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OPTIMUM DESIGN OF TUBULAR TRUSSES
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associate professor

University of Miskolc, Hungary, H-3515 Miskolc-Egyetemvaros

SUMMARY

A mathematical programming technique is used to determine
the optimal sizes of a K-type truss of parallel chords with
gap joints, welded from tubular hollow sections. The unknown
variables are the diameter and the thicknesses of chord and
brace members. The objective function is the volume (weight)
of the whole truss. There are 9 inequality constraints
considered: overall buckling of compression members, static
strength of welded joints and geometric limitations on sizes.
The Hillclimb method of Rosenbrock [2] 1is wused in an
illustrative numerical example.

1. INTRODUCTION

Most engineers who design structures employ complex
general-purpose software packages for structural analysis.
Therefore the major challenge faced by researchers in
structural optimization is to develop methods that are
suitable for general-purpose use and can be connected to
other software packages [1].

Optimization is concerned with achieving the best outcome
of a given objective while satisfying certain restrictions. .
The notion of improving or optimizing a structure implicitly
presupposes some freedom to change the structure. The
potential for change is typically expressed in terms of
ranges of permissible changes of a group of parameters. Such
parameters are usually called design variables in structural
optimization terminology. '

Design variables can be member sizes or cross—sectional
dimensions, they can be parameters controlling the geometry
of the structure, its material properties etc. Design
variables may be continuous or discrete. Continuous design
variables have a range of variation and can take any value in
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the range. Discrete design variables can take only isolated
values, typically from a list of permissible values. Material
design variables are often discrete. Design wvariables are
commonly treated as continuous ones, because the optimization
techniques usually can find the continuous optimum guicker,
then the discrete one.

Due to manufacturing requirements discrete sizes of the
atructure are needed (commercially available cross sections,
plate thicknesses etc.). '

In most structural design problems we tend to disregard
the discrete nature of the design variables in the solution
of the optimization problem. Only when the optimum design is
obtained do we adjust the values of the design variables to
the nearest available discrete value. However, this procedure
works well when the available values of the design variables
are spaced reasonably close to one another. In some cases the
discrete values of the design variables are spaced too far
apart and we have to solve the problem with discrete
variables. This is done by employing a branch of mathematical
programming called integer programming. We've used the
combinatorial backtrack discrete optimization technigque [71],
but we ve developed a so called secondary search for the
continuous techniques to find the best discrete optimum in
the neighbourhood of the continuous one [1]1. This 1is
commected to all of the continuous techniques.

The choice of design variables can be critical to the
success of the optimization process. In particular it is
important to make sure that the choice of design variables is
consistent with the analytical model.

The notion of optimization also implies that there are
some merit function or functions that can be improved. The
common terminology for such functions is objective functions.
Objective function to be minimized can be the mass, cost,
volume of the structure of whatever the designer thinks to be
worth to minimized.

In structural optimization problems the constraints
imposed on the design, such as stresses, displacements,
stability, eigenfrequency, fatigue, damping of the structure
and so on. Such constraints will affect the final design and
force the objective function to assume a higher value than it
would be without the constraints.

In general we divide the space of design variables into a
feasible and infeasible domains. The feasible domain contains
all possible design points that satisfy all the constraints.
The infeasible domain is the collection of all design points
that violate at least one of the constraints. Because we
expect that some constraints influence the optimum design, we
expect that some constraints will be critical at the optimum
design. This is equivalent to the optimum being on the



216

boundary between the feasible and infeasible domain.
Inequality constraints in our standard formulation are
critical, when they are equal to zero. These constraints are
also called active constraints, while the rest of the
constraints are inactive or passive.

The basic problem that we consider is the minimization of
a function subject to equality and inequality constraints
[3,6,6].

Minimize f(x)
such that g3(x) =2 0 Jj=1,....,M
hi(x) = 0 i=1,...,P

2. OPTIMIZATION OF THE TUBULAR TRUSS

The welded tubular structure is an economic and modern
one [4]. There is a wide range of application fields:-
offshore structures, main frames of high buildings, bridges,
vehicle body frames, columns, towers etc.

There is a great variety among trusses in the topology,
nodes, materials, manufacturing technologies and so on.

At the optimum design of trusses usually the section
areas are regarded as unknowns, but at tubular members it is
better to take into account the diameters and the thicknesses
because of the special constraints.
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The aim of the optimization is to determine the minimal
mass of the planar truss with symmetrical brace members
subject to static loading.

Objective function is the volume of the truss with the
diameter and thickness of the parallel chords De, te and
brace members Di, ti and Q which is equal to the height and
node distance ratio h/a. There are five unknowns. For a given
density the minimal volume gives the minimal, mass see Fig.l1l.

V / (2%a%w) = 7*DeXte + 4%Diktixk 1+ Q =2
Constraints are as follows:

We “ve used for the computation of the overall buckling of
the trusses the rules of the Eurocode 3. [190], the new DIN
18800 has the same rule.

— Overall buckling of the chords:

Fa ¥ Fmax.o / (w¥De*te) =< Xa ¥ fy
where Xe is the buckling coefficient,

Fmax .o 1is the greatest compression force in the chords,

Fmax-oZB*F/Q

According to the Eurocode 3.

Xo = 1 / (8o + £ 302 - 202) ; %o =le /Ar; Xa =1
‘e =nwd E / fy = 76.4

%o =k * Lo / io ; ‘o = 188.809 / Do

k = .85 the coefficient of the effective length,

e = 2 % a = 6000 mm,

ije = £ I/A the radius of inertia,

2o = 0.5 % [1 + B *(le — 0.2) + A02] ; B =0.34

if Ao < 0.2 then %o = 1
— Overall buckling of the braces:
I's *X Fmax.1 / (wkDaikti) < X1 *x fy
where X1 is the buckling coefficient,

Fmax.1 is the greatest compression force is the chords,
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Fmax.1 / F = 3.5 ¥J(1 + Q2) / Q
108.2702 *4(1 + Q=2) / (Q % D1 X t1) — X1 <0

According to the Eurocode 3.

IA
P

Xy =1 / (91 + j P12 — 112) 3 A1 = 11 / AE; X
Pz = f BE/fy = 76.4
AL = k % Ly / i1

188.899 / Da

H
H

k = .85 the coefficient of the effective length,
i1 = £ I/A the radius of inertia,
8. = 0.5 % [1 + B x(31 — 0.2) + 2121 ; B = 0.34
if 31 = 0.2 then &1 = 1
Local stability constraints
Do — 59 * te = @ (limit slenderness of the chord)
Di - 590 ¥ t1 £ 0 (limit slenderness of the brace)
Geometric constraints
Di —~ Do = 0@ (manufacturing constraints)
0.2 * De — D1 £ 0
D1 x £(1 + Q2) - Do ¥ (1.5 - 0.1 X Q) < @
Strength of the nodes
At the welded chords for the plastification of the wupper

flange there is a recommendation according to [8,91, which
was developed by a series of measurements.

Fmax.1 < 8.9 % fye * teZ / sin © % D1 / Do *De/(2%te)* £(n)
sin 6 = Q / (1 ¥ 92) |

The coefficient concerning to the force of the chord is as
follows

f(n‘) = 1.3 - 9.4 / (D.‘]_/D@) X Fmax.o / Aa / fy@

f(n~)

1 +0.3%n” — 0.3 x n'=2
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= 247.4747 / (Q¥De*te)

f(n™) =

1 then
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f(n7)

=1

Constraint on the punching shear

375.0589 - te * D1 * (1 + 4(1 + Q2) / Q) <0

3. NUMERICAL EXAMPLE

Compression force
the safety factor for static loading
the force with the safety factor

the yield stress of the steel

Q Dol[mm] telmm] Da t1 Almm2] active constraint

©.80 170.6. | 3.4 108.9 3.9 5753.9 | lateral buckling
' of chords
0.99 164.6 3.3 118.7 2.5 5366.7
1.00 156.7‘ 3.3 120.3 2.4 5280.7
1.10 154.9 3.1 120.9 2.4 5104.3
1.20 151.1 3.9 122.7 2.5 5077.9
1.22 150.0 3.9 122.3 2.4 5e61.9
1.23 150.90 3.0 122.4 2.4 5049.1
1.24 149.5 3.0 122.5 2.5 5050.9
1.25 149.2 3.9 122.1 2.5 5058.7
1.30 149.8 3.9 123.3 2.5 5137.5
Table 1.

horizontal distance between the nodes
the Young module

The range of Q is

©.80 +~ 1.30

The computation results for different .
1. using 9.1 as a step length for Q. Around the optimum we ve

chosen smaller
accurately.
Fig. 2.

steps

to

determine

F = 23000 N

I's = 1.5
T'skxF = 34500 N

fy = 355 MPa

a=3m

E = 210 GPa

Q are shown on Table

the optimum more

shows the values of the objective function.
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v/8/a}
[mm=7]

5800 {—
5700 {—
5600
5500
5400
5300
5200

5100

5000 ! I ! 1 I -

Lol

@.80 @.50 1.99 1.190 1.20 1.39 Q =h/a

Fig. 2.
Fig. 2. shows, that the optimum of Q = h/a is at 1.23.
The optimal sizes of the truss members are as follows

Chord diameter is 150.0 mm, thickness is 3.9 mm.
Brace diameter is 122.4 mm, thickness is 2.4 mm.
Volume of the structure V/(8%a) is 5049.1 mm=.
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