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Abstract

In the structural synthesis the cost function is minimized considering design constraints on fatigue stress
range of welded joints, local buckling, deflection and size limitations. In the cost function the material and
fabrication costs are defined. The bending moments and the torsional stiffness of trapezoidal longitudinal
stiffeners are calculated according to the Pelikan-Esslinger method, neglecting the flexibility of crossbeams.
In fatigue constraints the published recent experimental research results are taken into account. A
computer program of the Rosenbrock mathematical programming method is used to determine the
following optimum dimensions: thickness of the deck plate, thicknesses and heights of stiffeners and
crossbeams as well as the distance between crossbeams. The optimization procedure is illustrated by a
numerical example.
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Introduction
Stiffened steel decks form are important structural parts of bridges. Their welded Joints can fail due to
fatigue because of heavy traffic load. The fabrication cost form the main part of total cost, therefore it
affects significantly the optimum dimensions of the deck structure. Although there are many size
limitations, some dimensions can be optimized. These dimensions are as follows: thickness of the deck
plate, height and thickness of stiffeners and crossbeams as well as the distance between crossbeams.
For the calculation of bending moments and the torsional stiffness of stiffeners the Pelikan-Esslinger
method is used. The formulae are relatively complicate, thus a computer method should be applied. The
Rosenbrock Hillclimb method was efficient for this purpose. The optimization procedure is illustrated by a
numerical example. It should be noted that the optimum design of bridge decks with flat stiffeners has been

treated in [1]. In the present paper the case of trapezoidal stiffeners is dealt with.

Assumptions

- The deck plate is simply supported around its periphery.

-The effect of the flexibility of crossbeams on bending moments in stiffeners is neglected.

-The main bridge girder and its connections to the deck structure are excluded from the calculations.

-The self-mass is neglected, since in the governing fatigue stress range constraint it has not to be
considered.

-The spectrum factor in the calculation of fatigue stress range is taken as 1, the number of load cycles is

2*10%.

The live load considered for highway bridges
We select for our numerical example as live load trucks shown in Fig.1. According to DIN 1072 a truck

has two wheel loads of 50 kN and two wheel loads of 30 kN. The widths of wheels are 400 and 260 mm

respectively.

30 kN 50 kN

X 400 mm

-
]

e 2 ep=200 mm

Fig.l. Data of trucks considered as live load
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The bending and torsional stiffness of stiffeners

The dimensions of a stiffener section are given in Fig.2.
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Fig.2. Dimensions of a stiffener section
The specific bending stiffness is defined by
IE
B, = (1)
a-+e
where the moment of inertia is given by
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The specific torsional stiffness can be calculated by using the Pelikan-Esslinger formulae [2], which take

into account the local deformations of trapezoidal stiffeners.
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T'is the torsional stiffness for a closed thin-walled section [3,4].

a4

T (8)



t, =081t ©)
Er}
o/ pR— 10
" 1092 (19
4, _pata (10
2
Aa,
c, =——L 12
'"2a (12)
, = ia—al)ﬁ(cH—e ﬂ) (13)
2 a a+a, 2a
a-a)? ~
h= a§~( 1) (14)
2
P (2a+a1)(a+e)ala2—K0a3(e—-a1) (15)

(a+arl)[2ar2(ar2 +aa, +af)+a13 +7c0a3]
3
4
Ko = (t—“—] (16)
A

The moment of inertia of crossbeams

The dimensions of a crossbeam section are shown in Fig.3.
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Fig.3. Dimensions of a crossbeam section
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= 18
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1o = 0917t approximately according to a Pelikan-Esslinger diagram.

Note that the torsional stiffness of crossbeams can be neglected.



The bending moment of stiffeners at midspan
The homogeneous differential equation of an orthotropic plate, neglecting the bending stiffness in

transverse direction, can be written as

4 4
B, 7Y o 2* __g (19)
dy dx“dy

the solution of which is
W= [C1 sinh(ay) + C, cosh(ay) + Cyap + C4]Sin£§c~ (20)

Considering the boundary conditions, the bending moment at midspan due to a concentrated force Q is

given by

t
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where O = 50 kN/400 mm is the specific force (wheel load reduced to the plane of a stiffener). My, is the
specific bending moment acting in the plane of a stiffener. The bending moment acting on a stiffener is

M = My (a+te) (22)

My, = - ! (23)

Km:—c+ch~1 (24)

a, = —allByazt (25)
1 sinh(af)-at
all = mB D) (h ) t) (26)
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Lot sin (a )
a="" 2 (28)
b\ B,
The dynamic factor can be calculated according to DIN 1072 [5] as
t
y =14 -0008——— 014 29
’ 1000 ¢ @9

h, is the thickness of asphalt.
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The bending moment of a crossbeam at midspan

The reactive force from the wheel loads, according to Fig 4, is

2*30(¢ - 3000)

P = 50kN + ; when 7> 3000 mm
and P = 50kN when £<3000 mm
50 kN
30 kN ‘3000 L. 3000 N 30 kN
v v v
AN AN AN
L ¢ TP ¢
¢ P g
7-3000

1 4

Fig.4. Reactive force P acting on a crossbeam from wheel loads

In our numerical example we treat a bridge deck of width & = 12 m, thus we calculate with 8P (Fig.5).
or P P P @P oF @P ¢P
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Fig.5. Forces acting on a crossbeam

M.,.. = Pb (30)
Fatigue constraint for stiffeners

For bridge decks the fatigue constraint of welded joints is governing. There are some published recent
experimental research results in addition to the design categories defined by Eurocode 3 (EC3) [6,7,8].
Although the trapezoidal stiffeners can be prefabricated in workshop and need not splices welded in site,
we consider a site splice with butt weld, no splice plate, with backing strip, full penetration, root gap >4
mm, for which the recommended design category according to [8] is 80 MPa. Since this important joint is

difficult to access for a test, we consider a safety factor according to EC3 of y wmr = 1.35. Spectrum factor

can be taken as 1, the number of load cycles is 2*¥10°.

The fatigue constraint is formulated as

M, (a+e Ao 80
L(_)(h_zc;)s_._.—_—_.__ (31)
[y Y s 1.35



Fatigue constraint for crossbeams

M. . Ao,
O =¥ I (hw -yG) < (32)

x Y M
The fatigue stress range is 125 MPa, according to EC3, for automatically welded continuous longitudinal
fillet welds carried out from both sides with no stop/start positions. The safety factor can be taken as 1.15

for important accessible joints.

Deflection constraints
Deflection should be calculated without dynamic factor.

Stiffeners:

Pr?
w = <w* 33
o = G (33)

According to Eurocode 3 Part 2 w* =5 mm,

Crossbeams:
4
Spredb <w * (34)
384L1,
8
where Prod = —t—)]i (3%5)

Local buckling constraint for stiffeners
According to Eurocode 3 Part 2
a, <38, (36)

Shear buckling constraint for crossbeam web

L Toa (37)
hwtw Y

where the partial safety factor for shear is

Y =11 (33)
hy,

Ay =—t 39

374¢./x (39)

if A, <08 then 7,,=
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if 08<4, <12 then 17, = %[1— 0625(4,, - 03)]
09f
if A, =212 then 17,, = 2 40
ba Awﬁ ( )

Frequency constraints

The stiffeners’ first eigenfrequency is limited for according to Eurocode 3. Part 2. [7] in 2 Hz. The

calculation of eigenfrequency is as follows

x [E,

EPyES (41)
The cross section area of the stiffener and the deck plate is
Ag =ail; +2a, +(a+e)t, (42)
The mass of this part is
m,=A, *785%107%(a+e) (43)

The cross beam'’s first eigenfrequency is also limited in 2 Hz. The calculation of eigenfrequency is as

T Kl
= ft 44
flc Zb 2 )710 ( )

The cross section area of the cross beam and the deck plate is

follows

A, =tot; +bpytp +ht, (45)
The mass of this part is
m,=A,*785%107%(a +e) (46)

Size limitations
According to Eurocode 3 Part 2
e<251, (47)

t,26 mm

tf >12 mm

Formulation of a cost function according to the fabrication steps
The cost of a structure is the sum of the material and fabrication costs. The fabrication cost elements are
the welding-, cutting-, preparation-, assembly-, tacking-, painting costs etc. It is very difficult to obtain

such cost factors, which are valid all over the world, because there are great differences between the cost
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factors at the highly developed and developing countries. If we choose the time, as the basic data of a
fabrication element we can handle this problem. The fabrication time depends on the technological level of
the country and the manufacturer, but it is much closer to the real process to calculate with. After
computing the necessary time for a fabrication work element one can multiply by a specific cost factor,
which can represent the development level differences. Although the whole production cost depends on
many parameters and it is very difficult to express their effect mathematically, a simplified cost function can
serve as a suitable tool for comparisons useful for designers and manufacturers [9,10].
The cost function can be expressed as

K=K, + K, =kJV+k, > (48)

where K., and Ky are the material and fabrication costs, respectively, %, and kr are the corresponding cost

factors, p is the material density, V is the volume of the structure, 7} are the production times.

Fabrication times for welding

Table 1. Welding times 7, (min) in function of weld size a, (mm) for longitudinal fillet

welds downhand position (see also Fig. 6.)

Welding method a,, (mm) 1037, = 103Ca”
SMAW 2-5 4.0a,
5-15 0.7889 42
GMAW-C 2-5 1.70 a,
5-15 0.3394 42
SAW 2-5 1.190 a,
5-15 0.2349 42

Eq.(48) can be written in the following form

K k
AV TG+ 1) (49)
where

is the time for preparation, assembly and tacking, @, is a difficulty factor, x is the number of structural

elements to be assembled.
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Fig. 6 Welding times for fillet welds of size a,,

Table 2. Welding times 7> (min) in function of weld size a,, (mm) for longitudinal 1/2 V butt

welds downhand position

Welding method ay, (mm) 1037, =103C,a"
SMAW 4-6 2.7 a,
6-15 0.45 a2
GMAW-C 4-15 0.1939 a2
SAW 4-15 0.1346 a?

Table 3. Welding times 7> (min) in function of weld size a, (mm) for longitudinal K-butt

welds downhand position

Welding method a,, (mm) 1037, = 103C,a"
SMAW 5-16 140294
GMAW-C 5-16 0.129 &
SAW 5-16 0.089 &
I, = Zczia:u'Lwi (51).

is the time of welding, a,. is the weld size, L,, is the weld length in mm, Cy and n are constants given for

different welding technologies.

Iy = ZCSia:»iLwi (52)
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is the time of additional fabrication actions such as changing the electrode, deslagging and chipping.
The different welding technologies are as follows: SMAW, GMAW-C, SAW. :
Ott and Hubka [10] proposed that C5; = 0.3 Cs;, s0

L+T= 1-32 Cyuay L, (53)

Values of Cy; and n may be given according to COSTCOMP [11] as follows. It gives welding times and
costs for different technologies [12].To compare the costs of different welding methods and to show the
advantages of automation, the manual SMAW, semi-automatic GMAW-C and automatic SAW methods are
selected for fillet welds. The analysis of COSTCOMP data resulted in constants given in Fig. 6 and Table
1-3 for different joint types.

One can establish other fabrication comp‘onents, can calculate the fabrication time to even plates, the
surface preparation time, the painting time, the cutting and edge grinding times, etc, but the main problem
is how to formulate the equation concerning the time. The difficulty factor § represents that the welding,
or painting is overhead, or vertical, or horizontal and also the complexity of the structure. In our case we
focused on welding costs [13,14,15,16,17,18]. The robot welding and some new technologies have

different cost aspects [19,20].

3 3 3m ___— crossbeam without cutting

~~_{ longitudinal

3
/ /
/ e R ] /7 stiffeners
// —

L=60m 12 m

N~
|_crossbeams
with
cutting
=
“"""no crossbeam

I

ol P

b=12m 3m

A
A 4

Fig.7. The main dimensions of the bridge of our numerical example

The following formulae and values are used for the fabrication steps in our numerical example.

A complete bridge deck is constructed from structural elements of transportable dimensions [21]. In our
numerical example a bridge of length L = 60 m and width b = 12 m is selected, composed from elements of

dimensions Lo =12 m and bp=3 m (Fig.7).
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1) Fabrication of 12*3 m elements in workshop
a) welding of stiffeners to deck plate with SAW fillet welds

C;=0.2349 a2, a,=125%, L,=20 Ot
b) cutting the crossbeam webs excluding the end crossbeam

C,=1.1388/°% t=1,, L,= @ (a, +2a,)(®-1)
c) welding of crossbeam lower flanges to webs with SAW fillet welds

C,=0.2349 a2, a,=051t,  L,= 20 Pt
d) welding of crossbeam webs to deckplate and to stiffeners with GMAW fillet welds

C,=0.3394 a? a,=1251, L,= (e+2a,)®,2(®-05

Table 4. The place, type, cost, size and length of the welded joint for the fabrication of the /2*3 m

elements in workshop

Place of the joint Welding technology =~ Cost parameter Welded joint size ~~ Welded joint length

stiffener- SAW 0.2349 a2 L 20 Pt
deck plate
cutting normal acetilene 1.1388:"% ty @ (a, +2a,)(®-1)
crossbeam lower SAW 0.2349 a2 051, 20 df
flange- web
crossbeam web- GMAW 0.3394 a? 1.25¢, (e+2a2)®52(®_‘05)
deck plate
: : : . by
The volume of an element in which the number of stiffeners is @, = and the number of crossbeams
a+e
L
is ®=-—"2
t
Vi= @, (a,+2a, ), 01 +b® 11, +(h,t,, + A, )b, (54)
The number of assembled elements is
K =0, +D+1 (55)

The cost function for an element can be written as

|2

k
=pV, + —l;—f- {@d KoV, + 1.3[CZSAW (051,,)" 2by® + Cyoypt s @ (ay +2a, )(@ — D)+.. ]}

m m

=

[, A+ Cogay (1251,)" 20 @1 + Cogpgyy (1251, )" (e + 24, )0, 2(® ~ 0'5)]} e

e
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2) Fabrication of the whole deck structure in site

a) welding of stiffeners to end crossbeams with GMAW fillet welds

L (al +2a, +e)CDs

b
=0.3394 4° w=1.25 1 L,=——
Cocraw 9 a, a,=1 Is, bo LO

b)welding of the longitudinal and transverse splices with SAW butt welds

b
Cosaw=0.2349 a2 ay=1, L,= (;__ jb
0

c)welding of crossbeam web and lower flange splices (these splices can also be realized by using bolted

connections) with GMAW butt welds

- b L
- web splices Coaraw= 03394 a2 . a,=1,, L,= (———- 1)(—+ lj
by L,
. b L
- flange splices Coomaw=.0.3394 a2 . a,= 15, Ly=|—-1|| —+1
b, L,

Table 5. The place, type, cost, size and length of the welded joint for the fabrication of the whole deck in

site

Place of the joint Welding technology ~Welding cost parameter Welded joint size  Welded joint length

stiffeners to end GMAW 0.3394 a2 1.25 ¢ f_zL_(al +2a, +e),
crossbeams o
longitudinal and SAW 0.2349 a2 Iy (b j
—=11|b
transverse 0
splices
web splices GMAW 0.3394 a2 . t, ( b ~1J( L 1]
bO ‘LO ¥
flange splices GMAW 0.3394 42 . In [_b_ _ 1)(£ N IJ
bO LO
The volume of the whole deck structure is
Vy =5, (57)
b
N (58)
byL,

The cost function of the whole deck structure is

K, k n
=21 Oy +Kx,0V, +13 CZGMAW(I.ZSIS) —b—*——L~(a1 +2a, +e)<I)s +C2SA,,,t% (—b——ljb +.0
k, k by L, b

m m
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{..JFCZGMAW(hwt(; +b flt;l)(;? - 1)(211— + 1) } (59)

The whole cost function to be minimized is

K 20K, +K, (60)
k k

m m
The optimization procedure for the numerical example

The cost function (Eq. 60) is to be minimized considering the following constraints: Eqs.31, 32, 33, 34, 36,
37 and 41.

Size limitations

The variables are as follows: f;, M, 1., An = bp.ln, which are optimized for a series of discrete values of ¢
to obtain #,,, corresponding to Kpin.

12<¢ s 28 mm

300< i, <2000 mm

8<#,<25 mm

200< 4, <1600 mm

6<t, <20 mm

Results and conclusions

The optimization is made with the following data:
steel yield stress is f, =235 MPa, the cost ratio is between —L— =0 =+ 2, the number of unknown
) m
variables is 5, they are as follows
X, =1y, X, =h,, x3=1,, X4=A,=bpty, xs=1, (61)
The number of constraints for the cross beam is 5, for the stiffener is 3 according to Eqs.(31, 32, 33, 34,

36, 37, 41, 44 and 47).

The mathematical optimization technique is the Rosenbrock’s Hillclimb procedure [4].

k
The results for normal steel, f, =235 MPa, and cost ratio —~ = 0.5 can be seen in Table 6.

m
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Table 6. The minimum cost of bridge deck due to different cross beam distance with normal steel and cost

ratio = 0.5
{ mm Total cost $ Material cost $ Fabrication cost $
1000 344199.8 261422.0 112381.0
1500 272902.0 215660.5 89674.1
2000 269494 .5 217542.1 83933.3
2500 245737.0 179673.0 66064.0
3000 246077.6 177011.8 69065.8
3500 327045.2 202234.9 124810.2
4000 314094.2 199084.1 115010.0
4500 324922.8 186202.2 138720.6
ks

The results for normal steel, J, =235 MPa, and cost ratio PR =10 can be seen in Table 7. and Fig. 8.

m

Fig. 8. The optimum bridge decks’ cost in the function of the cross beam distance

k
The results for normal steel, Jy =235 MPa, and cost ratio —L =20 can be seen in Table 8.
m
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Table 7. The minimum cost of bridge deck due to different cross beam distance with normal steel and cost

ratio = 1.0
! mm Total cost $ Material cost $ Fabrication cost $
1000 459578.3 323394.6 182805.8
1500 377686.3 285605.9 177337.8
2000 390670.2 269446.8 188773.8
2500 378348.4 2289442 149404.2
3000 382242.1 222327.5 159884.6
3500 4349973 217004.6 217992.7
4000 448506.2 241262.1 207244.1
4500 518236.9 239987.3 278249.5

Table 8. The minimum cost of bridge deck due to different cross beam distance with normal steel and cost

ratio = 2.0
t mm Total cost $ Material cost $ Fabrication cost $
1000 686824.3 500915.1 350528.2
1500 612183.4 405159.3 355136.3
2000 582811.4 389439.0 343595.5
2500 671563.8 336396.2 398456.2
3000 666933.8 311444.8 355488.9
3500 706580.4 296284.2 410296.2
4000 758852.9 3394938 419359.2
4500 792211.7 323837.4 468374.3

k
The results show, that the optimum distance between cross beams for —_-= 0.5 is about Topr= 2600 mm,
m

k k
for —k—f- =10 is f,= 2500 mm, for —L =20 is fope= 1900 mm. The higher fabrication cost results closer

m m
cross beam, which means weaker stiffeners.

: k k
The ratio between material over fabrication costs for —— = 0.5 ratio is about 30% - 70%, for = 1.0

m m

k
is 43% - 57%, for —k—{— =20 is 46% - 54% respectively.

m

¥ =
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k,
Using higher strength steel Jy =355 MPa, for ;—- = 2.0 the optimum cross beam distance is tope = 2050,

m
instead of 1900 mm. It means, that higher strength steel increase the distance between cross l;éams.
We have fixed the minimum stiffener thickness in 6 mm. If we decrease this limit to 4 mm, the distance of
cross beams became smaller due to the smaller stiffener costs.
The developed computer program runs on Pentium PC, under MS Fortran Power Station Developing
System. The user interface is made by MS Visual Basic. One runtime is a few minutes. The calculation
contains the discretization after finding the continuous values. This is very important for the fabrication.
The computer calculation shows, that this program is useful for the predesign of bridge decks, taking into

account fatigue, stability, deflection and frequency constraints.
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