451 555 30.5 1.003 

520 36 74.88 5359 554 29.9 0.856 

530 35 74.20 5265 553 29.4 0.857 

 

Table 2. .Results for protected structure for fire resistance time R = 60 min. Optimum is marked by bold 

letters. K is the cost according to eqn. (35) without the cost of protection. The result in the last row does 

not fulfil the local buckling constraint 

 

b mm t mm 10-3A K $ 10-7NfitT [N] b/t 

630 20 50.40 3385 1.012 31.5 

660 19 50.16 3357 1.014 34.7 

700 18 50.40 3361 1.028 38.9 

720 17 48.96 3271 1.003 42.4 

 

3.6. Cost including protection 

 

The following approximate cost data are from Hungarian industry. 

 

(a) Intumescent paint „Polylack” [9] 

 

Cost factor kp1 = 60 $/m2, superficies : S = 4x0.66x6 = 15.84 m2 

Kp1 = kp1S = 950 $ 

K1 = K – Kp + Kp1 = 3357 – 456 + 950 = 3851 $   

Cost without protection  K = 5451 $, thus, the cost savings is 29%. 

 

(b) fire resistant plasterboard  „Rigips” of thickness 12.5 mm [10]  

 

Cost factor kp2 = 5.0 $/m2,  Kp2 = kp2S = 79.0 $, labour cost KL = 70 $ 

K2 = 3357 – 456 + 79 + 70  = 3050 $  



Cost without protection  K = 5451 $, thus, the cost savings is 44%. 

 

4. A SIMPLY SUPPORTED UNIFORMLY LOADED WELDED BOX BEAM 

 

Optimum design of this structure is treated for four cases as follows: unprotected and protected beam with 

stress or deflection constraint. In Equations the following subscripts are used: unprotected stress 

constraint σ, unprotected deflection constraint w, protected stress constraint σ1, protected deflection 

constraint w1. 
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Figure 3.  A simply supported welded box beam 

 

4.1. Optimum design 

 

It is sufficient to solve the optimization problem for minimum cross-section area instead of minimum 

cost, since the welding cost of four longitudinal fillet welds has no significant effect on the optimum 

beam dimensions.  

The formulation of the optimum design of a box beam is as follows: find the optimum values of the 

dimensions h, tw, b,  tf  to minimize the whole cross-section area 
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and fulfil the following constraints: 

 

(a)  stress constraint 
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The bending moment is expressed as 
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the self mass of the sectorial plate is also taken into account, so 

  Apps 11.15.1 ρ+= ,  ρ1 = 7.85x10-5 N/mm3.      (40) 

(b) deflection constraint 

  
φ
Lw

I
Cw adm

w
max =≤= ;  

E
Lp

C d
w 384

5 4

= ;  300=φ       (41) 

or 

  
adm

w

Ew
Lp

II
384

5 4

0 =≥           (42) 

For the deflection constraint the load intensity is calculated without safety factors, thus 

  Appw 1ρ+=            (43) 

(c) constraint on local buckling of webs 
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For unprotected beam  αfi = 0.6, for protected one  αfi = 1 

(d) constraint for local buckling of compressed upper flange 
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Considering the local buckling constraint as active the stress constraint can be written as 
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substituting  btf from eqn. (36) into one obtains 
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From the condition 
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one obtains the optimum value of  h from the stress constraint 
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Similarly from deflection constraint 
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The advantage of this optimization method is that the other characteristics of the optimum cross-section 

can be expressed by  hσ or hw. These characteristics are summarized in Table 3. 

 

Table 3. Characteristics of optimum box sections 

Stress constraint Deflection constraint 
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Numerical data 

  p = 90 N/mm,  L = 15 m,  fy = 235 MPa, fy1 = fy/1.1 = 213.6 MPa. 

 

4.2. Optimum design of unprotected beam with stress constraint 

 

Factored load in ambient temperature 

  σσ ρ App 11.15.1 +=           (52) 

Factored load in fire 
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Bending moment for fire 
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Bending moment capacity in ambient temperature 
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The utilization factor 
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The ratio of perimeter/cross-section area for a box beam  
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The search for the optimum hσ is performed according to section 2 using the critical temperature method. 

The result for fire resistance time R = 30 min is  hσ = 1230 mm. The other data for the beam are given in 

Table 4. 

The maximum stress 
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where  Wxσ  is calculated according to eqn. (38). 

The maximum deflection 
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where  kEΘ is calculated according to eqn. (27), 

  σσ ρ Appwfi 1+=           (60) 

For the cost calculation eqns. (32)-(35) are used with the following changes: 
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The costs are calculated similar to eqns. (32, 33, 34) with the following differences: 

  σρVkK mm = ,   σSkK pp =          (62) 

 

4.3. Optimum design of the protected beam with stress constraint 

 

The optimization is performed using Table 3. Thus, subscripts of  σ1 are used. The optimum height of the 

beam is  hσ1 = 990 mm. 
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The costs are calculated similar to section 3.6. 

It should be mentioned that the self mass of the protection can be neglected. (The specific mass of 

plasterboard protection Rigips of thickness 12.5 mm is 10.5 kg/m2, and that of an intumescent painting of 

thickness 2 mm is 3.5 kg/m2.) 

The results are given in Table 4. 



 

Table 4. Results for unprotected and protected beams with stress constraint. Dimensions in mm, stresses 

in MPa, costs in $ 

 

Unprotected Protected 

hσ =1230 hσ1 = 990 

bσ =960 bσ1 = 775 

twσ = 60 twσ1 = 30 

tfσ = 38 tfσ1 = 19 

σmaxσ = 69 σmaxσ1 =202 

wmaxσ = 22 wmaxσ1 = 31 

Km = 17280 Km1 = 6965 

Kw = 2670 Kw1 = 870 

Kp = 1892 Kpro = 3177, Kpro1 = 476 

K = 21840 K1 = 11010, K2 = 8311 

 

Results in Table 4 show that the protected beam is much more cheaper than the unprotected one. The 

protection with plasterboard Rigips is cheaper than the Polylack painting. 

 

4.4. Optimum design of unprotected beam with deflection constraint 

 

Formulae in the right side column of Table 3 with subscript w are used. Eqns. (52)-(55) are used with 

subscript w instead of σ. eqn. (56) is changed to 
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Eqn. (57) is changed to 
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The critical temperature according to eqn. (8) is 5790C. 

The optimum design procedure according to section 2 for fire resistant time R = 30 min results in  hwopt = 

1500 mm.  

In eqns. (58)-(62) the subscripts σ are changed to w. 

The optimum beam dimensions and characteristics are summarized in Table 5. 

 



4.5. Optimum design of the protected beam with deflection constraint 

 

The optimization is performed using Table 3. Thus, subscripts w1 are used. The optimum height of the 

beam is  hw1 = 1050 mm. In eqns. (63) and (64) subscripts σ1 are changed to w1. 

Results are given in Table 5. 

 

Table 5. Results for unprotected and protected beams with deflection constraint. Dimensions in mm, 

stresses in MPa, costs in $ 

Unprotected Protected 

hw =1500 hw1 = 1050 

bw =680 bw1 = 475 

tww = 74 tww1 = 32 

tfw = 27 tfw1 = 19 

σmaxw = 75 σmaxw1 =255 

wmaxw = 21 wmaxw1 = 37 

Km = 17390  

Kw = 3789  

Kp = 1884  

K = 23070  

 

It can be seen that the protected beam does not fulfil the stress constraint (255>213 MPa), thus the costs 

are not calculated for this case. 

 

Comparison of Tables 4 and 5 shows that the deflection constraint results in a more expensive beam than 

that with the stress constraint. 

 

Conclusions 

 

A compressed rod of welded square box cross-section is designed for overall and local buckling. In the 

case of a simply supported beam of welded box section loaded by bending and shear the stress, deflection 

and local buckling constraints are considered. 

In the optimization procedure the systematic search method is used with MathCad program. In the case of 

bent box beam the optimum dimensions are derived by an analytical method. 

The cost function consists of the cost of material, assembly, painting and fire protection. Two types of 

protection are considered: intumescent painting Polylack and plasterboard Rigips. 



The fire resistance time is 30 min for unprotected and 60 min for protected structures. The critical 

temperature method is suitable for the design using formulae given by Eurocode 3. 

In the case of bent beam the structure for stress constraint is cheaper than that for deflection constraint.  

In both structures the protected ones are much more cheaper than the unprotected ones. This difference is 

caused by the significant difference of section thicknesses.  
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