PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON METAL STRUCTURES - ICMS-03
MISKOLC, HUNGARY, APRIL 3-5, 2003

ETAL STRUCTURES

Design, Fabrication, Economy

Edited by

Kéroly Jarmai
University of Miskolc, Hungary

Jézsef Farkas
University of Miskolc, Hungary

Millpress

MILLPRESS ROTTERDAM NETHERLANDS 2003




Cover design: Millpress

All rights reserved.

This publication may not be reproduced in whole or in part, stored in a retrieval system or transmitted in any
form or by any means without permission from the publisher, Millpress Science Publishers.
info@millpress.com

Published and distributed by Millpress Science Publishers, P.O. Box 84118, 3009 CC Rotterdam, Netherlands
Tel.: +31 (0) 10 421 26 97; Fax: +31 (0) 10 209 45 27; www.millpress.com

ISBN 9077017755
© 2003 Millpress Rotterdam
Printed in the Netherlands




Metal Structures — Design, Fabrication, Economy, Jarmai & Farkas (eds)

© 2003 Millpress, Rotterdam, ISBN 90-77017-75-5

Minimum cost design of uniaxially compressed plates with welded
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ABSTRACT: The cost function to be minimized expresses the material and fabrication costs. Design
constraints are as follows: global buckling of the uniaxially compressed longitudinally stiffened plate, local
buckling of plate and stiffener clements, torsional buckling of open-section ribs, limitation of the thickness of
cold-formed trapezoidal stiffeners, limitation of the distortion caused by shrinkage of welds. Reliability of the
global buckling constraint has been taken into account due to a given deviation at the different parameters.
The optimum dimensions and number of stiffeners are determined by a mathematical programming method,
The cost differences between the best and worst solutions are 5-25%, so the optimization results in significant
cost savings. The probability of failure at the optimum is p,= 0.00591.

1 INTRODUCTION

Uncertainties are unavoidable in the design. The en-
gineering analysis should contain tools for the eval-
uation of uncertainties. Many phenomena or process
of concern to engineering contain randomness; i.e.
the outcomes are unpredictable. '

Traditionally, the reliability of engineering sys-
tems is achieved through the use of factors or mar-
gins of safety and adopting conservative assump-
tions in the process of design.

Welded stiffened plates are widely used in va-
rious load-carrying structures, e.g. ships, bridges,
bunkers, tank roofs, offshore structures, vehicles,
etc. They are subject to various loadings, e.g. com-
pression, bending, shear or combined load. The
shape of plates can be square rectangular, circular,
trapezoidal, etc. They can be stiffened in one or two
directions with stiffeners of flat, L, trapezoidal or
other shape.

From these structural versions we select here
rectangular plates uniaxially compressed and stiff-
ened in the direction of the compressive load. It
should be mentioned that we have worked out
minimum cost design procedure of square and
rectangular orthogonally stiffened and cellular plates
loaded in bending (Farkas & Jarmai 1997), uni-
axially compressed rectangular plates with flat and
L-stiffeners (Farkas & Jarmai 1998a), welded bridge

decks with open- and closed-section stiffeners
(Jarmai et al. 1997, Jarmai et al. 1998).

It is well known that the instability phenomena
are significantly affected by initial imperfections and
residual welding stresses. For instance, it has been
shown that a compression strut designed using the
classical Euler method can be 30% unsafe (Farkas &
Jarmai 1997). Thus, these effects should be consi-
dered in all stability calculations.

In (Farkas & Jarmai 1998a) we have used the
design rules of API (1987). Mikami and Niwa
(1996), (Discussion of Mikami and Niwa (1996) by
Bedair 1997) have recently developed a calculation
method for orthogonally stiffened uniaxially com-
pressed rectangular plates taking into account the
initial imperfections and residual welding stresses.
Their formulae are based on experimental results.

The aim of the present study is to apply the
Mikami-Niwa method for the optimum design and
com-parison of uniaxially compressed plates
stiffened with ribs (Fig.1). In the minimum cost
design the characteristics of the optimal structural
version are sought which minimize the cost function
and fulfil the design constraints. In recent years we
have deve-loped a cost function containing the
material and fabrication costs (Farkas & Jarmai
1997, Jarmai & Farkas 1999) and we have included
in the design constraints also the quality require-
ment, which pre- scribes the allowable deformation
caused by residual welding distortions (Farkas &
Jarmai 1998Db).
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Figure 1. A uniaxially compressed longitudinally stiffencd plate

These three important aspects in the design of  where ©, is a difficulty factor expressing the com-
welded structures are included in the present study  plexity of the welded structure, x is the number of
as well, to have a realistic basis for comparison.  structural parts to be assembled,

First the general formulae for the cost function and 7, is time of welding, and T3 is time of additional
design constraints are treated, than the special  works such as changing of electrode, deslagging and
calculation of trapezoidal stiffeners is described and  chipping. 7; = 0.37, , thus,
a reliability constraint is built into the system. A
numerical ex-ample illustrates the differences among 7 4 T, = 1‘32 Cya".L.,, )
the struc-tural versions. o )
where L,; is the length of welds, the values of C,,a;,
2 COST FUNCTION can be obtained from formulae or diagrams con-
structed using the COSTCOMP software (Bodt

The objective function to be minimized is defined as 1990, @ s the weld dimension.

the sum of material and fabrication costs

K=K, +K, =kpV + ka T, ) 3 DESIGN CONSTRAINTS

or in another form 3.1 Global buckling of the stiffened plate

According to Mikami and Niwa the effect of initial

K k, imperfections and residual welding stresses is consi-
—= pV—l——'(T, +T, + 7;), (2)  dered by defining buckling curves for a reduced
k, k,y slenderness

where p is the material density, ¥ is the volume of 1 . 12

the structure, K, and K, as well as £, and /g are = (f ¥ / af") > ®)
the material and fabrication costs as well as cost

factors, respectively, 7; are the fabrication times as  where o, 1s the classical critical buckling stress,

follows: which does not contain the above mentioned effects,
time for preparation, tacking and assembly Jy is the yield stress.
The classical critical buckling stress for a uni-
T =0, . JxoF , 3 ax.mlly .compresse(l longitudinally stiffened plate
1 aNEP (3) (Fig. 1) is
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D 1+y, )
o, = d - ( ,y“ +2+af;e]
hB-~
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for o, =LIB<a,=(1+y,)", (©)
ZIIZD[ 2
o, =211+ ]
B (1+7:)
for o, 20a,, 7

where, with v=023.

Lt} Et}.

b= l2(1~1/2) 1092° ®)

‘"
/7:/F+—f[—“~; b=

r

5 ©)
®

As is the cross-sectional area of a stiffener, p—1 is

the number of stiffeners,

_EI,

) 10
Vs oD’ (10)

Is is the moment of inertia of a stiffener about the &
axis (Fig. 4).

Knowing the reduced slenderness (Equation 5)
the actual global buckling stress can be calculated as
follows:

oyl f, =1 for A<03 (lla)

for 03<A<1
for A>1

oyl f, =1-063(1-03)
oyl [, =1/(08+2)

(11b)
(l1c)

This buckling curve is shown in Figure 2. Tt can
be seen that the used buckling curve contains the
effect of initial imperfections (a, # 0) and residual
welding stresses (o, # 0), therefore it gives much
lower values that the classical critical buckling
curve, which neglects these effects.

The global buckling constraint is defined by

N, - Pp+0s

—<o, = : 12

A v Y 1+ 6 (12)

where

A=Bi, +(p-1)4 (13)
Ag

and 0y = —= (14)
Ir

pp can be determined considering the single panel
buckling of the base plate parts between the stiff-
eners. The factor (p, +8;)/(1+5,) expresses the
effect of the effective width of the base plate parts.

X 10
08 |
0.6 |
0.4 F

0.2 +

O ! L )

0 02 04 06 08

12 14 16 1.8 A

Figure 2. Global buckling curve considering the effect of initial imperfections (@, # 0) and residual welding stresses (0, #0)
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3.2 Single panel buckling

This constraint climinates the local buckling of the
base plate parts between the stiffeners. From the
classical buckling formula for a simply supported
uniformly compressed in one direction

ztan[r,,)z
T,p= -1, 15
1092\ 13)
the reduced slenderness is
5 172

(4B b _bit,
"ol10927,) 1, 568

5 12
e=[i.5J , (16)

Iy

and the actual local buckling stress considering the
initial imperfections and residual welding stresses is

3.3" Local and torsional buckling of stiffeners
These instability phenomena depend on the shape of
stiffeners and will be treated separately for the
trapezoidal stiffeners.

The torsional buckling constraint for open section
stiffeners is
NlAd<o,,.

(19)

The classical torsional buckling stress is (Farkas &
Jarmai 1997)

Gl, |
I,

Our = - (20)

where G = E/2.6 is the shear modulus, /y is the
torsional moment of inertia, /p is the polar moment
of inertia and /,, is the warping constant. The actual
torsional buckling stress can be calculated in the
function of the reduced slenderness

Ol f, =1 for 2,056  (17) A, =(f,/0.,,)", @)
0.7 N
) Oyl f, =1 for 1,045, (22a)
o _ (Oj“Gj for 21,2052  (17b) 6“’ : !
/s ? —=1-053(4, —045) for
This buckling curve is shown in Figure 3. v
Then the factor p,, is as follows: 03<4, <141, (22b)
. Gur _ 1 for  A,2141. (220
Pp=1 if Oy >0y (18a) fo A%
Pr=0ylf, if Oup SOy (18b)
This buckling curve is shown in Figure 3.
Xp10
X7
[ 08 r Xr
0.6 |
0.4 Xp
0.2 1
0 \ . . . . . . .
0 02 04 06 08

112 14 16 _18 ap Ay

Figure 3. Limiting curves for local plate buckling (¥ p) and torsional buckling of open section ribs (F ;)
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It should be noted that the interaction of above
treated instability phenomena (coupled instability) is
ot considered here, since it has been shown (Farkas
& Jarmai 1997) that this interaction can be neglected
when the effect of initial imperfections and residual
welding stresses is taken into account for individual
buckling modes.

3.4 Distortion constraint

In order to assure the quality of this type of welded
structures large deflections due to weld shrinkage
should be avoided. [t has been shown that the
curvature of a beam-like structure due to shrinkage
of longitudinal welds can be calculated by relatively
simple formulae (Farkas & Jarmai 1998b). The
allowable residual deformations fy are prescribed by
design rules. For compression struts Eurocode 3
(EC3, 1992) prescribes fo = L/1000, thus the
distortion constraint is defined as

S =CL 18 fy = L1000, (23)
where the curvature is for steels
C=0844x10"0,y, /1, 24)
Or is the heat input, yris the weld eccentricity
yp=ye—1p!2, (25)

I, is the moment of inertia of the cross-section con-
taining a stiffener and the base plate strip of width b.

3.5 Local buckling of trapezoidal stiffeners
(Figure 4.)

Ag = (a, +2a2)t3 H

Ig= ahity +»§—a§f3 sin‘a. (26)

According to (Stahlbau 1985) a; = 90, a3 = 300
mim, thus

h=(ei-109)" s swa=1-("2) o

a,

_ (1,13(/13 +fr/2)+2[12[3(/13 +1F)/2

28
bt + Ag @8)

Yg

§
Lo |
Figure 4. Dimensions of a trapezoidal stiffener
2
bt} 2 l ’
I = 1—7’ +btpyg +als| hy + —5— —yg | T
B 29

2
1 L, o+, )
+ga§r, sm'a+2azf3( 1 5 £ —yg)

aw=0.5t3, but @iy =4 mm.
Local buckling of a trapezoidal stiffener is defined
as

a, /1, <38¢ (30)

This constraint is treated as active.

The single panel buckling constraint is given by
Equations 15-17, but, in the case of trapezoidal
stiffeners, instead of b the larger value of a3 = 300
and b3;=b-300 should be considered.
Furthermore, the heat input for a stiffener is

0, =2x59.5a}, 31

3.6 Reliability constraint

The global buckling constraint is usually active, that
is why we use reliability aspect on it. Assume that
the variables are uncorrelated (Ang and Tang 1975).
Suppose an N compression force, a oy, ultimate
stress for global buckling and an A cross section
area. So the global buckling constraint looks like

N_ .
~ < (32)

The performance function g(x)= o, A=N=0 is

nonlinear, the evaluation of the exact probability of
safety or failure will generally be involved. As given
in Ang and Tang (1975) the evaluation of the exact
probability of safety will involve the iteration of the
joint probability density function over the nonlinear
region. According to (Schueller 1987) on the failure
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surface the minimum distance to the origin of the
reduced variants is the most probable failure point,

Choose Coefficient Of Variations for the three
parameters

COVy=0.1, COV_ = 0.2, COV,=0.05. (33)

Determine the reliability of the global buckling.
The corresponding Standard Deviations are

SDN: COVN */V, SDU = COVU * U;’
SDy= COVy «N. (34)

The distance from the minimum tangent plane to the
origin of the reduced variants is the appropriate reli-
ability index, which may be used to represent the
measure of reliability.

In this case the partial derivatives are as follows

dg
9g ). 35
( E)N) SDy (35)
(a_g) =SD, A (36)
Jdo
[ng =SDy+ o, a7
oA Ay

For the first iteration assume N*= N, ¢° =0, and
A* =4, (38)

The most probable failure point is
x, ==DC, f3 (39

where the Direction Cosines are as follows

2
pe; =) (40)
dg |

DCy=DC,", DC, =DC;", DC,= DC;". @n
If the partial derivatives have been evaluated than
x; =SDx; + MV, = MV, ~DCSD,j3, (42)

where MV,; are the Main Values, fis the safety
index.
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The components of the failure point are

X =N"=MV, ~DCSDS, (43)
X, =0y =MV, - DC,SD,, (44)
x;=A"=MV,-DC,SD,J. (45)

Substituting these into the limit-statc equation,
g(x)=0,4A-N20, yields a quadratic equation for
the safety index [, from which we obtain the first
iteration for /3.

The revised failure point then can be calculated
by Equations (43-45). Repeating the procedure for
subsequent iterations, when the values of [ are
close in the iterations, the assumed failure point and

the safety index can be calculated.
Therefore the underlying probability of failure is

pr=1-0(f), (46)

where ®(f)is the standard normal probability
®(f) = [exp-Le2) 7
N2 2, 2

Table of values of standard normal probability can
be found in Ang and Tang (1975).

We have used a curve-fitting software to determine
the values of ®(f) (Fig. 5).

Logistic model was chosen:

a

v “

)}'

Coefficient data are as follows:

a=1.0061396

b=1.0263861

¢ =1.6829595

The limits for the probability of failure were
0.0061>p,>0.0.

We consider this constraint as a reliability con-

straint. For a designer the range of pr= 102107 is
applicable.
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Figure 5. Curvefit for the standard normal probability.

Table 1. Optimum dimensions in mm of compressed plates with trapezoidal stiffeners

fefley, (kg/min) P 13 K/ (k)
0 10 11 5 2384
1 12 13 5 3407

5 20 8 4454
6 18 7 4275
7 17 7 4377
2 8 17 5 4255
9 15 6 4329
10 15 5 4320
11 14 5 4346
12 13 5 4368
13 13 5 4559
14 12 5 4576

4 NUMERICAL EXAMPLE

Given data: B = 6000 mm, L = 3000 mm, N =
1.974x10" N, f, =235 MPa, £ =2.1x10° MPa, G =
E2.6, p=1785x10" kg/mn’, ©, = 3.

The variables are as follows: ¢,¢,. as well /3 for
thickness of trapezoidal stiffeners.

The optima are computed using the Rosenbrock's
Hillclimb mathematical programming method com-
plemented by the final search for discrete rounded
values (Farkas & Jarmai 1997). The results are sum-
marized in Table 1. The minimum costs for k/k, =
0, 1 and 2 are denoted by bold numbers.

It can be seen that, in the regions of ¢ the cost

differences between the best and worst versions are
7% for trapezoidal stiffeners, so it is necessary to
optimize the number of stiffeners. The best solution
@=8, tr=17, 1;=5, the probability of failure is p; =
0.00591.

The main advantage of trapezoidal stiffeners is
the large torsional stiffness. The material cost for the
optimum version with trapezoidal stiffeners is 2789

kg, thus, the fabrication cost is (4255-2789) /4255 x
100 = 34% of the total cost, this amount affects the
optimum number of stiffeners for various fabrication
cost factors.

5 CONCLUSIONS

Cost comparisons of structural versions obtained for
a given numerical example by minimum cost design
show the following:

(a) The cost difference between the best and
worst solutions in the investigated region of stiff-
eners' number is significant, which emphasizes the
necessity of optimization.

(b) The active constraints are as follows: the
global buckling of stiffened plate, the torsional
buckling of open-section ribs and the reliability
constraint. Due to the discrete values, they are not at
the limits close to them. Distortion constraint in this
case is passive, since the weld length is relatively
small.
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