MINIMUM COST DESIGN OF A BUNKER CONSTRUCTED FROM WELDED STIFFENED PLATES

J. Farkas and K. Jármai, University of Miskolc, Hungary

Abstract: The main structural parts of a steel bunker are systematically optimized for minimum cost. The pressure distribution due to the stored material in bin walls is nearly hydrostatic, therefore the optimum positions of horizontal stiffeners are calculated using the condition that all the parts of the base plate strips should be stressed to yield strength. The optimum number of stiffeners is determined in bin and hopper walls to achieve the cost minimum. Trapezoidal stiffeners are designed for bending. The transition beams are loaded by hopper reactions and should be designed for bending as horizontal welded I-beams. The total material and fabrication costs are determined for three optimized bunker structural solutions having different ratios of bin height/width. In the investigated numerical example of a cement bunker the structural version of bin height/width ratio of 1 and height of 6 m has the minimum total cost. The cost of bunkers with ratios of 0.5 and 1.5 is 63% and 6% higher, respectively.

Keywords: minimum cost design, steel bunkers, stiffened plates, welded structures, structural optimization

IIS/I IW- (ex.doc.XV-1038-00) Class A, recommended for publication by IIW Commission XV „Fundamentals of design and fabrication for welding”
1. Introduction
The aim of the structural optimization is to achieve savings in weight and cost in design stage by changing some significant structural characteristics. A cost function should be minimized, which contains variables expressing the structural characteristics. These characteristics are as follows: loads, materials, profiles, geometry, topology, fabrication, transportation, erection, maintenance.
Our aim is to show this design procedure in the case of a welded stiffened bunker (Fig.1). The structural characteristics of a bunker are as follows.

Loads: self weight, pressure of the stored material, wind and earthquake effects. The specialty of the pressures from stored material is that they vary across the height of the bin, this variation is near hydrostatic.

Structural material is steel of yield strength 235 MPa.
Structural types: single or combined in a group, square, rectangular, polygonal or prismatic.
Structural parts (Fig.2): stiffened plate walls for bin and hopper, columns, vertical edge beams, transition beams.

Profiles: we use trapezoidal stiffeners for bin and hopper walls and square hollow sections for columns and vertical edge beams as well as welded I-profiles for transition beams.

Geometry is determined by main dimensions as follows: width and height of bin, slope and height of hopper, width of outlet, height of columns.

Fabrication: all connections are welded.

Fig.2. Main structural parts of a welded square bunker and the pressure components

From these characteristics we select the following: we consider a single square bunker. We use only horizontal stiffeners, since in our previous study [1] it is shown that plates loaded by hydrostatic pressure are more economic with horizontal stiffeners than with vertical ones.

The distances between stiffeners for bin wall should be non-equidistant, since in our previous study [1] it is shown that the non-equidistant arrangement is more economic than the equidistant one. The hopper walls can be stiffened by equidistantly arranged horizontal stiffeners, since it can be assumed that the hopper walls are loaded with constant normal pressure. The thickness of trapezoidal stiffeners should be varied, since they are loaded by different bending moments.

Furthermore the bin width and height can be varied so that the volume of the stored material should be constant. Similar variation has been studied in the case of circular silos [2, 3].
From the relevant literature the following should be mentioned. Books [4-5-6-7-8] as well as articles [9, 10]. The present authors have not found any studies on minimum cost design of bunkers.

Summarizing the above mentioned design aspects, we optimize the positions of horizontal stiffeners in bin walls, calculate the required stiffener thicknesses, determine the optimum number of bin and hopper stiffeners by minimizing the cost, and calculate the total cost of a bunker. This procedure is repeated for three bunkers with different widths and heights (for ratios $H/a = 0.5, 1.0$ and 1.5) and the optimum value of H/a is determined, which gives the minimum total cost. The cost function contains the material and fabrication cost as it has been shown in our recent studies [3, 11].

1. **Optimum positions and number of horizontal stiffeners of bin walls**

Bin walls are loaded by nearly hydrostatic pressure due to stored material (Fig.3). The maximum pressure intensity can be calculated using the Janssen formula [6 or 12]

$$p_{h_{\text{max}}} = kp_{v_{\text{max}}}$$

$$p_{v_{\text{max}}} = \frac{\rho_m a}{4k \mu} [1 - \exp(-H/x_0)]; \quad x_0 = \frac{a}{4k \mu}$$

where ρ_m is the density of stored material, μ is the coefficient of friction of the material on the wall, k is the pressure coefficient, a is the bin width (Fig.2).

The optimum positions of horizontal stiffeners can be obtained using the condition that each part of the base plate of constant thickness should be loaded till yield stress. Since it can be seen that the base plate parts have side ratios larger than 3, they can be calculated as strips with fixed edges (Fig.3). Thus, the stress constraint for a base plate strip is

$$\sigma_{\text{max}} = \frac{p(x_{i+1} + x_i)(x_{i+1} - x_i)^2}{4Ht_b^2} \leq f_y; \quad i = 1\ldots n$$

where $p = \gamma p_{h_{\text{max}}}$, γ is the safety factor, t_b is the thickness of bin, f_y is the yield stress.

![Fig.3. Base plate strip subject to bending, x_{i+1} and x_i are the stiffener positions](image-url)
The optimum positions of stiffeners can be calculated solving the following set of nonlinear equations expressing that all the base plate parts should have the same thickness

\[t_i \geq \left(\frac{p x_i^2}{4 H f_y} \right)^{1/2} \]

\[(x_2 + x_1)(x_2 - x_1)^2 = x_1^3 \]

\[\ldots \]

\[(x_{i+1} + x_i)(x_{i+1} - x_i)^2 = x_i^3 \quad i = 1 \ldots n \]

\[\ldots \]

\[(H + x_n)(H - x_n)^2 = x_1^3 \]

Having obtained the optimum positions of \(n \) stiffeners, each stiffener should be designed as a simply supported beam for a bending moment of

\[M_{Si} = \frac{pa^2}{64H} (x_{i+1} - x_{i-1})(x_{i+1} + 2x_i + x_{i-1}) \]

![Fig.4. Cross-section of a trapezoidal stiffener](image)

We consider trapezoidal stiffeners according to [13] with given dimensions of \(a_1 = 90 \) and \(a_3 = 300 \) mm and apply the local buckling constraint for the inclined webs according to Eurocode 3 [14]

\[a_2 \leq 38t_s \varepsilon; \varepsilon = \left(\frac{235}{f_y} \right)^{1/2} \]

Considering a stiffener cross-section as shown in Fig.4 the distance of the gravity centre \(G \) is

\[z_G = \frac{h t_s (a_1 + a_2)}{a_s t_F + (a_1 + 2a_2) t_s} \]

where

\[h = \left[(38t_s \varepsilon)^2 - 105^2 \right]^{1/2} \]

The moment of inertia is

\[I_y = a_s t_F z_G^2 + a_1 t_s (h - z_G)^2 + \frac{a_2^2 t_s \sin^2 \alpha}{6} + 2a_2 t_s \left(\frac{h}{2} - z_G \right)^2 \]
where $\sin^2 \alpha = 1 - \left(\frac{105}{38 \ell_s e} \right)^2$ (11)

The required stiffener thickness t_s can be calculated from the stress constraint

$$\frac{M_{si}}{I_y} (h - z_G) \leq \frac{f_y}{\gamma_{M1}} \quad \text{or} \quad \frac{M_{si}}{I_y} z_G \leq \frac{f_y}{\gamma_{M1}} \gamma_{M1} = 1.1$$ (12)

The optimum number of stiffeners can be determined from the condition that the cost of the whole bin wall should be minimum. The cost function contains the material and fabrication costs as we have used it in our recent studies [3, 11]

$$\frac{K}{k_m} = \rho V + \frac{k_f}{k_m} \left[C_1 \Theta_d (\kappa \rho V)^{0.5} + 1.3 T_2 \right]$$ (13)

where ρ is the material density, k_f and k_m are the fabrication and material cost factors, respectively, κ is the number of structural elements to be assembled, V is the volume of the structure, Θ_d is the difficulty factor expressing the complexity of a structure (planar or spatial, using simple plates or profiles), the coefficient for the preparation time is $C_1 = 1.0 \text{ min/kg}^{0.5}$. To give internationally usable results, the ratio of k_f/k_m is varied in a wide range. For steel $k_m = 0.5$-1.4 $\$/kg, for fabrication including overheads $k_f = 0$-60 $\$/manhour = 0$-$1$ $\$/min, thus, the ratio may vary in the range of 0 - 2 $\$/kg/min, the value of 0 corresponds to the minimum weight design. The welding time is given by

$$T_2 = \sum_i C_2 a_w^n L_w$$ (14)

the factor of 1.3 expresses that the additional time for chipping, deslagging and changing the electrode is approximated by $T_3 = 0.3 T_2$. The formulae for $C_2 a_w^n$ are given for various welding technologies and weld types. a_w is the weld size, L_w is the weld length [11].

It is assumed that the base plate is butt welded from plate strips of width 1500 mm or less.

In the following numerical calculations for a bunker of $H/a = 1$ and $H = 6000$ mm are only given in details, for other values of H/a only the results are summarized to show the optimum ratio corresponding to the minimum cost of the whole bunker.

Numerical results for a bin of $H/a = 1$ and $H = 6000$ mm.

Cement is selected as the stored material with density of $\rho_m = 1600$ $\text{kg/m}^3 = 1.6 \times 10^{-5}$ N/mm^3. With the values of $k = 0.6$ and $\mu = 0.4$, using Eqs. (1) and (2) one obtains $x_0 = 6250$ mm and $p_{hmax} = 0.036$ N/mm2, $p = \rho p_{hmax} = 0.054$ N/mm2.

A stiffener is welded to the base plate with 2 fillet welds of size $a_w = 0.7 t_s$. The welding times are calculated with the following data: use GMAW-M welding technology (Gas Metal Arc Welding with mixgas). For (14) the following formulae are used:

$$a_w = 4-15 \text{ mm} \quad \text{V butt welds} \quad C_2 a_w^n = 0.1861 a_w^2$$
and L_W is calculated in mm. The difficulty factor is chosen as $\Theta_d = 3$.

The results of computations for $n = 7$ and 8 are summarized in Table 1.

Table 1. Optimum positions of horizontal stiffeners and costs of the stiffened bin walls in the case of $n = 7$ and 8 considering an additional top stiffener for different values of k_f/k_m (kg/min)

<table>
<thead>
<tr>
<th>n</th>
<th>x_i (m)</th>
<th>t_S (mm)</th>
<th>t_F (mm)</th>
<th>K/k_m (kg) for $k_f/k_m=0$</th>
<th>K/k_m (kg) for $k_f/k_m=1$</th>
<th>K/k_m (kg) for $k_f/k_m=2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.44</td>
<td>7</td>
<td>3790</td>
<td>5936</td>
<td>7963</td>
<td></td>
</tr>
<tr>
<td>2.34</td>
<td>7</td>
<td>4.36</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3.09</td>
<td>8</td>
<td>4.94</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.48</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.33</td>
<td>6</td>
<td>3729</td>
<td>5767</td>
<td>7805</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>8</td>
<td>4.04</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2.85</td>
<td>7</td>
<td>4.56</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.06</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.54</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

It should be noted that an additional stiffener on the bin wall top is also considered, which has the same thickness as the uppermost one. It can be seen that the minimum cost is achieved by using $n = 8$. A further increase of stiffeners number is limited by the minimum distance of stiffeners, which should be larger than $a_3 = 300$ mm.

2. Optimum number of horizontal stiffeners of hopper walls

The hopper walls pressures are calculated with formulae given by [12] (Fig.5). Pressures from the material in the hopper (Fig.5a) are given as

$$p_n = \frac{0.6 \rho_m k a \sin^2 \varphi}{\mu^{1/2}} ; q = p_n / 2$$

(15)

Pressures from the material above the hopper can be calculated as (Fig.5b)

$$p_n^1 = \left(p_r c_b \cos^2 \varphi + p_h \sin^2 \varphi \left(1 + \frac{\sin \varphi}{4 \mu} \right) \right) ; q_1 = p_n^1 / 2 ; c_b = 1.5$$

(16)

$$p_n^2 = p_r c_b \cos^2 \varphi ; q_2 = p_n^2 / 2$$

(17)

Summation of two pressures results in a pressure distribution shown in Fig.5c, where

$$p_{n_{\max}} = p_n + p_n^1 - \frac{p_n^1 - p_n^2}{4}$$

(18)
Fig. 5. Pressure distribution on a hopper wall. (a) pressure from the stored material in hopper; (b) pressures from the material above the hopper; (c) summarized normal pressure distribution

Instead of this distribution we calculate approximately with a constant normal pressure $p_{n\text{max}}$, this approximation is the side of safety. For a constant normal pressure an equidistant arrangement of horizontal stiffeners can be used (Fig. 6). Thus, we should determine the optimum number of stiffeners, which gives the minimum cost of hopper wall.

Fig. 6. Equidistant arrangement of horizontal stiffeners of a hopper wall

Numerical results for a hopper wall of the bunker of $H/a = 1$, $\varphi = 60^\circ$

With Eq. (15) $p_n = 0.04098 \text{ N/mm}^2$. Using (1) and (2) one obtains $p_v = 0.0617$ and $p_h = 0.036 \text{ N/mm}^2$. With (16), (17) and (18) $p_{n1} = 0.0784$, $p_{n2} = 0.0231$ and $p_{n\text{max}} = 0.10559 \text{ N/mm}^2$. Multiplying by the safety factor $\gamma p_{n\text{max}} = 0.1584 \text{ N/mm}^2$.

It is possible to calculate the required constant base plate thickness t_h assuming that a plate strip has fixed edges. From

$$\frac{\gamma p_{n\text{max}} a_s^2}{12 t_h^2 / 6} \leq \frac{f_s}{\gamma_{M1}} = 213 \text{ MPa}$$
we obtain

\[t_h \geq a_S \left(\frac{\mathcal{P}_{n_{\text{max}}}}{2f_s / \gamma_{M1}} \right)^{1/2} = 0.01928a_S \]

\(a_S \) is the distance between stiffeners (Fig.6).

The required trapezoidal stiffener thicknesses are calculated similarly to the case of bin wall stiffeners using Eqs (7-12), but, instead of \(M_{si} \) we use

\[M = \frac{\mathcal{P}_{n_{\text{max}}}a_i^2a_S}{8}. \]

The results are summarized in Table 2. Note that we use a minimum stiffener thickness of 6 mm.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a_S)</th>
<th>(t_h)</th>
<th>(k_f/k_m = 0)</th>
<th>(k_f/k_m = 1)</th>
<th>(k_f/k_m = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>900</td>
<td>18</td>
<td>3716</td>
<td>4915</td>
<td>6114</td>
</tr>
<tr>
<td>6</td>
<td>771</td>
<td>15</td>
<td>3430</td>
<td>4745</td>
<td>6061</td>
</tr>
<tr>
<td>7</td>
<td>675</td>
<td>13</td>
<td>3248</td>
<td>4661</td>
<td>6074</td>
</tr>
</tbody>
</table>

It can be seen that the costs decrease when the number of stiffeners increases, except in the case of \(k_f/k_m = 2 \). We decide that the optimum number of stiffeners is 7.

3. **Optimum design of transition beams**

We consider the transition beams (Fig.2) as simply supported ones with a span length of \(a \). They are subject to bending from the horizontal pressure acting on the lowest part of the bin and from the horizontal component of pressures acting on the hopper. Bending moment from the first action is

\[M_1 = \frac{p(H - x_0)a^2}{16} \]

(19)

We approximate the pressure distribution as shown in Fig.7. The horizontal reaction from the normal pressure is

\[H_2 = \left[\frac{\mathcal{P}_{n_{\text{max}}}}{3} + \frac{\gamma (p_n + p_{n2})}{6} \right] a_h \sin \varphi \]

(20)

The maximum bending moment from \(H_2 \), assuming a load distribution shown in Fig.7, is

\[M_2 = \left(F_1 + \frac{F_2}{2} \right) a - F_1 \left(\frac{a - a_0}{6} + \frac{a_0}{2} \right) - \frac{F_2 a_0}{8} ; F_1 = \frac{H_2 (a - a_0)}{4} ; F_2 = H_2 a_0 \]

(21)

For tangential pressures \(q \) we assume a distribution similar as that for normal pressure.
The horizontal reaction from tangential pressure acting on the hopper is (Fig.8)

\[H_3 = \frac{p_{n_{\text{max}}} + \gamma (p_n + p_{n_2})}{4} a_h \cos \phi \]

(22)

The maximum bending moment from \(H_3 \), assuming the same distribution as for \(H_2 \), is

\[M_2 = \left(F_3 + \frac{F_4}{2} \right) \frac{a}{2} - F_3 \left(\frac{a - a_0}{6} + \frac{a_0}{2} \right) + \frac{F_4 a_0}{8}; F_3 = \frac{H_3 (a - a_0)}{4}; F_4 = H_3 a_0 \]

(23)

The transition beam is designed as a horizontal symmetric welded I-beam loaded by bending in horizontal plane by the maximum bending moment of
\[M = M_1 + M_2 - M_3 \] \hspace{1cm} (24)

Numerical results for the bunker of \(H/a = 1 \)

Considering the bin wall with 8 stiffeners \(M_1 = 55 \times 10^6 \) Nmm, \(H_2 = 318.4 \) (N), \(M_2 = 1046 \times 10^6 \) Nmm, \(H_3 = 168.9 \) (N), \(M_3 = 555 \times 10^6 \), \(M = 546 \) kNm.

The dimensions of a welded I-beam optimized for minimum cross-sectional area are as follows [3]

\[h = \left(1.5W_0 / \beta \right)^{1/3}; h / \beta = 69; e = \left(235 / f_y \right)^{1/2}; b = h(\beta / 2\delta)^{1/2}; 1 / \delta = 28 \varepsilon \]

and the thickness of web and flanges are \(t_w = \beta h; t_f = \delta b \).

The required section modulus is \(W_0 = M / f_y \gamma_{M1} \).

Using these formulae one obtains \(h = 645, t_w = 10, b = 290, t_f = 11 \) mm.

The cost of the beam is calculated with Eqs (12) and (13) considering 4 fillet welds of size 5 mm, a difficulty factor 3 and the number of assembled structural parts 3. For \(k/k_m = 1 \) one obtains \(K/k_m = 982 \) kg.

4. Vertical edge beams of the bin

The required width of these square hollow section beams is determined by a geometric condition that the largest horizontal stiffener should be welded to them. For the bin with 8 stiffeners the maximum stiffener thickness is 8 mm, thus, using Eq.(9) we obtain \(h_S = 286 \) mm. A square hollow section of 300x300x8 is required.

5. Design of columns

Calculation of the self-weight for a column

- Optimized bin wall with 8 stiffeners: 3729 kg
- Vertical edge beam 6x72.8: 437 kg
- Optimized hopper wall with 7 stiffeners: 3248 kg
- Transition beam: 640 kg
- Total self-weight acting on a column: 8054 kg

Volume of bunker is given by

\[V = a^2H + \left(\frac{a^2 - a_0^2}{6} \right) \tan \phi \] \hspace{1cm} (25)

Volume of the bunker of \(H/a = 1, H = a = 6 \) m, \(a_0 = 0.6 \) m, \(\phi = 60^0 \) is \(V = 278.29 \) m³.

Weight of the stored material is \(Q = l600 \times 278.29 = 445 \times 10^3 \) kg. \(Q/4 = 1112.5 \) kN.

The effect of wind can be neglected.

The effect of earthquake is calculated according to [6].
The horizontal force is

\[V_e = 0.2ZQ \]

For a moderate damage \(Z = 3/8 \), thus \(V_e = 333.75 \text{kN} \). This force is acting at a height of \(H/2 + H_0 + H_1 = 10.08 \text{m} \). The compression force acting on a column due to earthquake is

\[N_c = 10.08 \times 333.75 / 4a = 140 \text{kN} \]

According to [14] two load combinations should be considered as follows.

1. Permanent action (self weight) + the most unfavorable variable action \((Q)\) multiplied by safety factors

\[1.35 \times 80.54 + 1.5 \times 1112.5 = 1778 \text{kN} \]

2. Permanent action and all the unfavorable actions including earthquake multiplied by 0.9

\[1.35 \times 80.54 + 0.9 \times 1.5(1112.5 + 140) = 1800 \text{kN} \]

It can be seen that the second combination is the leading one.

We select for a column the square hollow section of 300x300x10 mm. Assuming that the column is constructed with pinned ends, the length is 7.08 m. Check of the column according to [14] for overall flexural buckling:

\[\bar{X} = \frac{7080}{118 \times 93.91} = 0.6389; \sigma = \frac{1800 \times 10^3}{11500} = 156 \leq 0.8171 \times 213 = 174 \text{ MPa}, \text{OK.} \]

6. Calculation of the total cost of the bunker of \(H/a = 1 \)

We assume that \(k_f/k_m = 1 \text{ kg/min} \) and \(k_m = 1 \text{ $/kg} \).

- One stiffened bin wall with 8 + additional top stiffener 5767 $
- One stiffened hopper wall with 7 stiffeners 4661 $
- One vertical edge beam 300x300x8, length 6 m 528 $
- One transition welded I-beam 982 $
- One column 300x300x10, length 7.08 m 773 $

Total cost of the structural parts of the bunker 4x12711 = 50844 $

The costs of the connecting welds are as follows.

Welds connecting the vertical edge beams with bin walls (Fig.9a). 3 fillet welds of size 4 mm, welding technology SMAW (shielded metal arc welding). The length of welds connecting the base bin plate and the stiffeners is calculated approximately as \(2H\), instead of this length we calculate with 5 welds having a length of \(H\). Instead of 1.3 we multiply by 2 considering the time of assembly as well.

\[K = 2 \times 0.7889 \times 10^3 \times 4\times 5 \times 6000 = 757 \text{ $} \]

Welds connecting the stiffened hopper walls to an edge plate strip (Fig.9b)

\[K = 2 \times 0.7889 \times 10^3 \times 4 \times 4 \times 6040 = 610 \text{ $} \]

Welds connecting the hopper base plate to the transition I-beam (Fig.9c)

\[K = 2 \times 0.7889 \times 10^3 \times 6^2 \times 2 \times 6000 = 682 \text{ $} \]

Total cost of connecting welds 4(757 + 610 + 682) = 8196 $
Total cost of the bunker 59040 $.

Fig.9. Welded connections in a bunker. (a) Connection of stiffened bin walls to the vertical edge beam; (b) connection of stiffened hopper walls to an edge plate strip; (c) connection of hopper base plate, vertical edge beam and column to the transition welded I-beam

7. The optimum H/a ratio

In order to find the most economic structural solution we optimize bunkers having different H/a ratios, but the same storage capacity. Eq.(25) can be written in the form

\[V = \omega a^3 + \frac{(a^3 - a_0^3)\tan \varphi}{6} = 278.29 \text{ m}^3 \] \hspace{1cm} (26)

where \(\omega = H/a; \varphi = 60^\circ; a_0 = 0.6 \text{ m} \). Eq.(26) can be solved for \(a \) as follows

\[a = \left(\frac{278.35}{\omega + 0.28868} \right)^{1/3} \] \hspace{1cm} (27)

The height of the hopper is calculated with the following formula

\[H_0 = \frac{a - a_0}{2} \tan \varphi \] \hspace{1cm} (28)

Table 3 shows the main dimensions of bunkers with different H/a ratios

<table>
<thead>
<tr>
<th>H/a</th>
<th>(a)</th>
<th>(H)</th>
<th>(H_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>7.07</td>
<td>3.53</td>
<td>5.60</td>
</tr>
<tr>
<td>1.5</td>
<td>5.38</td>
<td>8.07</td>
<td>4.14</td>
</tr>
</tbody>
</table>
Fig. 10. Main dimensions of bunkers in m with different H/a-ratios: (a) 0.5, (b) 1.0, (c) 1.5

Results for $H/a = 0.5$

- Bin walls with 3 stiffeners, base plate thickness 9 mm cost 24316 $
- Hopper walls with 9 stiffeners, base plate thickness 16 mm cost 41172 $
- Transition I-beams web 875x13, flanges 395x14 cost 7192 $
- Vertical edge plates 640x12 mm cost 852 $
- Columns square hollow section (SHS) 350x8 mm cost 2732 $
- Connecting welds cost 20288 $
- Total cost 96552 $

Results for $H/a = 1.5$

- Bin walls with 7 stiffeners, base plate thickness 8 mm cost 28236 $
- Hopper walls with 6 stiffeners, base plate thickness 14 mm cost 14612 $
- Transition I-beams, web 570x9, flanges 260x10 cost 2944 $
- Vertical edge beams, SHS 350x8 cost 2756 $
- Columns SHS 350x8 cost 2236 $
- Connecting welds cost 11736 $
- Total cost 62520 $

The main cost data for the three structural versions are summarized in Table 4.

It can be seen that the bunker of ratio $H/a = 1$ can be built with minimum cost. The bunker of $H/a = 0.5$ results in high cost because of large hopper dimensions.
Table 4. Comparison of the main cost data in $ H/a

<table>
<thead>
<tr>
<th></th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin</td>
<td>24316</td>
<td>23068</td>
<td>28236</td>
</tr>
<tr>
<td>Hopper</td>
<td>41172</td>
<td>18644</td>
<td>14612</td>
</tr>
<tr>
<td>Other parts and welds</td>
<td>31064</td>
<td>17328</td>
<td>19672</td>
</tr>
<tr>
<td>Total</td>
<td>96552</td>
<td>59040</td>
<td>62520</td>
</tr>
</tbody>
</table>

Conclusions
The bin and the hopper of a welded square bunker can be optimized for minimum cost. The pressure distribution on the bin walls is nearly hydrostatic, therefore the optimum position of horizontal stiffeners should be calculated. The hopper walls are subjected to a nearly constant normal pressure and, on the basis of the detailed cost calculation, the optimum number of horizontal stiffeners can be determined. Important structural parts are the transition beams loaded in bending by hopper reactions and designed as horizontal welded I-beams.

The most economic solution is achieved by comparison of costs for bunkers of different ratios of H/a. The best version is the bunker with the ratio of $H/a = 1$. The difference between the costs of bunkers with ratios $H/a = 1$ and 0.5 is 63%.

Acknowledgements
This work has been supported by grant OTKA 22846 of the Hungarian Fund for Scientific Research and the Fund for Higher Education grant 8/2000.

References

