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OPTIMUM DESIGN OF METAL STRUCTURES USING
SINGLE- AND MULTIOBJECTIVE OPTIMIZATION TECHNIQUES
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SUMMARY

The different single— and multiobjective optimization
techniques makes the designer able to determine the optimal
sizes of structures, to get the best solution among several
alternatives. The efficiencies of these mathematical
programming techniques (MP) are different. We have shown the
efficiency of these techniques at the optimum design of
single bay frames, main girders of overhead travelling
cranes, spindle-bearing systems of a machine tool, stiffened
plates, compressed columns.

1. INTRODUCTION

Single— and multiobjective optimization techniques are
good tools for finding the best results of +the design
problem. The developed computer code contains seven various
type multiobjective and five single—objective optimization
technigques [1].

The efficiency of the computer code is shown at the design
of single-bay plane frame, with I-cross section with
continuously increasing web height, taking account 3
objective functions and 35 ineguality constraints. The second
application is the design of a welded, stiffened box girder
as a main girder of an overhead travelling crane with 4

objectives and 16 inequality constraints. The third
application is the design of a spindle—bearing system with 3
objectives and 10 inequality constraints. The fourth

application 1is +the design of cellular plates with 3
objectives and 14 inequality constraints, the fifth
application is design of compressed columns with 1 objective
and 9 inequality constraints.
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In these cases the optimization techniques had different
efficiencies, one oOr two is better to use for that problem
than the others, regarding the single—objective optimization
techniques. At the multiobjective optimization techniques the
main difference is, what kind of Pareto optima can be found
and how close is it to the ideal solution. The great number
of Pareto optima gives the possibility for the designer to
choose the "best” from them [8,9,10,13]. See Table 1.

2. SINGLE-CRITERION OPTIMIZATION TECHNIQUES

A large number of algorithm have been proposed for the
nonlinear programming solution. Each technique has its own
advantages and disadvantages, no one algorithm is suitable
for all purposes. The choice of a particular algorithm for
any situation depends on the problem formulation and the

user.

The general formulation of a single—criterion nonlinear
programming problem is the following:

minimize f(x), X = X1,X2,--,XN;
subject to gs(x) = 0, g = 1,2,...-- ,P,
hx(x) = 0, k = P+1,...,P+M. (1)

2.1 THE FLEXIBLE TOLERANCE (F¥T) METHOD

The FT [2]1 algorithm improves the value of the objective
function by using information provided by feasible points, as
well as certain nonfeasible points termed near—feasible

.points. The near—feasibility 1limits are gradually made more

restrictive as the search proceeds toward the solution, until
in the limit only feasible x vectors are accepted.

With this strategy (1) can be replaced by a simpler
problem, having the same solution:

minimize f(x),
subject to = - T(x) = © (2)

where &% is the value of the flexible tolerance criterion for
feasibility on the kth stasge of the search, and T(x) is a
positive functional of all the equality and/or inequality
constraints of (1), used as a measure of the extent of
constraint violation. It is very important to choose a good
size of initial polyhedron, which is difficult, when the
difference between the values of unknowns is great.

2.2 THE DIRECT-RANDOM SEARCH (DRS) METHOD

The DRS [3]1 method combined three techniques: the direct
search of Hooke and Jeeves, the random search, and the
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penalty function concept into one computer code. The
penalty function is formed as follows:
P(x,r) = f(x) + 81 ri g12(x), (3)

81=(1-Ui) is zero if the constraints is satisfied and unity
otherwise.
The initial value of r is as follows:

r1® = 0.92/ (P*gi(x?) £f(x°)), where P* is the number of
constraints.

Minimization of the P function is carried out by the Hooke
and Jeeves technique for the successive series of increasing
value of ri from stage to stage. The search terminates when
all +the constraints are satisfied or when the absolute
difference between the value of the constraint at the
beginning of the search and at the end is less than some
prespecified tolerance.

2.3 THE HILLCLIMB (HI) ALGORITHM

The procedure is based on the “automatic" method proposed
by Rosenbrock [4]. The method of rotating coordinates can be
considered as a further development of the Hooke and Jeeves
method. Before starting the minimization process, define a
set of “initial” step lengths Si, to be taken along the
search directions Mi, i= 1,2,...,N. The starting point must
satisfies the constraints and does not lie in the boundary
zones. The boundary zones are defined as follows:

lower zone: xXik € x5 < x3iL + (xiU - xaT) %¥ 19—4
upper zone: xiU < x3 < xiU - (xaV - xiT) *x 10— i= 1,2,..,M

The variables are stepped a distance Si parallel to the axis
and the function is evaluated.

new xi(x> = old x3(&) + Sy(k) %x My 50k

If the current point objective function value is worse, than
the previous good value, or if the constraints are violated,
the trial point is a failure and Si decreased by a factor u,
9@ < u < 1.0 and the direction of movement reversed. If the
move is termed a success, Si increased by a factor 8, B21.0.
The new point is retained and a success is recorded. The
values of u and B are usually taken as 3.0 and 0.5
respectively. If the current point lies within a boundary
zone, the objective function is modified by the distance into
the boundary zone.

At the algorithm, the coordinate system is rotated in each
stage of minimization. The procedure stops if the convergence
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criterion or the iteration limit is reached. No derivatives
are required. The procedure is very quick, but it gives
usually local optima, so it is advisable to use more starting
points.

2.4 THE COMPLEX PROGRAMMING METHOD (BO)

Using random numbers a so-called "complex"” is generated
from the upper and lower bounds of variables. Computing the
coordinates of the centroid some geometrical replacements are
used:

xig = xil 4+ rig (xiV-xiDl) i=1,....,N, j=2,...,K. (4)

where rij are the random numbers with a uniform distribution
over the interval 9-1.
%xiY and xil are the upper and lower limits of, variables.

- rejection with the coefficient through the centroid. If
u =1 that is a simple rejection, if p > 1 ( p = 1.3) that
is an expanded rejection.

— halving the distance between the point and the centroid
(T = 9.5).

The convergence criterion is
fmax - fmin < B (5)

when it is fulfilled, the procedure is terminated [51. The
procedure is robust, it gives global optima, but if the
number of unknowns (N) and the size of complex (K) are great,
it becomes very slow.

2.5 THE DAVIDON-FLETCHER-POWELL METHOD (DFP)

The wvariable metric method of Davidon was extended by
Fletcher and Powell [6]. This method is one of the best
general-purpose unconstrained optimization technigues making
use of the derivatives that are currently available.

The method computes the gradient of the function f(x) at
the initial point and sets '

S1 = ~Hia v £(x1) (6)
Find the optimal length Qi1 , in the direction 854,

X1+1 = Xi + Q1 Si (7)

where Hi is taken as the identity matrix.

Find the new point xi+1 for optimality and if xi+1 1is
optimal, terminate the iterative process, otherwise
continue calculation.

" The interior penalty function method is wused in the
algorithm to be able to handle constraints. The ® function is
defined as follows:
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P(x,rx) = f(x) + rx = 1/ g83(x)

It can be seen that the value of the function
be smaller than f since g3(x) is negative for all infeasible

points x.

The cubic interpolation method is used for finding the
Sometimes there is

minimizing step length Q1 in four stages.

an overflow at &
near the optimum,
important.

function,
the

convergence

(8)

® will always

because gs(x) is close to zero
criterion is

The program system can be seen an Table 1.

CONTROIL PROGRAM

1

MULTICRITERIA
OPTIMIZATION
METHODS

MIN-MAX METHOD.

GLOBAL CRITERION
TYPE TI.

GLOBAL CRITERION
TYPE II.

WEIGHTING GLOBAL
CRITERION

PURE WEIGHTING
METHOD

NORMALIZED
WEIGHTING METHOD

WEIGHTING
MIN-MAX METHOD

OBJECTIVE SINGLE CRITERION
FUNCTIONS OPTIMIZATION
METHODS
INEQUALITY
CONSTRAINTS FLEXIBLE
TOLERANCE [FT]
EQUALITY
CONSTRAINTS DIRECT-RANDOM
SEARCH [DRS]
INPUT
DATA HILLCLIMB
METHOD [HT]
DISCRETE
VALUES COMPLEX
I METHOD [BO1
FINITE Il
ELEMENTS DAVIDON-FLETCHER
POWELL  [DFP]
PRINTING
Table 1.

3. MULTICRITERIA OPTIMIZATION TECHNIQUES

A multicriteria optimization problem

follows :

Find f(x*) = opt f(x),

such that g3(x) = 9,

hs (x)

il
o~

Jg = 1,-.-.

can be formulated as

(9)

->M,

1,.-...,P.

very
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where x is the vector of decision variables defined in N-
dimensional FEuclidean space and fx(x) is a vector function
defined in EK—-dimensional Euclidean space. g3(x) and hi(x) are
inequality and equality constraints.

The solutions of this problem are the Pareto optima. The
definition of +this optimum is based wupon the intuitive
conviction that the point x* is chosen as the optimal, if no
criterion can be improved without worsening at least one
other criterion.

3.1 THE MIN-MAX METHOD

The min-max optimum compares relative deviations from the
separately reached minima. The relative deviation can be
calculated from

217 (x) =|(£2(x)-£12)] /|£12|and 21" " (x) = |(£1(x)-£1°) |/ |f1(x)|

If we know the extremes of the objective functions which
can be obtained by solving the optimization problems for each
criterion separately, the desirable solution is the one which
gives the smallest values of the increments of all the
objective functions. The point x* may be called the best
compromise solution considering all the objective functions
simultaneously and on equal terms of importance.

z1(X) max { zi (X),zi" "(x) } iel (19)

u(x*) = min max { zi(x) } x € X, i€l (11)

where X is the feasible region.
3.2 THE WEIGHTING MIN-MAX METHOD

Combining the min-max approach with the weighting method,
a desired representation of Pareto optimal solutions can be
obtained [9]

zi(x) = max { wi z1°(x), wi z1i~ " (x) } iel (12)
The weighting coefficients wi reflect exactly the priority

of the criteria, the relative importance of it. We can get a
distributed subset of Pareto optimal solutions.

3.3 GLOBAL CRITERION METHOD

A function which describes a global criterion is a measure
of closeness the solution to the ideal vector of f£2. The
common form of this function is (type I) :

f(x) = 2 ( ( £1® - f1(x) ) / £1@ )F (13)
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It is suggested to use P=2, but other wvalues of P such as
1,3,4, etc. can be used. Naturally the solution obtained
will differ greatly according to the value of P chosen.

It is recommended to use relative deviations (type II1) :

Le(f) = [Z |fi@ - fi(x)lp] 1P 1 <P=2ow (14)
3.4 WEIGHTING GLOBAL CRITERION METHOD

Using weighting parameters we could get a great number of
Pareto optima with (13). If we choose P=2, which weans the
Euclidean distance between Pareto optimum and ideal solution
[1]. The coordinates of this distance are weighted by the
parameters as follows:

Le(£f) = [ 3 wi|fi® - fa(x)|P ] 1P 1<P<o (15)
3.5 PURE WEIGHTING METHOD

The basis of this method consists in adding all the

objective functions together using different weighting
coefficients for each. It means, that we transform our
multicriteria optimization problem to a scalar one by
creating one function of the form:
f(x) = Z wi £i(x) where wi = @ and 2 Wi = 1 (16)
If we change the weighting coefficients result of solving
this model can vary significantly, and depends greatly from
the nominal value of the different objective functions.

3.7 NORMALIZED WEIGHTING METHOD

At the pure weighting method, the weighting coefficients
do not reflect proportionally the relative importance of the
objective, because of the great difference on the nominal
value of the objective functions. At the normalized weighting
method wi reflect closely the importance of objectives, all
functions are expressed in units.

f(x) = =2 wi fi(x) / fa° (17)
The condition fi1? <> O is assumed.
4.1 OPTIMUM DESIGN OF PLANE FRAMES USING FEM

Objective functions:
— mass of the frame,
~ cost of the frame containing material, welded and
surface
preparation costs,
- mass/floor space ratio to be minimized.
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Unknowns: height of webs at columns and rafters at pin, apex
and eaves points, thickness of webs at columns and rafters,
width and thickness of flanges both at columns and rafters.
The 10th variable is the span length of the single bay frame.

Constraints: static stress constraints at different stress-
maximum points at columns and rafters, local web and flange
buckling, lateral buckling for the compressed flange, elastic
lateral buckling at the eaves points both in columns and
rafters. Vertical and horizontal displacement of the frame,
size constraints.

PriPe !

7

Fig. 1. The single bay welded plane frame structure

The frame can be a gantry one, with a crane runway on it.
In this case the Hillclimb method was the most efficient, it
could find more quickly the optima, using FEM subprograms for
stress and displacement calculations at different topology.
It is possible to use higher strength steel.

4.2 OPTIMUM DESIGN OF A MAIN GIRDER OF AN OVERHEAD
TRAVELLING CRANES

Objective functions:
— mass of the main girder,
— welded cost,
- surface preparation costs,
—- total cost to be minimized.

Unknowns: height and thicknesses of webs, h, twi, twz, width
b, and thickness of flanges t=r.

Constraints: stresses, web bucklings, flange bucklings due to
main loading, stresses, web bucklings, flange buckling due to
total loading, fatigue constraints on weldments, deflection
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of the girder, size constraints. There is a possibility of
using higher strength steels [11].

F kr F tr ]
_ | ) ) L
= - ™
Tz
h ooy
tfA
b

Fig. 2. Cross section of the welded main girder of
overhead travelling crane

The Complex method could find gquickly the global optima of
the multiobjective optimization problem in this case.

4.3 OPTIMUM DESIGN OF MACHINE-TOOLS SPINDLE-BEARING
SYSTEMS

Objective functions:
- mass of the spindle to be minimized,
- rigidity of the spindle-bearing system to be maximized,
- eigenfrequency of the system to be maximized.

Unknowns: length between the bearings, diameter of the
spindle at bearing.

Da

Fn

B
<i#> Lo A '
:i: Fe
777777
Fig. 3. The spindle-bearing system
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Constraints- radial displacement, radial rigidity,
eigenfrequency, size constraints.

The Flexible Tolerance method was very efficient in finding
the optimum using the finite strip method, but it needed more
computation time [12]. The values of the three objectives at
single-objective optimization and using the min-max
multiobjective method, where the relative importances are the
Same, can be seen on Fig. 4.

Optimization for the

S 1st obj. @ 2nd obj. 3rd obj. D min—max

obj.function |

values 20 L —

1]

Ist 3rd 1st 3rd 1st 3rd 1st 3rd
2nd 2nd 2nd 2nd objectives

]

10 —L |

ol

Fig. 4. Solution of the single- and multiobjective
optimization

4.4 OPTIMUM DESIGN OF CELLULAR PLATES

Objective functions:-
— mass of the plate,

— cost of the plate including material and welding costs,
- deflection of the cellular plate to be minimized.

Unknowns: thicknesses of cover plates and stiffeners, height
of stiffeners, number of stiffeners.

Pu

te

[t ]
_] 1t

dst te

Fig. 5. The stiffened, welded plate Structure
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Constraints: normal stress constraints at cover plates, shear
constraints at stiffeners, deflection constraints, local
buckling constraints, size constraints. There is a
rossibility of using higher strength steels.

The Direct—Random Search technigque was wvery useful in this
case. 1t usually gives global optimum for the structure.

4.5 OPTIMUM DESIGN OF COMPRESSED TRUSS MEMBERS

A mathematical programming technique is used to determine
the optimal sizes of a K-type truss of parallel chords with
gap Jjoints, welded from tubular hollow sections.

Objective function is the volume (weight) of the whole truss.

Unknown variables are the diameter and the thicknesses of
chord and brace members.

Constraints: there are 9 inequality constraint considered;
overall buckling of compression members, static strength of
welded Jjoints and geometric limitations on sizes are
considered. The regulations of the Eurocode 3. is used.

The Hillclimb method of Rosenbrock is used in an illustrative

numerical example.
The truss can be seen on Fig. 6. The optimum is at Q=h/a=1.23
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Fig. 6.
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The program system was made in MS FORTRAN 5.0 on PC/AT/386
compatible computer. I1f we write the programs for example in
Turbo C language, at that case the Complex method was quicker
than the Hillclimb, but in FORTRAN the Hillclimb method was
the quickest one, but usually gave local optimum. We have
made some of the optimization programs in Quick Basic and the
developing time was much smaller, but the runtime was longer.
All the single-objective methods can find a feasible starting
point, and give an optimum with unbounded and with discrete
values.

There is a range of discrete values is given for every
variables. We would like to install to the system some other
techniques such as Sequential Unconstrained Minimization
Technigue (SUMT) of Fiacco, Mc Cormic [14], the Sequential
Quadratic Programming (SQP) of Zhou and Tits [157, the Method
of Moving Asymptotes (MMA) of Svanberg [16]. Similar in these
techniques that all of them need the computation of
derivatives.
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