PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON TUBULAR STRUCTURES
SINGAPORE/26-28 AUGUST 1998

Tubular
Structures VIII

Edited by

Y.S.CHOO
CAE/CAD!CAM Centre, National University of Singapore

G.J.VAN DER VEGTE

Institute of High Performance Computing, Singapore
Delft University of Technology, Netherlands

A

A.A.BALKEMA/ROTTERDAM/BROOKFIELD/ 1998




Tubular Structures VIl Choo & Van der Vegte (eas) - 1998 Balkema. Rotiercam. ISBN Q0 5509 001 ¢

Optimum design of a statically indeterminate tubular truss

J Farkas & K. Jirmai

University of Miskole, Hungary

ABSTRACT: The minimum weight design of a two-span truss is treated. The truss is welded from square
hollow section rods and the height at the middle support is linearly increased. The cross-sectional arcas of all
chords are the same and two different cross-sectional arcas are considered for bracing, since the bracing
forces near the middle support are higher than those in other parts. Thus. in the optimization procedure three
cross-sectional areas and two factors for height are sought, which minimize the structural volume and tulfil
the stress and buckling constraints. For the caleulation of the flexural buckling strength of compression
members closed formulae are applied, which can be derived from the buckling curves of the Japanese Road
Assoctation. First the cross-sectional arcas are caleulated using an iterative process for constant height
factors, then these factors are varied. Finally the strength of overlapped nodes are checked according 1o
CIDECT design formulae. The illustrative numerical example shows that the optimum  truss geometry
depends on the number of different cross-sectional arcas.

I INTRODUCTION energy of tubular braces has been determined in
Farkas (1993).
Tubular trusses are widely applicd in various In the article of Farkas and Jarmai (1994) roof

structures. Their main advantage is the cconomy in trusses welded from circular (CHS) or square (SHS)
wetght because of high flexural buckling strength of - hollow section as well as double-angle section rods
compressed rods. The authors have published a fot have been compared to cach other and it has been
of articles dealing with the optimum design of  shown that the structural weight of CHS or SHS
tubular trussces. The cconomy of higher strength trusses is much smaller than that of double-angle
steels in trusses has been treated in Farkas (1984). trusses. In this article, 1t has been verified that the
The role of fatigue constraints has been studied in optimum truss  geometry  depends on the  cross-
Farkas (1987a.b). The minimum cost design has  sectional shape of compressed members.
been worked out taking into account buckling and The optimum truss topology of a simply supported
fatigue constraints in Farkas (1990). The absorbed belt-conveyor bridge structure has been determined
in Jarmai and Farkas (1994).

Figure 1. A two-span truss with increased height at the middle support

481




The optimum height of a statically determinate
tubular truss with parallel chords has been calculated
taking into consideration also the CIDECT rules for
the strength of nodes in Farkas and Jarmai (1995).

The minimum cost design of a Vierendeel truss
welded from SHS rods has been worked out in
Farkas and Jarmai (1996). In the book Farkas and
Jarmai (1997) the optimum design of tubular trusses
is treated in a separate chapter.

In the present study the minimum weight design of
a statically indeterminate tubular truss shown in
Figure 1 is treated. It is well-known that the strut
forces in this case depend on the cross-sectional arca
of members, thus, the design of struts should be
performed by an iterative process. Another problem
is that, in a two-span truss the strut forces are the
largest near the middle support, thus, the height
should be increased here (Fig.1).

In the optimum destgn of this representative truss
the following unknowns are sought, which minimize
the weight of the structure and fulfil the design
constraints: the cross-sectional arcas A of all
chords and two different profiles Ay, and Ap> for
bracing as well as the two height factors Q= 11/a
and w = hla.

2 CALCULATION OF ROD FORCES

The unknown force X acting on the statically
determinate basic structure (Fig.2) can be caleulated
from the displacement cquation expressing that the
horizontal displacement of node 17 should be zero

Sp; and s; are the strut forces from external load
and from X" = I, respectively. L; and .{; are the
length and the cross-sectional area of i-th strut. £ is
the modulus of elasticity.

For the structure shown in Figure 2 the horizontal
displacements are as follows:
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Figure 2. Forces acting on the half structure of the numerical example
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The actual rod forces are given by

S =S

Sy, + s

[t can be seen that these displacements depend on
cross-sectional areas.
It should be mentioned that for parallel chords
(Q=w) and only two different cross-sectional
areas (4g; = Ap2) the formulae (3) and (4) take the
following form:

u, =336F/w (3a)
u = ((u‘ +(uf)/1‘. /A, +43 (4a)

In the above formulae the following symbols are

used: @, =Vl+w’; Q, =VI+Q7;

) 2
Q-w) Q+w

The rods of bracing are separated to two groups, the
cross-sectional area Ay, is considered for rods 8-11,
10-13, 1213, 12-15, 14-15, 14-17 and B-17 (Fig.2),
the cross-sectional area for other rods is Ay,

3 THE OBIECTIVE FUNCTION AND THE
DESIGN CONSTRAINTS

The objective function is detined by
Via=24,(7+ g,)+ Ay (6w +4w,) +
+ iy [20, +15(Q+ @) +¢, +Q,] (5)

where Fis the volume of the half structure.

To simplify the design of compression members
for flexural buckling, the formulae of the Japanese
Road Association (JRA) are applied (Hascgawa et
al. 1985). which give near the same buckling factors
as the Eurocode 3 (EC3) curve "b". From JRA
formulae closed expressions can be derived for the
required cross-sectional area as detailed below.

The flexural buckling constraint for the
compression members subject to compressive force
N is expressed as

NIAS o, fu =17 (6)
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Jy is the yield stress.  y,, =11 is the partial
safety factor according to EC3. For the buckling
factor JRA formulae are as follows:

z=1 for 2<02 (73)
7=1109-05450 for 02<A<I (7b)
2=1/(0773+2) for A1 (7c)

where A=KL/rd, , K is the effective length
factor. According to Packer et al (1992). in tubular
trusses, for chords K=0.9, for bracing K = 0.75.

The radius of gyration for SIS of width 4 is

r=b/6. A, =nJE/f, . for the modulus of
elasticity of steels £ =2.1*10° MPa and yield strcss'
fy =355MPa 4, =764

l'mroducing symbols 3 =100h/ L, the limiting
local slenderness o, =(h/’): , = l()()l\'\/(_)//{,
and  v=10"Ng, /(4 I,"_/",) and solving (6) with
(7b) one obtains (Farkas and Jarmai 1997)

14.93475v
+ )

9= 0.24572(.{1 + /1 for Yz2c (8)

[
and for ¢ <¢ with (7¢)
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It should be noted that, for our numerical example
(7b) is valid for all compression members. When
9 < ¢ another formula for 4 should be derived.

The design constraint for tension force is given by

NIAS S, (12)

4 NUMERICAL EXAMPLE

Data: a = 3000 mm, f, = 355 MPa, the static
concentrated forces F =450 kN act on lower nodes
representing the factored load of a belt-conveyor
bridge.

On the basis of preliminary calculations the
following rods are sclected for each rod groups:

Table 1. Results of the numerical example for three
different profiles (4 and V/a inmm?)

(a) for all rods of chords two compressed rods are
selected: rod 14-B subjectto N =S;,.4=X and
rod 5-7 with force

7'3F—£X.

N=S_, =
=7 W 8w

The required Ac is calculated for larger
compressive force using (11) with values of ¢ =
2.8851 and v with L = ¢ and, according to
CIDECT rules (Packer et al 1992), &, = 30:

(b) for rods of bracing excluding the rods ncar the
middle support (mentioned at the end of Section 2):
rod A-1. subject to N=S,, =35/-1Q/8
compressive force, Ag; is calculated with (11)
considering ¢ =2.4043 and L = wu;

Table 2. Results for two different profiles

Q w A(‘ .‘1]{/ A/]) ”)S a Q) w A(' A/; 10 \”/tl
22 1.0 7580 3440 8780 2.687 2.0 1.2 7523 8302 3.332
2209 7631 3347 8795 2.632 2.0 1.1 7762 8365 3.285
22 08 7655 3258 8795 2.574 2.0 1.0 7951 8415 3.228
2207 7658 3177 8795 2.517 2.0 0.9 8093 8453 3162
2206 8177 3099 8795 2.598 2.0 0.8 8191 8479 3088
20 09 8284 3356 8504 2.049 2.0 0.7 8251 8495 3.008
20 08 8357 3255 8523 2.60] 2.0 0.6 8559 8509 2.970
2.0 07 8397 3165 8534 2.551 2.0 0.5 10102 8933 3.212
20 006 8409 3084 8534 2.500 1.8 0.9 8749 8143 3148
20 05 9907 3005 9004 2.743 1.8 0.8 8933 8187 3.094
1.8 09 8990 3385 8200 2.680 1.8 0.7 90062 8217 3.031
1.8 08 9144 3208 8237 2.646 1.8 0.6 9244 8237 2.901
1.8 0.7 9247 31064 8201 2.607 1.8 0.5 10009 8968 3141
1.8 0.6 9306 3072 8275 2.564 1.6 1.2 81006 7538 3.138
1.8 0.5 9805 2988 9043 2.668 1.6 1.1 8592 7639 3147
1.6 09 9732 3442 7877 2.722 1.6 1.0 9037 7732 3148
1.6 0.8 10012 3302 7935 2.708 1.4 1.4 7078 6916 2.956
1.6 0.7 10221 3180 7979 2.686 1.4 1.3 7652 7018 2.986
1.6 0.6 10365 3073 8009 2.658 1.4 1.2 82061 7127 3.021

1.6 05 10451 2979 9066 2.715

14 14 7539 4536 7001 2.675
14 13 8121 4330 7099 2.683
14 1.2 8729 4123 7208 2.700

1.3 1.3 8132 4424 6892 2.657
1.3 1.2 8788 4216 6995 2.680

1.2 1.2 8815 4316 6777 2.658
1.2 1.1 9567 4104 6892 2.701

1.1 1.1 9621 4209 6678 2.685
1.1 1.0 10488 3993 6793 2.749

1.0 1.0 10604 4102 6694 2.754
1.0 09 11674 3875 7072 2.875
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1.3 1.3 7652 6810 2915
1.3 1.2 8301 6917 2.958
1.3 1.1 8988 7031 3.008
1.2 1.2 8316 6706 2.893
1.2 1.1 9056 6818 2953
1.1 1.1 9092 6602 2.893
1.1 1.0 9949 6721 2.975
1.0 1.0 10033 6587 2945
1.0 0.9 11091 6999 3.113




(¢) tor rods of bracing near the middle support:
rod B-17 of compressive force

N=S,,,=35F+\XQ/8. 4g, is calculated with
(11) considering ¢ =2.4043 and L = Qa:
rod 12-15 of tension force

6Q -w Q) 5.Q
S, =Fo, ——+ Y|4 - — | 22—
2t 52 a)(Q+(u)+ \( ® ) 4(Q+a))

calculated with (12),
rod 10-13 of tension force

Sio-nz = 13Fw, fw+ XQo, /(8(0).

The results are summarized for three different
profiles in Table 1, for two different protiles in
Table 2.

5 THE OPTIMIZATION METHOD

This method is a direct search onc  without
derivatives.  Rosenbrock’s (1960) method is an
iterative procedure that bears some correspondence
to the exploratory scarch of Hooke and Jeeves in
that small steps are taken during the scarch in
orthogonal  coordinates.  However, instead  of
continually searching the co-ordinates
corresponding to the directions of the independent
variables, an improvement can be made after one
cycle of co-ordinate scarch by lining the scarch
directions up into an orthogonal system, with the
overall step on the previous stage as the first
building block for the new scarch coordinates.
Rosenbrock’s method locates x(**" by successive
unidimensional scarches from an initial point (K
along a sct of orthonormal directions.

The method is executed as follows:

Minimize the objective function f(x, ) — min.
Design constraints are:

explicit x'<x <x' (i=12..N),
implicit g,(x, )20 (=1L2..M). (13)
(i) Before starting the minimization process,

define a set of 'initial' step lengths Sj, to be taken
along the search directions M; i= 1,2...N. The
starting point must satisty the constraints and should
not lie in the boundary zones.

(11) After cach function evaluation, the following
steps are carried out: Define by f © the current best

objective function value for a point where the
constraints are satistied, and /(x) where in addition
to this the boundary zones are not violated. ¢ and

f{x) are initially set equal to the objective function
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value at the starting point.

(iit)  The first variable x; is stepped a distance S,
parallel to the axis and the function evaluated. If the
current point objective function value, f, is worse
(greater or less) than f © or if the constraints are
violated, the trial point is a failure and S; decreased
by a factor B, 0<f<l..and the direction of
movement reversed. If the move is termed a success.
S, increased by a factor @, a>1. The new point is
retained, and a success is recorded. The values of a
and f are usually taken as 3.0 and 0,5 respectively.
(iv)  Continue the search sequentially stepping the
variables, xj, a distance S; parallel to the axis. The
same acceleration or deceleration and reversal
procedure is followed for all variables, until at least
one step has been successful and one step has failed
in each of the N directions. Perturbations are
continued sequentially in the search directions until
a success is followed by a failure in every direction,
at which time the kth stage is terminated. Since an
cqual value of a function counts as a success, a
success is eventually reached in each direction as the
multipliers of reduce the magnitude of the step
length. The final point obtained becomes the initial

point for the succeeding stage XK+ = (b ppe

. . . NZ%T!
normalized dircction S+

) is chosen parallel to

(kel) -

(ky
0 0

X X and the remaining  directions  are

»

chosen orthonormal to cach other and to Sl”‘ W

(v)  Compute the new set of directions rotating
the axes. In general, the orthogonal search directions
can be expressed as combinations of all the co-
ordinates of the independent variables.

(vi)  Search is made in cach of the x directions
using the new co-ordinate axes. In cach x direction
the variables arc stepped a distance S; parallel to the
axis and the function is evaluated.

(vii) If the current point lies within a boundary
zone, the objective function is modified as follows:
finew) = f(old)—(f(old)= f )(3A-44 +21")

(14)
where
The boundary zones are defined as follows:
_ distance into boundary zone (15)

width of boundary zone




At the inner edge of the zone, 1 = 0. ie.. the
function is unaltered (finew) = flold)). At the
constraints, A=1, and thus f(new) = f*.

For a function which improves as the constraint is
approached, the modified function has an optimum
in the boundary zone.

(viii) f*is set equal to £ 0 if an improvement in the
objective function has been obtained without
violating the boundary zones or constraints.

(ix)  The search procedure to find the continuous
values of the variables is terminated when the
convergence criterion is satisfied.

(x) The procedure was modified by a secondary
search to find the discrete values of the variables.
The procedure stops if the convergence criterion or
the iteration limit is reached. The procedure is very
quick, but it gives usually local optima, so it is
advisable  to  use more starting points. The

Turbo/Borland C version of Hillclimb technique can
be found in Farkas & Jarmai (1997).

6 CHECK OF THE OPTIMUM VERSION
(=20, = 06, three different profiles)

From Table 1 we get Ay = 8409, A, = 3084 and
Ap2 = 8534 mm*. According to (1), (3) and (4) one
obtains X = 2501 kN. Using Europecan Standard
prEN 10219 (1996) SHS 250*10 with A = 9260
mm’ and radius of gyration r = 97 mm is selected
for all rods of chords. According to Section 4

S/J_/; =X = 2501 )\N‘

Ss5.~ = 2449 kN, thus, the rod 14-B is governing and
should be checked for flexural buckling  with

formulae (6) and (7).

2139 kN

2527 kN

250x10

Figure 3. A characteristic node of the optimum structure (2=20.w0=06)
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= 0.9 *3000
G WT000 s
7641%97

12 =09105

N4 = 250100009260 = 270 < 0.9105*323 = 294
MPa. OK.

For smaller rods of bracing the section ot 150*6 is
selected with .1 = 3360 mm® and r = 38.4 mm.
According to Section 4 S;.; =950 kN.

_ S*()6* 3
7= 0.75*0.6 * 3000 - 03075,

" ¥ =09441.
76.41%58.4

N/A =283 20.9441*323 = 305 MPa, OK.

For larger rods of bracing the section of 250*10 is
selected with A = 9260 mm- and » =97 mm.
Sp.r= = 22000 kN, 2 =06071,  y=0.7781,
N = 238 -« 251 MPa, OK. Since this section is
valid only for the half truss, rod B-17 should be
designed for double foree 4400 kN and should have
a cross-sectional arca 2*8534 = 17068 mm’
Section 300*16 can be used with 4 = 17100 mm®
and = 114mm. 1=05166. y=08275,

NZA = 440000717100 = 257 -2 0.8275*%323 = 267
MPa, OK. To enable the tabrication of node 17, the
width of chords 15-17 and 14-B should be increased
to 300 mm.

The formula given in Section 4 yields for this case
a tension force Syogs = 660 kN, N4 =
66000079260 =71 - 323 MPa, OK.

To illustrate the SHS nodes in the optimum
structure the drawing of node 13 is given in Figure
3. '

Cheek the node 13 for effective width according to

Packer ¢t al (1992). For the rod 10-13 a section of

250* 10 should be used (4 9260 mm?®). The tension
force m this rod is

o = 15Fw Tw+ XQuw, / (8w) =2527 kN,
N = 252700079260 = 273 < 323 MPa. OK.
According to the Figure 3 the overlapping factor is
Ov = (p/g)100 = (300/500)100 = 60%,

{
10 ”/7 10 l—9750 100 mm.

b =bh . = |
byl 1, t 250/10 10

¢ or

= [—)— +l7 +hm,:l=
50

=355*10 ~460+7 *100:,— 2670 > 2527 kN, OK.

7 CONCLUSIONS

The evaluation of the results of the numerical
example gives the following conclusions.

(a) designing the truss with three different cross-
sectional areas. i.e. all chords with the same profile
and bracing divided into two profile groups. the
structure of increased height at the middle support
gives the minimum structural weight for Q =2.0
and @ =06 (}/a=2.500*10" mm*);

(b) designing the truss with three different profiles.
for the optimum version of parallel chords is the
solution of Q=w=13 (71 =2.657*10° mm").
6% larger than that for the version with increased
height;

(¢) designing the truss with only two different
profiles, i.e. one profile for all chords and other for
all bracing rods. the best non-parallel solution is
Q=2w=06 (V/a=2970*10° mm’ ) and the
parallel chord solution of Q=w =12 gives the
minimum weight (J7a = 2.893*10° mm’ ). The non-
parallel chord solution gives 19% larger weight than
that of three difterent profiles.

The main conclusion is that the optimum truss
geometry depends on the number of difterent rod
profiles.

It should be noted that the optima are not very
sensitive to the change of height  parameters,
although the weight difference between the best and
worst (Q=2.0.w =12, Fa =3.332*10") structural
version is 33%.
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