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Jozsef FARKAS (1), Kdroly JARMAI (2)

OPTIMUM DESIGN OF ALUMINIUM COMPRESSED
STRUTS AND BOX BEAMS

1. INTRODUCTION

In recent years many results have been reached in the field of optimum design of
steel structures, e.g. (Farkas 1984). Our aim is to extend thispresearch to the
optimization of simple aluminium structures. i

In optimum design structural versions are sought which minimiTe the objective
function and fulfil the design constraints. The cross-sectional area as objective
function is selected here. Design constraints express the safety of the structure against
failure, overall and local buckling, large deformation, vibration, etc.

The buckling constraints play in the present calculations an important role. For
steel structures several up-to-date standards are available. For aluminium structures
there is no Eurocode standard. German DIN 4113 is based on very old DIN 4114
which is no longer valid for steel structures. The Mazzolani's method (Mazzolani
1985) is too complicated for optimization. Thus, we use here relatively simple
buckling formulae given by (Sharp 1993) based on an ASCE article (Clark and Rolf

1966).

Circular and square hollow sections (CHS and SHS) are widely used in structures
because of their high resistance against buckling and torsion. It has been shown
(Farkas 1992a,b) that for steel CHS and SHS struts simple closed formulae can be
derived. Unfortunately, it is not the case for aluminium struts, but some diagrams can
be given to help designers.

We treat here only numerical examples, since it is impossible to give design
diagrams valid for all types of aluminium alloy.

(1) Doctor of technical sciences, univ. professor
(2) Candidate of technical sciences, univ. assoc. professor
University ofMiskolc, H-3515 Miskolc, Hungary
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2. MINIMUM CROSS-SECTIONAL AREA DESIGN OF CONCENTRICALLY
COMPRESSED SHS STRUTS (Fig. 1) ‘

According to (Sharp 1993) the overall and local buckling strength of compressed
aluminium struts can be calculated in the form of 72E/4? in elastic and B - DA in plastic
range, where A is the slenderness, B and D are constants depending on the type of
aluminium alloy (Fig.2).

The slenderness of SHS struts is given by

1o KL _KLV6 _100KJ6 . o
ST T s 8

_ 1006

! o8

where X is the end restraint factor, for pinned ends K = 1 is used here, =b/y/6 is the

radius of gyration. Introducing the notation Js = b/t the cross-sectional area can be
2 49%12

expressed as A=4bt = 4y _ 4-5‘

5s  10°5g

@

For our numerical examples we select the aluminium alloy 6061-T6 (AIMg1SiCu,
solution heat-treated and then artificially aged). For not welded struts the following data
can be used: the yield stress is f, = 240 MPa, the elastic modulus is E = 7¥10° MPa.

J,N

9
°
L 0,
I
N

Fig.2 Overall buckling curve for SHS
and CHS struts

Fig.1 Concentrically compressed SHS
and CHS struts
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The constants of the overall buckling curves are as follows:
[ 1y
= =27 P'
Bs=Jy(1+\iss1) =270 MPa 3)
Bs [Bs 0.418¢
Dg = =2 |=2 =1.68 MPa; Cs= =65.9
§ 10V E % S Dg )
For the constants of the local buckling curve the following formulae are given:
3 Yy
Bp = f,(1+-—>)=308.7 MPa (5)
L 21.7
| Bp [Bp 0.35Bp
D = et [t = . C = =57,
[, P="o\F 205 MPa; P="D, 52.7  (6)
i

An equivalent plate slenderness can be calculated by equating the elastic plate
b
buckling strength to 72E / }.ZP

ki’E ,t o #°E ,12 i-v2)b

—( *)2 = from which one obtains Ap = —(“——**)— -,

. C1=V) b A kot

The Poisson's ratio for aluminium is v = 1/3, for a uniformly compressed plate strip

with simply supported edges k = 4, thus Ap =1.6363 N

2.04BpE 9483
Ap  Ap

The local buckling strength in elastic range is op =

@®)

i In the optimization procedure the dimensionless unknowns Og and 95 are sought

which minimize 10°4/L? and fulfil the design constraints. The factored compressive

tq 49%
force N and the strut length L are known. = e —>min ©)
L S
_ o N 10*N &g
The overall buckling constraint is —=— 5 SOs (10)
A4 F 4y
where, using Egs. (3) and (4) 05 =270-1.681; for A5 <659
o = P *T*10Y ) 2 for A, >65.9
. . N 10°N & )
The local buckling constraint is A ad Op (11
where, using Eqs. (5), (6) and (8) o, =308.7-2.054, for  1,<527
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op =9483/ 4, for 4,527

It is known that the local buckling can decrease the overall buckling strength, thus a
constraint is given for the interaction of overall and local buckling as follows:
4
%:%%sd{%ﬁ,” (12)
where o5 and o, are given ir: Eqs (10) and (11). It has been verified for steel CHS struts
(Farkas 1992a,b) that the overall and local buckling constraints are active, i.e. these
inequalities can be treated as equalities.

The computation has been performed using the Rosenbrock's Hillclimb mathematical
programming method (Rosenbrock 1960, Jarmai 1989). The results are given in the
form of a design diagram suitable for desi;ners (Fig.3).

The optimal values are summarized in Table 1 as well. From these values the optimal
b and ¢ foragiven 10°N/L? (in MPa) can be obtained using Eqs (1) and (9). It can be
seen that, in the double-log coordinate system the curves consist of linear portions, so a

linear interpolation can be used.

Table 1. Optimal values for compressed

SHS struts M
12 3

otng2 01 1 100 100 1000 /
0.1

As 242 166 113 771 42 R =
0.0t —8—Dentas | |
& 478 220 101 47 28 —A—Theta s
~—-3€-~-ObJ.Func.
9s 101 148 22 32 59  oom I

0.1 1 10 100 1000

]04A/L2 0.085 0.040 0.185 0.863 5.00
Fig. 3 Optimal values for compressed

SHS struts as a function of
10°v12 [MN/m?}, the objective
function is 10%4/22
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3. MINIMUM CROSS-SECTIONAL AREA DESIGN OF CONCENTRICALLY

COMPRESSED CHS STRUTS (Fig.1)

The overall buckling curve is the same as for SHS struts. The constants for the local

buckling strength formulae are as follows:

7

Be = fu(144=) =296 MP (13)
AT y
Bc 4| B¢
D, =-—31,-—~ =10.64 MPa (14)
CTI5VE
The cross-sectional area is givenby A= 2Dt = aD*/ 8¢, ¢ =D/t (15)
44 8 100D
The objective function to be minimized is WA _T¢ min, 9¢= I (16)
L 4
10°N &
The overall buckling constraint is defined by N -—-2—-—%' sos a”n
A ' z8;
8
where og =270-1684¢; Ac = 10?9'(‘/— for A¢c <65.9
c
os =2 71041 2 for Ac >65.9
4N 5
The local buckling constraint is expressed by N -1—07——-%* soc (18)
A L a9
. 100 R\-‘\l\‘*l
Table 2, Optimal values for compressed R |
CHS struts 1 —
| — f
4.2 1 10 100 1000 ] /
10°N/L 1 L
A 11281 48 26 / _
& 770410 203 85 . ettt S
9c 2335 58 109 )/ S ougra.
T
]04A/L2 0.022 0.094 0.530 441 - }

103

1 I

1000

Fig. 4. Optimal values for compressed

CHS struts (see Fig. 3.)
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where oc =296 10.64"%9 for 1,—6;26; <12

oc = *7%10% / 22 for <512
oc 1 |6¢c
= 4 —_— l+““‘ -
A 2 ( 35V 2 /
Note that the interaction of overall and local buckling in the case of CHS struts is not
treated in Sharp's book. According to (Ellinas et al. 1984) the interaction is not active
for steel CHS struts, thus, it can be neglected.
The results of optimization are given in Fig. 4 and Table 2 similarly to results for
SHS struts. Note that the &, values are for small 10*M/22 values so large (Tables 1, 2),

that the small thicknesses canriot be fabricated. Then the thickness should be limited:
1= 8L/ (1008) 2 ;.

4. MINIMUM CROSS-SECTIONAL AREA DESIGN OF WELDED BOX
BEAMS LOADED IN BENDING AND SHEAR (Fig.5)

The cross-sectional area to be minimized is A4 = ht,, + 2bt; — min 19)
h +lf 2 1., K
Ly =1, —4%30 ;| —L | —4#30iw 2 _y5)2 20
of =1x /( 5 ) 5 ( 5 ) (20)
2
K3t h+ty

I =—242bt

where x 2 f [ 2 ] 21)
21

The section modulus is Wy = 7 (22)

lH-tf

The maximal bending moment for a simply supported beam Subject to a uniformly
distributed normal load is M., = pL*/8, where p is the factored intensity of the load.
The stress constraint is Omax =M puy / Wy < f Y (23)

In a numerical example f, = 240 MPa is taken for 6061-T6 alloy.

The local buckling constraint for the compression flange can be calculated using Egs.
(5),(6),(7),(8) and (11): Omax < Opf 29

where opr = 308.7—2.05/1]7'; lpf =l.63b/lf for le <52.7




O'Pf =9483/1Pf,‘
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for A'Pf >52.7

The local buckling constraint for the webs loaded in bending with constants

34/
B, =13 fy(l+—l—§%) =457.8 MPa (25)
B, [6B, 0.58
= — f—— = 4,5 M = L 0.5
v =g 3MPa; Cy === =9 (26)
is expressed as ' Comax S Ow @n
where o, =451.8-4.53Ap,; Apy =0.67%2h/1, for Ap, <50.5
2.04./B E
and Opy = Lid : 11548 N for/lpw > 50.5

APw

The shear stress constraint is Tyyax =

(h-60)t,,

where 7, is the shear yield stress, ( is the shear force.

The constants for the shear buckling constraint of webs are calculated as follows:

By = ry(l+fl~‘/_;:—%)=181 MPa 29
P The fusion welding causes a partial
annealing of the material in the vicinity
L of the weld. This effect of welding
30 30 should be considered by substracting
H r_j Lf plate sirips from the working cross-
30 I 3°LE T section area. The width of the reduced-
A w2 . h strength zone in both sides of the weld
—> may be taken as 25 mm according to
iz Sharp or 30 mm prescribed in DIN 4113
30]:;; 30T 4 Part 2 (1993). We use here 30 mm
3: b ';0 I—Wg—f (Fig.5). The effective moment of inertia

Fig. 5. The effective cross section of a

welded box beam

is calculated using the method proposed

in DIN 4113 as follows:
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B ,B 0.41B,
Dy =29 _Q.zo,gz(m MPa; Cgy = Q =80.6
0V E

30
The elastic shear buckling strength is

53422 (tw )2 68.77
Tor = =5 =
12(1-4%)

hy 2h
2k

i @31
w
W

According to Shmp the actual shear buckling strength can be calculated as

Ty = Toy +0.866( 7, = 7pp ) = 0.134 75, +121.2

(32)
The value of 121.2 is modified to have a continuous diagram, thus
9.27*10*
Ty = —-——-/12 +98.7 (33)
w
Using Eqs (29), (30) and (33) the shear buckling constraint for webs is defined by
Tmax = 7Q (34)
where 79 =181-0.92044,,; for 1, <80.6
) Vs
TQ =To = %2—[2—+98.7 for 1, > 80.6

w
In the design of structures the deflection is often restricted. The deflection constraint
can be formulated for a beam shown in Fig.5 as follows:

Winax =

(35)
where p, = p/y with a safety factor of y = 1.5. The allowable deflection is taken as
w' = L/300.

Table 3. Optimal values of welded box beams

10°p/8L 50 100 150 200 250 300 350

(N/mm?)

L(mm) 25000 12500 8333 6250 5000 4167 3571

h(mm) 1216 634 422 331 294 234 205
t/2(mm) 6.6 3.9 2.7 24 2.8 2.2 1.8
b (mm) 565 391 326 253 166 169 172
{-(mm) 9.1 7.1 6.2 5.4 4.7 4.7 4.4
10°%4/17  0.4199 0.6634 0.8980  1.096 1.286 1.484 1.717




25

In a numerical example, with the value of p =10 kN/m = 10 N/mm and E = 7*10°

MPa, the optimal dimensions of 4, 1,/2, b and I are computed and given in Table 3
with the corresponding minimal values of 10°4/L% as a function of 1M,/ =
105/(8L) or L. Diagrams for these optimal values show that the optimal values for
another values of L can be calculated using a linear interpolation between the given

values.
5. CONCLUSIONS

In the optimum design of compiessed SHS and CHS struts the optimal b and 1 as well
as D and f values are computed which minimize the cross-sectional area and fulfil the
design constraints relating to the overall and local buckling. The buckling constraints
are defined using the formulae given in Sharp's book. The computation has been
performed by using the software developed on the basis of the Rosenbrock's Hillclimb
mathematical programming method. The results are shown in diagrams and tables
suitable for designers.

In the optimum design of welded box beams the effect of welding is considered by
substracting the annealed cross-sectional parts in the calculation of the moment of
inertia. The optimal dimensions are calculated considering the constraints on normal
and shear stress, local buckling of the compression flange, local buckling of webs due to
bending and shear as well as on deflection. The results of a numerical example are

given in a table.
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OPTYMALIZACJA ALUMINIOWYCH PRETOW SCISKANYCH
1 BELEK SKRZYNKOWYCH

Streszczenie

Wyznaczono minimalny przekroj poprzeczny $ciskanych aluminiowych pretow
rurowych (kwadratowych 1 okraglych) oraz spawanych aluminiowych belek skrzyn-
kowych przy zginaniu i $cinaniu. Obliczone optymalne wymiary minimalizuja
powierzchnig przekroju poprzecznego i speiniajg ograniczenia konstrukcyjne.
W przypadku pretéow $ciskanych warunki wyboczenia ogolnego i lokalnego (Eqs 10,
11, 12 oraz 17, 18) okreélono na podstawie formul Sharpa (Sharp, 1993).

W spawanych belkach skrzynkowych rozpatrzono nastgpujace przypadki:
naprezenia normalne 1 §cinajace, wyboczenie miejscowe pasa $ciskanego, wyboczenie
miejscowe $rodnikow przy zginaniu i $cinaniu, jak réwniez ze wzglgdu na ogranicze-
nia wygie¢ (Eqs 23, 24, 27, 33, 34 oraz 35). Efekt spawania uwzgledniono poprzez
pominigcie przyleglych stref do spoin podhuznych (po 30 mm zkazdej strong) przy
obliczaniu momentu bezwladnosci.

Wprzykladach obliczeniowych przyjeto stop aluminium 6061-T6 o granicy
plastycznosci 240 MPa. Zadanie optymalizacyjne rozwiazano przy pomocy metody
programowania matematycznego Rosenbrocka (Rosenbrock, 1960).

Wyniki obliczen przedstawiono na Fig. 314 oraz w Tabl. 1, 2 i 3, ktore pozwa-
laja wybra¢ optymalne wymiary, poprzez interpolacjg liniowa podanych wielkosci.




