MicroCAD-System'93

TU Kosice, Slovensko

Nov. 9 -10. 1993.

- 6. Special section of the Faculty of Civil Engineering

Techniques in structural optimization

Assoc.Prof. Karoly Jarmai

University of Miskolc, Hungary |
H-3515 Miskolc Egyetemvaros

tel. 36/46/365111 fax. 36/46/365174

1. INTRODUCTION

The different single-objective optimization techniques make the designer .able to
determine the optimal sizes of structures, to get the best solution among several
alternatives. The efficiencies of these mathematical programming techniques (MP)
are different. A large number of algorithms has been proposed for the nonlinear
programming solution [1,2]. Each technique has its own advantages and
disadvantages, no one algorithm is suitable for all purposes. The choice of a
particular algorithm for any situation depends on the problem formulation and the
user.

We have shown the efficiency of these techniques at the optimum design of steel
structures such as single bay frames, main girders of overhead travelling cranes,
spindle-bearing systems of a machine tool, stiffened plates, cellular plates,
cempressed columns, sandwich beams etc. [3,4,5].

The general formulation of a smgle criterion nonlinear programming problem IS
_ the foliowmg T '
minimize f{x), X = X1,X2,...XN;

subject to gi(x) < 0, 1=12,....P,
hi(x) = 0, i=P+1, . P+M. - (1)

f(x) is a muiltivariable nonlinear function, gj(x) and hj(x) are nonlinear inequality
“and equality constraints. - - '

In this paper we describe four different single -objective optimization methods, the
Sequential Unconstrained Minimization Technique (SUMT); the combinatorial
Backtrack, the Method of Moving Asymptotes {MMA) and the Feasible Sequential
Quadratlc Programming (FSQP) technique...

2. SEQUENTIAL UNCONSTRA!NED.MINIM]ZATION TECHNIQUE (SUMT)

| The procedure was developed by Fiacco and McCormick [6]. The technique uses |
the problem constraints and the original objective function to form an unconstrained
objective function which is minimized by any appropriate unconstrained,
multivariable technique. |

The algorithm proceeds as follows:

1. A modified objective function is formulated consisting of the original function
and_ penalty functions with the form
' F(x, r)—f(x)+rk*z 1gj(x) + r 172 Z hi2(x) (2)
=P+l

where r|c is a positive constant. As the algorithm progresses, 1 is re-evaluated to

form a monotonically decreasing sequence r{>rp>...> 0. As rx becomes small,

Select Starting Point
and Initial Value of r

Correct Starting Point
Until Feasible

Minimize Modified

Reducer

Objective Function

Estimate Optimum Point
by Extrapolation

Convergence

Obtained
?

Fig.1 Flow chart of the Fiacco McCormick SUMT algorithm

under suitable conditions F approaches f and the problem is solved.

2. Select a starting point (feasible or nonfeasible) and an initial value for k-

3. Determine the minimum of the modified objective function for the current value
of rg using an appropriate technique (several options available).

4. Estimate the optimal solution using extrapolation formulae.

5. Select a new value for rk and repeat the procedure until the convergence
criterion is satisfied. The flow chart of this method can be seen in Fig. 1. The value
of rk is decreasing during the procedure down to 104 or so.

The penalty function of the inequality constraints can be an other function in (2),
P P

instead of reciprocal > 1/gj(x} a logarithmic function - In(gj(x)). The efficiency

i=t =
of the penalty function depends on the problems.
We've worked out the SUMT program on PC in C language (Borland C++) and
found it very quick in special cases. The disadvantage is that it was sensitive on the
type of penalty function and it needs a feasible starting point.

3. BACKTRACK PROGRAMMING -

The backtrack method is a combinatorial “programming technigue, solves
nonlinear constrained function minimization problems by a systematic search
procedure. This discrete programming ‘method can be successfully applied -to
optimization problems with few unknowns. The general description of backtrack can
- be found in Golomb and Baumert [7].-- .

The algorithm is suitable for optimum’ design of structures which are characterized
by monotonically increasing objective functions. Thus, the optimum solution can be
found by decreasing the variables. The search may be made more efficient by using
the interval halving procedure. S

The variables are in a vector form x = {x;}T (i = 1,...,n) for which the objective
function K(x) will be a minimum and which will also satisfy the- design constraints
gx)=0(=1,. P) For the variables, series of discrete values are given in an’
increasing order. In special cases the series’ may be determined by Xk, min: Xk max
and by the constant steps Axg between them. The flow chart for the backtrack
method is given in Fig. 2. '

First a partial search is carried out for each variable and if all variations have
been investigated, a backirack is made and a new partial search is performed on the
previous variable. If this variable is the first one: no variations have to be
~investigated (a number of backtrack has been made), then the process stops. The
main phases of the calculation are as follows.

1. With a set of constant values of Xit (i = 2,...,n) the minimum Xjm value

‘ Start l

Discrete values of variables

Ximax, Ximin, step sizes (Print resuits)
[

Compute starting function value Fo (Ximax}, i=1,..N

e

i=1 increasae the value

= of this variable

—

Compute variable Xim by the halving technique

The first variable is
less than maximum 7

Next variable
i=i+1

Increase the value The previous variabje
of this variable izi-1

Compute the last variable
from the objective function Fo

J

The previous variable
less than maximum ?

Xn = Xnmax

Are constraints .
satisfied ?

Fo =F {Xn)
new minimal function value

/

" Are constraints
satisfied 7~ -

Decrease Xn valus

Xn=Xn- Xn
y A=
Y /
n _ Is there an improvement
Xn=Xn+ Xn in objective function ?
y

, Fig.2. Fiow chart of the backtrack method l

satisfying the design constraints is searched for. The search may be made more
efficient by using the interval halving procedure. This method can be employed if the
constraints.and the objective function are monotonous from the sense of variables.

2. As in the case of the first phase, the halving process is now used with constant
values, and the minimum x4 m value, satisfying the design constraints is then
determined.

3. The least value xn 1y, is calculated from the objective function K (x)

where K is the value of the cost function calculated by inserting the maximum x-
values. Regarding the Xn,m value, three cases may occur as follows.

(3a) If we decrease xp.1 step-by step till it satisfies the constraints or il Xn.min
the minimal values are reached. If all variations of the x4 value have been
investigated, then the program jumps to the xp_q and decreases it step-by step til} x
satisfies the constraints or till xn.1_min are reached.

, (3b) If X n,m < Xn 1 , we backtrack to xp1.

(3c) If xnm does not satisfy the constraints, we backtrack to Xn-1,m- If the

constraints are satisfied, we continue the calculation according to 3a.

The number of all possible variations is H t;. However, the method investigates

; 1
only a relatively small number of these. Since the efficiency of the method depends
on many factors (number of unknowns,'Seriesof discrete values, position of the
optimum values in the series, complexity of the cost function and/or that of the
design constraints), it is difficult to predict the Tun time. The main disadvantage of
the method is, that the runtime increases exponentially, if we increase the number of
~unknowns. : .

We've made the program in C language modifying the procedure in the sense,
that originally the program depended on the number of variables. All variables were -
computed by the halving procedure except the last one, which was computed from
the objective function. The modified version is independent from the number of

- variables. Advantage of the method is, that it gives discrete values, USually finds ..

global minimum. The disadvantage is, that it is useful only for few variables.
THE METHOD OF MOVING ASYMPTOTES (MMA)

The Method of Moving Asymptotes (MMA) is a mathematical programming
method which has been implemented in several large systems for structural
optimization, e.g. in OPTSYS at the Aircraft division of Saab-Scania and in
OASIS at ALFGAM Opt. AB. '

In each iteration, a convex subproblem, which approximates the original
problem, is generated and solved. An important role in the generation of these

subproblems is played by a set of parameters which influence the "curvature”
of the approximations, and also act as "asymptotes” for the subproblem. By
- maving these asymptotes between each iteration, the convergence of the
overall process can be stabilized. The ariginal version of MMA was presented in
ref [8].

Consider a structural optimization problem P1 of the following form:

P1: minimize fgp(x)
subject to: fi{x) < f i=1,...M
XjL < Xj < Xjy]=1,....N
where:

= {X1....,Xn.} is the vector of design variables, typically elemental sizes or
shape variables,
fo {x) |s_the objective function, typically the structural weight,
f,(x) are "behaviour constraints”, typically limitations on stresses and

displacements, stability, fatigue, loss: factor, eigenfrequency, under different

load cases,

XjL = Xj = Xjy are bounds, size constraints, technological constraints on the
variables. .

It is assumed that a discretization of the structure has been made, in
accordance with the finite element method. Sometimes the considered structure
is discrete already from the start. A typical example of this is a truss structure
where each bar is a natural element.

P1 is often a difficult problem. One important reason for this is that the

‘constraint functions are, in general,. not ‘explicitly given (if it is necessary to
computé values by finite element technique). Instead of this, it typically holds
that fj(x) =hj{x,u) where h is a given explicit function while the vector . u
depends {implicitly) on the vector x-by the relation: K(x}u = p. Here, K{x) is the
structural stiffness matrix (which depends on x), p is a vector describing the
applied load, while u is a vector describing the displacements of the structure.
" For each new x, the stiffness matrix K(x}, which may have several thousands
of rows, must be assembled before the displacement vector u is obtained as the
solution of the (large) linear system K{x)u = p. This, of course, makes each
new evaluation of the constraint functions expensive.

An encouraging feature of many structural optimization problems, however, is
that it is possible to calculate, by a so called "semi-ana[ytical“ method,
gradients of the constraint functions in an efficient way.

For a given x, both fij(x) and Vf{x) can be calculated for a cost Whrch is not
too much greater, than the cost for caEculatlng just fj(x). '

Because of the possibility of calculating gradients, the following iterative
approach is well established for solving structural optimization prbblems on the
form P1:

Step 0: Choose a starting point x and let the iteration index k be equal to 1.

Step 1: Given x(k) | caleculate f; xK} and V£; (x(kK)}) fori=0,1,...m

Step 2: Generate an explicit subproblem P{K) which approximates P1:

P{K): minimize £4(x)
subject to 9ix)<t, S i=1,...M
Xj. < Xj < Xjy, j=T....N

The * are explicit functions which approximate the 1mphcxt functions f;. The
choices of these approximating functions are based on the previously calculated
function values and gradients. The constraints XjL = xj = xy are often
replaced by more restrictive bounds on the variables, so called "move limits”, to
prevent x from going too far away from the current iteration point x .

Step 3: Solve the subproblem P{K), with some suitable method (dependent on
how the approximating functions have been chosen). Let the optimal solution
of Pk} be the next iteration pomt x{k+1} ang go to step 1, with k replaced by
k+1.

The process is interrupted when the convergence criteria are fulfilled, or -
simply when the user is satisfied with the current solution x. The central step in
this approach is to choose good approximating functions. The main information _
~ available for doing this is the calculated function values. and gradients (from the
current iteration as well as from the previous iterations). In add;tlon, some
important properties of the considered problem may be known [9].

Each approximating function *(x) is obtained by a linearization of filx) i
variables of the type 1/(U] - xj) or ‘U(xJ LJ) where Uj Lj are the upper and
lower limits for vanables : :

fori=1,..,m

f(k)(x)zz(u P; +xqiiL)41,
S U - —L.

i i i

ax axj
o k . 1420 o
If _3; <0 at x{k) then ajj = - x(k’} - LJ) a and Pij = 0.

i
ri is choosen such that f¥(x) =f; {x{k))
[t is also important that the subproblem plk) does not become too hard to
- solve. It is to prefer, e.g., that the chosen approximating functions are convex.
Several methods based on the above approach (Step 0 - Step 3) have been

suggested. The main difference between these methods is how the approximating
functions are chosen.

The perhaps most obvious possible method is so called "Sequential Linear
Programming" (SLP) where the approximating functions are chosen as the first order
Taylor expansion, i.e.:

P = (xtk) + Dalx,-x¥) fori=0,1,..M,

J

i

where a, = A calculated at x=x(K)

axj

With these, the subprobiem P(K) becomes a Linear Programming (LP) problem,
which may be efficiently solved by the Simplex method.

In general, SLP works well if the number of active constraints at the optimal
solution x of P1 (i.e. the number of constraints of type (2) or (3) in P1 that are
satisfied as equalities at x) is equal to the number of design variables. Otherwise,
the convergence to x might be very low, obtained only through the use of decreasing
move limits. It is, of course, not possible in general to know in advance how many (or
which) constraints are active at the optimal solution of P1, s

For element sizing problems, Schmit suggested that the approximating functions
for the constraints should be chosen as the first order Taylor expansion in the

‘reciprocal element sizes (1/xJ'):‘

-~ 1 1
f%) = f; (x(k) + S p(—~—)
! ; My xW

] }

fori=0,1,..,m,

where b, = —@—;—- calculated at x = x(K)-
5(;)

j

while the exact objective function (assumed to be the structural weight which is a
linear function of the elemental sizes) is used in P(K) ie. T (x) = f, (x).

This method is probably the most widely used method for element sizing

problems, especially since Fleury suggested “an efficient dual method for solving -
the subproblems. If the constraints are on nodal displacements and elemental
stresses, while ihe'design variables are elemental sizes and the objective function is
the structural weight, then this method of linearization in reciprocal variables is much
- more reliable and efficient than SLP. The main reason for this is that nodal
displacements and elemental stresses are more close to be linear in 1!><j than in Xj.

5. FEASIBLE SEQUENTIAL QUADRATIC PROGRAMMING (FSQP)

FSQP is a set of FORTRAN subroutines for the minimization of the maximum of a
set of smooth objective functions (possibly a single one) subject to general smooth
constraints. If the initial guess provided by the user is infeasible for some inequality
constraints or some linear equality constraint, the program first generates a feasible

point for these constraints; subsequently the successive iterates generated by FSQP
all satisfy these constraints. Nonlinear equality constraints are turned into inequality
constraints (to be satisfied by all iterates) and the maximum of the objective
functions is replaced by an exact penaity function which penalizes nonlinear equality
constraint violations only [10].

The user has the option of either requiring that the (modified) objective function
decreases at each iteration after feasibility for nonlinear inequality and linear
constraints have been reached (monotone line searbh), or requiring a decrease
within at most four iterations (nonmonotone line search). The user must provide
subroutines that define the objective functions and constraint functions and may
either provide subroutines to compute the gradients of these functions or require that
FSQP estimate them by forward finite differences. FSQP implements two algorithms
based on Sequential Quadratic Programming (SQP), modified so as to generate
feasible iterates. In the first one (monotone line search), a certain Armijo type arc
search is used with the property that the ‘step of one is eventually accepted, a
requirement for superlinear convergence. In the second one the same effect is
achieved by means of a (nonmonotone) search along a straight line.

The merit function used in both searches is the maximum of the objectlve
functions if there is no nonlinear equality constraint. If the initial guess provided by
the user is infeasible for nonlinear inequality constraints and linear constraints,
FSQP first generates a point satisfying all these constraints by iterating on the
problem of minimizing the maximum of these constraints. Then, using Mayne-Polak's
scheme nonlinear equality constraints are turned into inequality constraints.

The resulting optimization problem therefore involves only linear constraints and
nonlinear inequality constraints. Subsequently, the successive iterates generated by
FSQP ali satisfy these constraints. The-User has the option of either requiring that
the exact penalty function (the maximum value of the objective functions if without
nonlinear equality constraints) decreases at each iteration after feasibility for original
nonlinear inequality and linear constraints have been reached. or. requiring a
decrease within at most three iterations. He must provide subroutines that define the
objective functions and constraint functions and may either provide subroutines to
compute the gradients of these functions or require that FSQP estlmate them by
forward finite differences.

Thus, FSQP solves the original problem with nonlinear equality constraints by
solving a modified optimization problem with only linear constraints and nonlinear
inequa!ity constraints. For the transformed problem, it implements algorithms that
are described and analyzed in refinements. .

These algorithms are based on a Sequential Quadratic Programming (SQP)

iteration, modified so as to generate feasible iterates. An Armijo-type line search is
used to generate an initial feasible point when required. After obtaining feasibility,
either (i) an Armijo-type line search may be used, yielding a monotone decrease of
the objective function at each iteration; or (i) a nonmonotone line search and
analyzed, may be selected, forcing a decrease of the objective function within at
most four iterations. In the monotone line search scheme, the SQP direction is first
tilted if nonlinear constraints are present to yield a feasible direction, then possibly
"bent" to ensure that close to a solution the step of one is accepted, a requirement
for superlinear convergence. The nonmonotone line search scheme achieves
superlinear convergence with no bending of the search direction, thus avoiding
function evaluations at auxiliary points and subsequent solution of an additional
quadratic program. After turning nonlinear equality constraints into inequality
constralnts these algorithms are used directly to solve the modified problems. For
the solution of the quadratic programming subproblems, FSQP is set up to call QLD
which is provided with the FSQP d:str:but;on for the user's convenience.

User-Supplied Subroutines : ' :

At least two of the following four Fortran 77 subroutines, must be provided by the
user in order to define the problem. The name of all four routines can be changed at
the user's will, as they are passed as arguments to FSQP.

Subroutine obj to be provided by the user, computes the value of the objective
functions. S :

subroutine obj(nparam,j,x,fj) -
integer nparam,j
double precision x(nparam),fj
¢ for given j, assign to fj the value of the Jth objectwe
‘¢ evaluated at X
return
end _

nparam~dimension of {x}, j~number of the objective .to be computed, x~current
iterate, fi~value of the j th objective function at {x}. ' '

The subroutine constr, to be provided by the user, computes the value of the
~constraints. If there are no constraints, a (dummy) subroutine must be provided
anyway due to Fortran 77 compiling requirement.

subroutine constr{nparam,j,x,gj)
~integer nparam,j
double precision x(nparam),gj
for given'j, assign to gj the value of the jth constraint
evaluated at x -

return
end
nparam~dimension of {x}, j~number of the constraint to be computed, x~current
iterate, gj~value of thej th constraint at {x}.
The order of the constraints must be as follows. First the {nineqgn} (possibly zero)
- nonlinear inequality constraints, then the {nineq-ninegn} {(possibly zero) linear
inequality constraints, finally, the {negn} (possibly zero) nonlinear equality
constraints, followed by the {neg-negn} (possibly zero) linear equality constraints.
The subroutine {gradob} computes the gradients of the objective functions. The
user may omit to provide this routine and require that forward finite difference
approximation be used by FSQP via calling {grobfd} instead~(see argument {gradob}
of FSQP.
~ The specification of {gradob}is as follows
subroutine gradob(nparam,j,x,gradfj,dummy)
integer nparam,j :
double precision x(nparam),gradfj(nparam)
double precision dummy B
external dummy
€ assign to gradfj the gradient of the jth objectrve function
¢ evaluated at x - i
return '
end
nparam~dimenéion of {x}, j~number of objective for which gradient is to be
computed, x~current iterate, gradfj~gradient of the j th objective function at x.
The subroutine {gradcn} computes the gradients of the constraints. The user may
omit to provide : S _
this routine and require that forward finite difference approx1mat:on be used by
FSQP via calling grenfd instead (see argument gradcn} of FSQP .
The specification of graden is as follows
subroutine graden(nparam,j,x,gradgj,dummy)
integer nparam,j
double precision x(nparam),gradgj(nparam)
double precision dummy
external dummy
assign to gradgj the gradient of the jth constraint
evaluated at x
return
end

nparam~dimension of {x}, j~number of constraint for which gradient is to be
computed, x~current iterate, gradgj~gradient of the j th constraint evaluated at {x}.
Organization of FSQPD and Main Subroutines
{mainorg} FSQP first checks for inconsistencies of input parameters using the
subroutine {check}. It then checks if the starting point given by the user satisfies the
linear constraints and if not, generates a point satisfying these constraints using
subroutine {initpt}. It then calls FSQPD1 for generating a point satisfying linear and
nonlinear inequality constraints. Finally, it attempts to find a point satisfying the
optimality condition using again FSQPD1.
FSQPD1 uses the following subroutines:
{dir} compute various directions dy®, d19 and dj.
{step} compute a step size along a certain search direction.
{hesian} Perform the Hessian matrix updating.
| {out} Print the output for {iprint=1} or {iprint}=2."
{grobfd} (optional}~compute the gradlent of an objective funct:on by forward finite
d[ﬁerences .
' {grcnfd} (optional)~compute the -gradient of a constraint by forward finite
differences. Coen
| {nineqn} the number of nonlinear conétraints,": _
{ncalif} the total number of evaluations. of the objective function,
{ncallg} the total number of evaluations of the (scalar) nonlinear constraint
functions,) T
~ {iter} the total number of iterations, .= -2 o
{objective} the finai value of the objective, : - - .
{ktnorm} the norm of Kuhn-Tucker vector at the final iterate, -
{eps} the norm requirement of the Kuhn-Tucker vector,
{SCV} the sum of feasibility wolatfon of linear constraints,
Programming Tips el Ty
The order in which FSQP evaluates the various objectives and constraints during
the line search varies from iteration to iteration, as the functions deemed more likely
to cause rejection of the trial steps are evaluated first. On the other hand, in many
applications, it is far more efficient to evaluate all (or at least more than one) of the
objectives and constraints concurrently, as they are all obtained as by-products of
expensive simulations (e.g., involving finite element computation). This situation can
be accommodated as follows. Whenever a function evaluation has been performed,
store in @ common block the value of {x} and the corresponding values of all
~objectives and constraints (alternatively, the values of all "simulation outputs").
Then, whenever a function evaluation is requested by FSQP, first check whether the

same value of {x} has just been used and, if so, entirely bypass the expensive
simulation. Note that, if gradients are computed by finite differences, it will be
necessary to save the past {nparam}+1 values of {x} and of the corresponding
objective/constraint values.

It is important to keep in mind some limitations of FSQP.

First, similar to most codes targeted at smooth problems, it is likely to encounter
difficulties when confronted to nonsmooth functions such as, for example, functions
involving matrix eigenvalues. Second, because FSQP generates feasible iterates, it
may be slow if the feasible set is very "thin" or oddly shaped.

Third, concerning equality constraints, if hJ(x) > Ofor all x and if h; (xo) =0 for some
] at the initial point xq, the interior of the feasible set defined by hj(x) < Oforsuchjis
empty. This may cause difficulties for FSQP because, in FSQPD, hj(x)=0 is directly
tqrned into hj(x) < Oforsuchj,

The user is advised to either give an initial point that is infeasible for ali nonlinear
equality constraints or change the sign of hj so that hj(x)<0 can be achieved at some
point for all such nonlinear equality constraint. :

A common failure mode for FSQP, corresponding to {mform} 5 or 6, is that of the
QP solver in constructing {d0} or {d1}. This is often due to linear:dependence {or
almost dependence) of gradients -of -equality constraints or active ihequality
‘constraints. Sometimes this problem can be circumvented by making use of a more
robust (but likely slower) QP solver. The developers have designed an interface,
available upon request, that allows the user to use QPSOL instead of QLD. The user
may also want to check the Jacobean matrix-and identify which constraints are the
culprit. Eliminating redundant constraints or formulating the constraints differently
(without changing the feasible set) may then be the way to go.

Finally, when FSQP fails in the line search ({inform}=4), it is typlcally due to
inaccurate computation of the search direction. Two possible reasons are:
(i) insufficient accuracy of the QP solver; again, it may be appropriate to substitute a
different QP solver. (i) insufficient accuracy of. gradient computation, e.g., when
gradients are computed by finite differences. A remedy may be to provide analytical
gradients or, more astutely, to resort to "automatic differentiation”.

6. REFERENCES

1. Jarmai.K.: Single- and multicriteria optimization as a tool of decision support
system. Computers in Industry, Elsevier Applied Science Publishers, 1989
‘Vol.11, No.3. p.249-266.

2. Farkas J.: Optimum design' of steel structures. Akademiai Kiadd, Budapest,

Ellis Horwood Ltd. Chichester, 1984.

3. Earkas . JérmaiK.: Minimum cost design of laterally loaded welded
rectangular cellular plates. Structural Optimization '93, The World Congress on
Optimal Design of . Structural Systems, Rio de Janeiro, Aug. 2-6. 1993
Proceedings Vol. 1. p.205-212.

4. JarmaiK.: The efficiency of the optimization techniques in the economic
design of steel structures. 15th IFIP conference on System Modelling and
Opftimization, Zurich, September 2-6. 1991. Proceedings p. 504-505.

5. Jarmai,K.: Decision support system on IBM PC for design of economic steel
structures, applied to crane girders. Thin-Walled Structures, Elsevier Applied
Science Publishers, 1990, Vol.10, p.143-159.

6. Filacco.A.V. . McCormick.G.P.: Nonlinear programming: sequential unconstrain-
ed minimization techniques New York. Wiley. 1986.

7. Golomb,S.W. Baumert.L.D.: Backtrack programmmg J.Assoc. Computing
Machinery, 1965. Vol.12. p.516-524 " ' _

8. Svanberg, K.: The method of movmg asymptotes IntJ Num. Meth. .
Engineering, Vol.24, p.359-373, 1987.

9. Svanberg, K.: MMA with some extensions, Optfm:zat:on of - Large Structural

. Systems, Lecture Notes from the NATO/DFG ASl, Berchtesgaden, Sep-Oct
1991.

10. Zhou J.L.,Tits A.: User's guide. for'FSQP Version 3.0: a Fortran code for

- solving optimization problems. Techn. Report SRC’TR-QO-SO rit.,Systems
Research Center University of Maryland, College Park, 1992.

7. ACKNOWLEDGEMENTS

The author would like to thank Andre L. Tits and Jlan L. Zhou Umv of Maryland
for the possibility of using the CFSQP algorithm, - '

This work received support from the Hunganan Fund for Scientific Research
Grant OTKA T 4407. ' _

Thanks to Gyula Szikszai, PhD student for his work in writing the C version of
 SUMT and Backirack.

