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Abstract. A new and promising optimization technique is introduced: the particle swarm
optimization (PSO). In this evolutionary technique the social behavior of birds is imitated.
The technique is modified in order to be efficient in technical applications. It calculates
discrete optima, uses dynamic inertia reduction and craziness at some particles. The effi-
ciency of the technique is shown in the optimum design of a stringer-stiffened shell under
bending and compression. The PSO is built into an interactive program system, where
several optimization techniques are employed. The program system includes multiobjective
optimization techniques as well. Results show that PSO is a reliable and robust technique
to find optima with highly non-linear constraints. In the cost calculation 2D and 3D curve
fitting is employed to determine the production time.

Mathematical Subject Classification: 74P10
Keywords: particle swarm method, structural optimization

1. Introduction

The optimum design process has the following three main phases:

e preparation: selection of candidate structural versions defining the main char-
acteristics to be changed, formulation of design constraints and cost function,

e solution of the constrained function minimization problem by using efficient
mathematical methods,

e evaluation of results by designers, comparison of optimised versions, formula-
tion of design rules, incorporation in expert systems.

These phases show that structural optimization has the following three main parts:
cost function, design constraints, and mathematical method.

In this paper we focus on the mathematical technique and show its application.

There is a great number of methods available for single objective optimization as it
was described in Farkas & Jarmai [1]. Methods without derivatives include: Complex
[2], Flexible Tolerance, and Hillclimb. Methods with first derivatives include: Se-
quential Unconstrained Minimization Technique (SUMT), Davidon-Fletcher-Powell,
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238 K. Jdrmai

etc. Methods with second derivatives include: Newton, SQP. There are also other
classes of techniques like optimality criteria methods, or the discrete methods like
Backtrack, the entropy-based method [3, 4]. Multicriteria optimization is used when
several objectives are important to find the compromise solution [5].

The general formulation of a single-criterion non-linear programming problem is
the following:

minimize
j('L) T = {11,’1,.’1,'2, ...7..’13N} (11)

subject to
gi(z) <0, j=12,.,P (1.2)
hi(z) =0, i=P-+1,.,P+M (1.3)

f(x) is a multivariable non-linear function, g;(x) and h;(z) are non-linear inequality
and equality constraints, respectively.

In the last two decades some new techniques have appeared, e.g. the evolutionary
techniques, the genetic algorithm [6], the differential evolution technique [7, 8], the
particle swarm algorithm [9], and the ant colony technique [10, 11].

Some other high performance techniques such as leap-frog with the analogy of
potential energy minimum [12, 13, 14], similar to the FEM technique, have also been
developed.

2. The particle swarm. algorithm

2.1. Preliminary remarks. A number of scientists have created computer simula-
tions of various interpretations of the movement of organisms in a bird flock or fish
school [15]. The Particle Swarm Optimization (PSO) algorithm was first introduced

Figure 1. Bird swarm
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by Kennedy [16]. The algorithm models the exploration of a problem space by a
population of individuals; the success of each individual influences their searches and
those of their peers. In our implementation of the PSO, the social behavior of birds
is imitated. Individual birds exchange information about their position, velocity and
fitness, and the behavior of the flock is then influenced to increase the probability of
migration to regions of high. fitness [9]. A bird swarm is visible in Figure 1.

Particle swarm optimization has its roots in two main component methodologies.
Perhaps more obvious are its ties to artificial life in general, and to bird Hocking,
fish schooling, and swarming theory in particular. It is also related, however, to
evolutionary computation, and has ties to both genetic algorithms and evolutionary
programming. Particle Swarm optimizers are similar to genetic algorithms in that
they have some kind of fitness measure and start with a population of potential solu-
tions (none of which are likely to be optimal), and attempt to generate a population
containing fitter members.

In theory at least, individual members of the school can profit from the discoveries
and previous experience of all other members of the school during the search for food.
This advantage can become decisive, outweighing the disadvantages of competition
for food items, whenever the resource is unpredictably distributed in patches. Social
sharing of information among conspeciates offers an evolutionary advantage: this
hypothesis was fundamental to the development of particle swarm optimization.

Millonas [15] developed his models for applications in artificial life, and articulated
five basic principles of swarm intelligence. The first one is the proximity principle:
the population should be able to carry out simple space and time computations. The
second one is the quality principle: the population should be able to respond to quality
factors in the environment. The third one is the principle of diverse response: the
population should not perform its activities along excessively narrow channels. The
fourth one is the principle of stability: the population should not change its mode
of behavior every time the environment changes. The fifth one is the principle of
adaptability: the population must be able to change its behavior mode when it is
worth the computational price.

Basic to the paradigm are n-dimensional space calculations carried out over a series
of time steps. The population is responding to the quality factors pBest and gBest
(gBest is the overall best value, pBest is the best value for a particle). The allocation
of responses between pBest and gBest ensures a diversity of response. The population
changes its state (mode of behavior) only when gBest changes, thus adhering to the
principle of stability. The population is adaptive because it does change when gBest
changes.

The method is derivative free, and by its very nature the method is able to locate
the global optimum of an objective function. Constrained problems can simply be
accommodated using penalty methods.

2.2. Description of the Particle Swarm Algorithm. The system is initialized
with a population of random potential solutions. Each potential solution is assigned
a randomized “velocity’ and is called a particle. (It has position in the space, i.e. it
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is a point in the solution space and it has a velocity. So it is analogous to a particle
in physics which flies around in 3-D space.)

These particles are then flown’ through the (hyper) space of potential solutions.

Each particle keeps track of the coordinates in the hyperspace for which it has
achieved the best solution and its best fitness (call it pBest) so far.

In the global’ version of the optimiser gBest is the overall best value with its
location. This particle is the leader.

At each time step the *velocity’ of each particle is changed (accelerated) towards
its pBest and gBest fellows. This acceleration is weighted by a random term. The
idea is that all the particles swarm towards where the current best solutions are. The
random factor prevents the swarm getting stuck in the wrong place — insects around
a light.

A new position in the solution space is calculated for each particle by adding the
new velocity value to each component of the particle’s position vector.

The user specifies an acceleration constant and a maximum velocity.

Eventually, the swarm of potential solutions hovers around the best solution po-
sition. In the case of a neural net, this best *particle’ would be the optimum set of
weights. (The weights are the particle’s coordinates in the weight hyperspace.)

This method of search is a rival of the Genetic Algorithm in finding reasonable
solutions to NP-hard problems. o

For a given particle, in the N dimension search space:

let z = (21, ..., zx) be its current position,

let v = (v1,...,un) be its current velocity,

let p; = (pi,1,..., pi,w) be the best position it has found so far, ,
let pg = (pg,1, -, Pg,n) be the best position found so far in its neighborhood.

In other words for each particle the following information is available:

(a) It has a position and a velocity,

(b) It knows its position, and the objective function value for this position,

(¢) It knows its neighbors, best previous position and ohjective function value

(variant: current position and objective function value),

(d) It remembers its best previous position.

From now on, to put (b) and (c) in a common frame, we consider that the ‘neigh-
borhood’ of a particle includes this particle itself.

At each time step, the behavior of a given particle is a compromise between three
possible choices: (1) Following its own way, (2) Going towards its best previous
position, (3) Going towards the best neighbor’s best previous position, or towards the
best neighbor (variant).

Define the new velocity by

Va = (v‘li,...,vfll, ...,vflv) , (2.1)
with
v§ = ¢1v4 + rand(0, c2) (Pi,a — xa) + rand(0, c3) (g0 — Ta) , (2.2)
define the new position by
Ty =T+ vg . (2.3)
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Ford=1to N

vy = v + P1(Pi,a — Ta) + 2(Pg,a — Ta) (2.4)
where ¢; and s are said to be “random positive numbers’, without indicating when
the randomness occurs: inside the d-loop (case 1), or before the d—loop (case 2).
Unfortunately, several authors do use case 1, but nevertheless conclude that the new
velocity vector is globally defined by

vg = c1v +rand(0, e2) (p; — ) + rand(0, c3) (py — ) , (2.5)

which is true only for case 2. In this case, all the possible vectors are in the same
plane, as in case 1 they define a complete volume in the search space.

There are different versions of Particle Swarm Optimization algorithms, but they
can all be seen from an information point of view: what kind of information each
particle has access to, and how it uses it (Shi & Eberhard 1998a,b).

2.3. The three methods.

2.3.1. Random search rPSO. The dimensionality of the search space H is N. It is
supposed that H is finite, so that for each dimension % there is a minimum value
Topin,k a0d & Maximum one Teqk. At a time step, the particle uses no (variable)
information at all.

2.3.2. Constricted version ¢PSO. At each time step, the pieces of variable information
a given particle knows and can transmit are:

e its current position x(t) and the corresponding objective function value,
o its best position found so far, p;(¢), and the corresponding objective function
value.

2.3.3. Adaptive version aPSO. At each time step, the pieces of variable information
a given particle knows and can transmit are:

o its current position x(t) and the corresponding objective function value,
e its best position found so far, p;(t), and the corresponding objective function
value,
e its previous position (to estimate its improvement),
e its neighborhood size,
e the swarm size (global information).
To summarize, depending on the algorithm, each particle knows:
» 1no (variable) information at all (rPSO),
e only local information (cPSO),
e a bit more local information and some global information (swarm size) (aPSO).

Previously, the PSO algorithm was applied to analytical test functions, mostly univari-
ate or bivariate without constraints [17]. In addition, multimodal problem generators
were described by Kennedy & Spears [17]. Kennedy [18] used the PSO as an opti-
mization paradigm that simulates the ability of human societies to process knowledge.
The algorithm models the exploration of a problem space by a population of individ-
vals; individuals’ successes influence their searches and those of their peers. There
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were attempts to improve the efliciency of the PSO by hybridising the algorithm with
various other search methods [18, 19].

Lately, the PSO was successfully applied to the optimum shape and size design of
structures by Fourie & Groenwold [20 , 21, 22]. An operator, namely craziness, was re-
introduced, together with the use of dynamic varying maximum velocities and inertia.
An attempt was also made to optimize the parameters associated with the various
operators in the case of generally constrained non-linear mathematical programming
problems [23].

numbers in binary l.] input series of discrete t=1 ggfm?fd
system from G to 2" values, x,, 5, values
0= 15 XG check ditferent
j=1 | variation of discrete
i=1..n values
£(x) | p=1 H p,=2 }—-__-]
#9s0 >
1
Y
<_ L) <s,, b=x, Spae = (%)
- -
—Le=ert]

output final values of discrete
variables final function value

O

Figure 2. Flow chart of secondary discretization
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3. Discretization after continuous optimization

To make the search more practicable it is advisable to use discrete member sizes. After
continuous optimization a secondary search is necessary to find discrete optimum sizes
in such a way that not only the explicit and implicit constraints are satisGed but the
merit function takes its minimum as well. It is assumed that the optimum discrete
sizes are near the optimal continuous ones [24].

Starting from the optimum continuous values, the secondary search chooses the
nearest discrete sizes for each continuous size from the series of discrete values. The
number of chosen discrete sizes for one continuous size can be two, three or more.
The possible variations can be obtained using binary, ternary or larger systems. In
our numerical example we use the binary system, two discrete sizes, upper and lower,
belonging to one continuous value. In a binary system the figure zero means the upper
discrete size, the figure one means the lower one. The first 2n number in a binary
system gives all possible variations. Each variation is tested, whether the explicit
and implicit constraints are satisfied, and the optimal values minimizing the merit
function are determined. The flow chart of secondary discretization can be seen in
Figure 2.

The number 0000 means the lower discrete values of all variables, the number 1111
means the upper discrete values of all variables. The other numbers in the binary
system are the variants of the possible discrete solution. The solution is the tested
variant that gives the minimum objective function value.

4. Stringer stiffened cylindrical shell loaded by axial compression and
bending

4.1. Aim and variables. The aim of the optimization is to find the minimum value
of the cost function due to non-linear constraints. The variables are: the height of
stiffener h,, number of stiffener 7, and the thickness of the shell t.

4.2. Comnstraints.

4.2.1. Shell buckling (unstiffened curved panel buckling) DNV (1995)[25]. The stresses
caused by compression and bending are as follows

ﬂ{;""ﬂ Sacv‘:*‘_j—y_ ) (4.1)
2Rrt,  R2mt, V14 M
where Np is the compression force in N, Hp is the bending force in N, L is the length
of the shell in mm, R is the radius of the shell in mm, ¢, is the reduced shell thickness
in mm and f, is the yield stress in MPa.

Slenderness A can be calculated making use of the equations

Oq -+ 0p =

2 a As 2R
N=tv ( Tt fb’) o te=t+ 2% 5= (4.2)
Oa+ 0y \OCBa OBb s g
w2E [t\?
e = Ga 1.5 — —_— | - 4.
= (1:5=500) 1555 <s) (4.3)
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Figure 3. Stringer-stiffened shell
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o = 0.5 (1 + -15—05) D £=0.7027
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ME R
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(4.5)

(4.6)
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Note that the residual welding distortion factor is 1.5 — 508 = 1 when ¢t > 9 mm.
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4.2.2. Stringer panel buckling.

.f‘l[
g+ 0p < Ocrp = - ) (4.8)
W1+
f, m2E [t
Py = _ 4,
P oy TP T PTog2\T) (4.9)
3 0.56,\ o ean
Cp = 1hpy[1+ ( 7, ) . Zp=09539% (4.10)
Ise
£ =07027,, 75 =10.92 Sb{ , (4.11)
14
Py = L Zﬁ , (4.12)
1+ i

according to ECCS [26]

_ | E A [ sg i sp<s
sg = 1.9¢, };, where Se = { < i sp>s (4.13)

Lsep is the moment of inertia of a cross-section containing the stiffener and a shell
part of width s.. For a stiffener of rolled I-section

h+t ?
TIef = I, + Ag ( L; — zG) + 8etzl (4.14)
and Ag )
s(h+t
R Tl 4.15
T 9 (As + set) (4.15)
Horizontal displacement
ML? L
- < S _
Wh, 3E71'R3te = Wallow b ) (4 16)
M = HFL/’}’M s Y =1.5; Hp =0.1Np . (4.17)

The limit for displacement is ¢ = 600.
Numerical data: N = 68000 kN, f, = 355 MPa, R = 1850 mm, L = 15 m.

The main parameters of the PSO are as follows:
Probability of craziness (% i.e: 0 - 100) CRAZY = 1.5
Cognitive learning coefficient 0.5 — 2C'1 = 2.0
Social learning coefficient C2 = 1.4
Dynamic inertia scale factor. Beta =1 standard PSO alpha BETA = 0.98
Starting value of omega (linear inertia scale factor) OMEGA = 1.0
Minimum allowable fitness FMIN = —1.0E£10
No-improvement termination criterion (iterations) TITER = 10
Maximum allowed number of function evaluations MAXNF = 10000
Update dynamic inertia criterion (# function evaluations) UPDT = 20
Velocity update factor (1 is normal PSO) VF = 0.985
Minimum allowable omega value MINOMGA = 0.2
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Level of craziness of a completely crazy particle, CRTYPE = 1
Moderately craze population CRTYPE = 2

standard velocity rule VRTYPE =1

Nico’s rule R2 = (1 — R1) original VRTYPE = 2

Random placement BTYPE = 1

Biased placement (minimum on the boundary) BTYPE = 2
Perform max. velocity check VCHK = 1

Don’t have velocity check VCHK = 2

4.3. Curve fitting. Cost calculations are founded on industrial data. The main
parameter is the time of a specific manufacturing element. This time (in min.) mul-
tiplied by the specific fabrication cost ($/min) gives the cost (in $). Data given by
factories are discrete values and for the optimization we need functions. A curve-
fitting program is needed to find the best function for the approximation of the given
data. We have used 2D and 3D curve fittings made by the TableCurve 2D [27] and
3D [28] software. We would like to show the efficiency of curve-fitting approximations
for the stiffener parameters and the plate forming time calculations.

TableCurve 2D’s built-in library includes thousands of equations, a wide array
of linear and nonlinear models for any application from simple linear equations to
high order Chebyshev polynomials. It contains a 38-digit precision math emulator
for properly fitting high order polynomials and rationals. TableCurve 2D speeds
up programming by generating actual function code and test routines for all fitted
equations in FORTRAN, C, Basic, Pascal and VBA for Excel.

"ableCurve 3D’s surface fitting contains in addition to standard least squares min-
imization, three different robust estimations: least absolute deviation, Lorentzian
minimization and Pearson VII Limit minimization. Its built-in equation set includes
a wide array of linear and nonlinear models for any application:

Linear equations, '

Polynomial and rational functions,

Logarithmic and exponential functions,

Non-linear peak functions,

Non-linear transition functions,

Non-linear exponential and power equations,

User-defined functions (up to 15).

It contains 453,697,387 built-in equations. Data input is up to 16,384 points in data
table, 16.4 million points can be filtered into table using an averaging digital import
filter. Visualization: up to 90,000 vertices can be plotted, resulting in ultra-high 3D
surface resolution.

Stiffeners are rolled universal I-beams (UB), their properties are given in the cat-
alogue of Profil Arbed [28].

All parameters of the UB section are calculated in function of the height of the
profile.

The cross sectional area is calculated in the following way. Table 1 shows the given
data for A and h,.
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Table 1. Data for A and h,

h (mm) | A (mm?) [ A (mm) | A (mm?)
152 2032 457 7623
178 2426 533 11740
203 3197 610 14390
254 3204 686 17840
305 3588 838 24680
356 4213 914 28560
406 5864

TableCurve 2D gives several approximations. The one we have chosen is shown in
Figure 4.

. UBhApn
s ai e Ranke 2 Egn e athor
o P2eD9MHaT DF Ad P20 95219351 FISHEN-
S
Jman : omn
S ._J'"l
F5000 5 2mi
aroan e Ao
, - :
15000 ot 1500
1minn 1nm
e
000 S m
__'J__‘,,‘._'»“"“* S
Soo e imo

Figure 4. Curve fitting of A in the function of K

A=a+0bh? (4.18)
where the accuracy of the approximation is 72 = 0.99349, ¢ = 1093.2439 and b =
0.0336839.

The moment of inertia is as follows
b
In(l)=a+——. 4.1
n(ly) = e+ i (119)

Here 72 = 0.99984798, a = 45.0061779, b = —156.528802 .
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The web thickness of a stiffener can be approximated in the following way

ty =+/a+bhZ, (4.20)

where 72 = 0.98995121, a = 34.55256581 and b = 0.000651875 .
The flange width of stiffener can be calculated by

by =+/a+bhZ, (4.21)

where r? = 0.954195679, a = 4676.099669 and b = 0.111592698 .
Time of plate forming into cylindrical shape (7') can be calculated in function of
radius (R) and the plate thickness (£). The forming time is given as a 3D function

In(T) =a + +cR9S (4.22)

$0.5

and given in details in equation (4.25).
The industrial data of the Hungarian manufacturiong company (Jaszberényi Apritogeép-
gyar, Crushing Machine Factory, Jaszberény) are given in Table 2.

Table 2. Plate forming time 7'(min) in the function of radius R(mm)
and thickness ¢(mm)

R T t R T t R T t R T
1500 | 145.4 | 10 | 1500 | 348.8 | 20 | 1500 | 485.0 | 30 | 1500 | 611.0
1700 | 151.0 | 10 | 1700 | 352.2 | 20 | 1700 | 490.3 | 30 | 1700 | 619.1
2000 | 161.4 | 10 | 2000 | 366.6 | 20 | 2000 | 507.3 | 30 | 2000 | 643.4
1500 | 211.0 | 10 | 2300 | 379.2 | 20 | 2300 | 525.3 | 30 | 2300 | 666.8
1700 | 220.5 | 10 | 2500 | 386.4 | 20 | 2500 | 536.1 | 30 | 2500 | 687.5
2000 | 229.0 | 10 | 3000 | 401.8 | 20 | 3000 | 556.5 | 30 | 3000 | 713.0
2300 | 236.2 | 10 | 3500 | 420.0 | 20 | 3500 | 579 | 30 | 3500 | 744.0
2500 | 244.3 | 15 | 1500 | 414.2 | 25 [ 1500 | 561 | 40 | 1500 | 681.0
1500 | 280.5 | 15 | 1700 | 417.7 | 25 | 1700 | 569.1 | 40 | 1700 | 6891
1700 | 286.2 | 15 | 2000 | 432.9 | 25 [ 2000 | 593.4 [ 40 | 2000 | 713.4
2000 | 297.2 | 15 | 2300 | 446.4 | 25 | 2300 | 616.8 | 40 | 2300 | 736.8
2300 | 303.5 | 15 | 2500 | 455.4 | 25 | 2500 | 637.5 | 40 | 2500 | 757.3
2500 | 312.5 | 15 | 3000 | 472.4 | 25 | 3000 | 663 | 40 | 3000 | 783.0
3000 | 325.0 | 15 | 3500 | 490.5 | 25 | 3500 | 694 | 40 | 3500 | 814
3500 | 336.5

)

e~

CO| Coj Co| Co| Co| co| Col | | | | & | W

4.4. Cost function. The cost function includes the material, fabrication and paint-
ing costs [30]. The fabrication costs are calculated by the time of the process.

The fabrication sequence is the following:

Fabrication of 5 shell elements of length 3 m without stiffeners. For one shell
element 2 axial butt welds are needed (GMAW-C) (K ;). The cost of forming of a
shell element into the cylindrical shape is also included () 10)-
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Figure 5. Curve fitting of plate forming time (7") in function of radius
(1500 < R <3500) and thickness (4 < t< 40)

Welding of the whole unstiffened shell from 5 elements with 4 circumferential butt
welds (Kpa).

The preparation of longitudinal stiffeners depends on the type of stiffener. When
rolled T profiles are used, no preparation cost should be considered.

Welding of n, stiffeners into the shell with double-sided GMAW-C fillet welds.
Number of fillet welds is 2ns. (Kr3).

4.4.1. The material cost is for the shell and the stiffeners.

Kpr = kari5pVi + karopnsAsL (4.23)

where V) is the volume of the shell, ¢ is shell thickness, V7 = 3000 x 2Rxnt; p =
7.85 x 1070 kgmm 3.

The shell and stiffener material costs can be different, but we use approximately
the following values: kas1 = 1.0 $/kg, kare = 1.0 $/ke.

4.4.2. The fabrication cost can be expressed as.

Kp=kp » T (4.24)
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where I(; [$] is the fabrication cost, ky [$/min] is the corresponding fabrication cost
factor, T; [min| are production times. It is assumed that the value of kfis constant for
a given manufacturer. If not, it is possible to apply different fabrication cost factors
simultaneously in Equation (4.24).
The corresponding fabrication cost is as follows: kp = 1.0 $/min.

4.4.3. Plate forming cost to reach the necessary curvature.

Kro = kr©el; = 6.8582513 — 4.527217t%5 4 0.009541996 (2R)*®  (4.25)
Butt welding cost for one shell element

Kpy = kp [eh/f;pv1 +1.3 x 0.1520 x 10~3£1:9358 (9 x 3000)] , (4.26)

where © is a difficulty factor expressing the complexity of the assembly and x is the
number of elements to be assembled

k=2 Vi =2Rnt x 3000; ©=2. (4.27)
Welding cost of the whole unstiffened shell
Kpg = kp (@-\/55/74 1.3 % 0.1520 x 10~3¢1:938 5 4 2R7r) . (4.28)
Cost of welding of stiffeners into the shell
Ky = kp (@m +1.3 % 0.3394 x 10*3a%V2Ln3> . (4.29)
The fillet weld size a,, = 0.5¢, Gymin = 3 mm.
Vo =5V +ngA L. (4.30)

The cost of painting is
Kp=kp (4RnwL + (2h + 3b)ngL); kp = 14.4 x 107%¢/mm?2.$/mm?* .  (4.31)
The total cost is
K = K + 5K + 5K o+ Ko + Kps + Kp . (4.32)

5. Results

The optimization is made considering 3 unknowns (g, ns, t), 3 non-linear constraints
(shell buckling, stringer panel buckling, horizontal displacement). For single-objective
optimization the total cost (1%%) is considered. For multiobjective optimization the
different parts of the total cost are also considered as independent cost functions:
material cost of the structure (27?), one shell element butt-welding cost and plate
forming cost (37%), welding cost of the whole unstiffened shell and the stiffeners into
the shell (4*"), painting cost (5**). The discrete value step for ks is 10 mm, for n,
and ¢ is 1 member, or mm.

Table 3 shows the optima determined by PSO changing the number of particles. It
shows that one particle can find an optimum. Increasing the number, the reliahility of
the technique is better, but the computational time also increases. The ‘best’ solution
(in boldface) is the smallest number of particle that finds the minimum.
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Table 3. Different optima using different numbers of particles at PSO

Number of Height of Number of | Thickness of | Cost of the
particles | stiffener (mm) | stiffener shell (mm) | structure (%)
1 730 18 18 118693
2 730 20 16 116993
3 790 18 16 116975
4 760 19 16 117119
5 760 19 16 117119
10 750 19 16 115841
16 750 20 15 113424
20 750 20 15 113424
30 750 20 15 113424
60 750 20 15 113424
90 780 20 14 115266
120 780 20 14 115266
150 750 20 15 113424
300 780 20 14 115266
500 780 20 14 115266

Changing the limit for the number of stiffeners to ns < 30 instead of 20, the results
can be seen on Table 4. In this case the stiffeners get closer, their welding is more
difficult, or can be impossible.

Table 4. Different optima using different number of particles at PSO
with larger limit for ng

Number of Height of Number of | Thickness of | Cost of the
particles | stiffeners (mm) | stiffeners | shell (mm) | structure ($)
3 700 24 13 111385
16 600 34 10 110502
90 630 29 12 112547

The Particle Swarm Optimizer has been built into an interactive decision sup-
port program system [24], which contains the following single objective optimization
methods
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Flexible Tolerance (F'T) method of Himmelblau [31],

Direct Random Search (DRS),

Hillclimb (HI) method of Rosenbrock [32],

Davidon-Flecher-Powell (DFP) method [33],

Particle Swarm Optimization (PSO) [34, 35].

'The efficiencies of these methods are different. All of them use the same ob jective,
constraint subroutines. For a problem like this, which is highly non-linear, several
local minima exist. They find different ones. The advantage of Particle Swarm Op-
timization is that it can find optimum for a nonconvex problem. It has found the
minimum cost structure. Table 5 shows the single objective optima.

Table 5. Different optima using different single objective optimiza-
tion techniques

hs t Cost of the
Method (mm) | "¢ | (mm) | structure (%)
Flexible tolerance 890 | 15 16 115871
Direct random search 890 | 13 22 129496
Hillclimb 890 | 15 16 115871
Davidon Fletcher Powell 890 | 13 22 129496
Particle Swarm Optimization | 750 | 19 | 16 115841

The interactive decision support program system contains several multiobjective
optimization methods. They are the following:

Min-max method,

Global criterion method: type - 1,

Global criterion method: type - 2,

Weighted min-max method,

Weighted global criterion method,

Pure weighting method,

Normalized weighting method.

A description of methods is available in Jarmai [24]. Weighting coefficients are
similar to all five objectives 0.2 each. :

The objective functions are as follows:

Total cost of the structure in $, K (15%),

Material cost of the structure in §, K, (27%),

Cost of forming and welding of shell elements in §$, 5(Ko + Iy) (37,

Welding cost of stiffeners in §, Ko + Ky (4t"),

Painting cost in §, K, (5¢").

Table 6 shows the different multiobjective optima. The material cost is dominating,
being 50-70 % of the total cost. The other three objectives are around 12-25 %. The
height of stiffener is nearly the same for all optima; the number of stiffeners and the
shell thickness changes in an opposite way due to the necessary stiffness. The greatest
conflict is between the total and the painting costs. The painting cost minimum gives
the greatest shell thickness ¢. :
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. Table 6. Multiobjective optima for the stringer stiffened shell

hs t
Method <nlllsl’1) Mg (mm) 1St 2”d STd ll['h' 5”L
18t 880 | 17 14 | 116321.5 | 73565.8 | 12479.9 | 15466.7 | 14809.0
ond 890 | 13 22 1 129496.9 | 72627.2 | 17019.6 | 27260.2 | 12589.6
grd 890 |20 11 118337.9 | 80464.4 | 10488.7 | 10719.9 | 16664.8
4t 890 | 14 20 | 126678.2 | 73160.2 | 15947.7 | 24398.3 | 13171.8
Hth 890 | 11 26 | 134433.7 | 71561.2 | 19104.7 | 32342.3 | 11425.3
Min-max 860 | 17 16 | 121579.8 | 73956.7 | 13693.1 | 19339.2 | 14590.5
Global . , . } - .
type I 880 | 19 12 | 117610.2 | 77228.8 | 11180.3 | 13240.5 | 15960.5
Global . o )
880 | 16 16 119443.6 | 73103.0 | 13693.1 | 18414.1 | 14233.3
type II
Weighted
. . 860 | 17 16 | 121579.8 | 73956.7 | 13693.1 | 19339.2 | 14590.5
Min-max
Weighted . . ) )
global 880 | 16 16 | 119443.6 | 73103.0 | 13693.1 | 18414.1 | 14233.3
Pure -
weighting 880 | 17 14 | 116321.5 | 73565.8 | 12479.9 | 15466.7 | 14809.0
Normalized
e 380 | 19 12 | 117610.2 | 77228.8 | 11180.3 | 13240.5 | 15960.5
weighting

6. Conclusions

The particle swarm method is an efficient tool of structural optimization. It can
find the global optimum for the problems where the constraints are highly nonlinear,
where the feasible region is nonconvex. The algorithm was modified to find discrete
values for practical problems. PSO has been built into an interactive program sys-
tem, which contains other optimization techniques, like Flexible tolerance, Complex,
Hillclimb, Davidon-Fletcher-Powell and Direct random search. The efficiency of PSO
is shown on a stiffened shell design problem, where there are stringer stiffeners and
its loading is compression and bending. The multiobjective optimization gives several
optima, considering five objectives, the total cost and the cost elements at the same
time. There are conflicts between the objective functions and the different minima of
objectives mean different structural sizes and numbers of stiffeners.
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