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SUMMARY

The different single— and multiobjective optimization techniques makes
the designer able to determine the optimal sizes of structures, to get
the best solution among several alternatives. The efficiencies of
these techniques are different. We have shown the efficiency of these
techniques at the optimum design of single bay frames, main girders of
overhead travelling cranes, spindle~bearing systems of a machine tool, -
stiffened plates. . .

OSSZEFOGLALAS

A kidl6nbbzd eqgy—- és tébbeélfliggvényes optimidld médszerek lehetdvé
teszik a tervez6 szamara, hogy meghatarozza kuléonféle szerkezetek
optimdlis méreteit, hogy megkapja a legjobb megoldast a 1lehetséges
alternativdk ko6zul. Az optimald modszerek hatékonysaga kulonbozé.
Megmutatjuk ezen modszerek hatékonysagat kiilonféle szerkezetek
optimalis méretezésénél: egyhajos csarnokkeret, futddaru hidfétartdja,
tengely-csapagy rendszer szerszamgépnél, bordazott lemez.

1. INTRODUCTION

Single- and multiobjective optimization techniques are good tools
for finding the best results of the design problem. The developed
computer code contains seven various type multiobjective and five
single—objective optimization techniques [1,15]. .

The efficiency of the computer code is shown at the desjign of
single-bay plane frame, with I-cross section with continuously
increasing web height, taking account 3 objective functions and 35
inequality constraints. The second application is the design of a
welded, stiffened box girder as a main girder of an overhead
travelling crane with 4 objectives and 16 inequality constraints. The
third application is the design of a spindle-bearing system with 3
objectives and 10 inequality constraints. The fourth application is
design of cellular plates with 3 objectives and 14 inequality
constraints. i : :

In these cases the optimization techniques had different
efficiencies, one or two is better to use for that problem than the
others, regarding the single—objective optimization techniques. At the
multiobjective optimization techniques the main difference is, what
kind of Pareto optima can be found and how close is it to the ideal
solution. The great number of Pareto optima gives the possibility for
the designer to choose the "best" from them [10,11,12]. See Table 1.
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2. SINGLE-CRITERION OPTIMIZATION TECHNIQUES

A large number of algorithm have been proposed for the nonlinear
«programming solution. Each technique has its own advantages and
disadvantages, no one algorithm is suitable for all purposes. The
choice of a particular algorithm for any situation depends on the
problem formulation and the user.

The general formulation of a single—-criterion nonlinear programming
problem is the following:

minimize f(x}, x HaigXzgenygXpy
subject to g,s(x) 2 @, J = 1,2,.....,P,
he{x) = 0@, k = P+l,...,P+M. o)

2.1 THE FLEXIBLE TOLERANCE (FT) METHOD

The FT (2] algorithm improves the value of the objective function
by using information provided by feasible points, as well as certain
nonfeasible points. termed near-feasible points. The near-feasibility
limits are gradually made more restrictive as the search proceeds
toward the solution, until in the limit only feasible x vectors are
accepted.

With this strategy (1) can be replacéd by a simpler problem, having
the same solution:

minimize fix),

subject to 6 -~ T{(x) 2 @ (2)

where ©% is the value of the flexible tolerance criterion for
feasibility on the kth stage of the search, and T(x) is a positive
functional of all the equality and/or inequality constraints of (1),
used as a measure of the extent of constraint violation. It is very
important to choose a good size of initial polyhedron, which is
difficult, when the difference between the values of unknowns is
great.

2.2 THE DIRECT-RANDOM SEARCH (DRS) METHOD

The DRS (3] method combined three techniques: the direct search of
Hooke and Jeeves, the random search, and the penalty function concept
into one computer code. The penalty function is formed as follows:

P(x,r) = f(x) + 8; rg g1=(x), (3)

6§:=(1-U,s) is zero if the constraints is satisfied and unity otherwise.
The initial value of r is as follows:

re® = 0.082/ (P*g.(x®) f(x®)), where P* is the number of constraints.
Minimization of the P function is carried out by the Hooke and
Jeeves technique for the successive series of increasing value of rg

from stage to stage. The search terminates when all the constraints
are satisfied or when the absolute difference between the value of the
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constraint at the beginning of the search and at the end is less than
some prespecified tolerance.

2.3 THE HILLCLIMB (HI) ALGORITHM

v
The procedure is based on the "automatic" method proposed by
Rosenbrock [4]1. The method of rotating coordinates can be considered
as a further development of the Hooke and Jeeves method. At the
algorithm, the coordinate system is rotated in each stage of
minimization. No derivatives are required. The procedure is very
quick, but it gives usually local optima, so it is advisable to use
more starting points.

2.4 THE COMPLEX PROGRAMMING METHOD (BO)

.Using random ndmbers a so—-called "complex" is generated from the
upper and lower bounds of variables. Computing the coordinates of the
centroid some geometrical replacements are used:

Xes = Xa' + reg (xgY—x4%) i=1ly.+..4N, I1=2,...,K. (4)

where ri.y are the random numbers with a uniform distribution over the

‘interval 06-1.

xsY and x4% are the upper and lower limits of, variables.

- rejection with the coefficient through the centroid. If B =1
that is a simple rejection, if A > 1 ( B8 = 1.3) that is an
expanded rejection.

- halving the distance between the point and the centroid ( I'=@.5). ]

The convergence criterion is

= fomste < H ‘ (5)<

Fonamse

when it is fulfilled, the procedure is terminated [S5]. The procedure
is robust, it gives global optima, but if the number of unknowns (N)
and the size of complex (K) are great, it becomes very slow. i

2.5 THE DAVIDON—FLETCHER~PON€LL_HETHDD (DFP)

The variable metric method of Davidon was extended by Fletcher and
Powell £{61. This me thod is one of the best general-purpose
unconstrained optimization techniques making use of the derivatives

that are currently available.
The method computes the gradient of the function f(x) at the

initial point and sets
Sy = —He 7 f{x1), ) (6)
Find the optimal length Q., in the direction S., .

Xewa = xXx o+ Qo So ‘ : (7)

where Hy; is taken as the identity matrix.
Find the new point xs.. for optimality and if x:.: 'is optimal,
terminate the iterative process, othérwise continue calculation.
The interior penalty function method is used in the algorithm to be
able to handle constraints. The & function is defined as follows:
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P (x,re) = f(x) + re Z 1/ gs(x) (8)
3

can be seen that the value of the function & will always be smaller
an f since gs(x) is negative for all infeasible points x.

The cubic interpolation method is used for finding the minimizing
:p length Q4, in four stages. Sometimes there is an overflow at.
iction, because gs5(x) is close to zero near the optimum, so the
wergence criterion is very important.

The program system can QE seen an Table 1.
3. MULTICRITERIA OPTIMIZATION TECHNIQUES

A L '
A multicriteria optimization problem can be formulated as follows :

Find f(x*) = opt f(x), (?)
such that gji(x) 2 @, J = 1,....,M,

hi{x) = @, i=1,.0..,P.

are x is the vector of decision variables defined in N-dimensional
-lidean space and fe(x) 1is a vector function defined in K- .
nensional Euclidean space. gs(x) and h:(x) are inequality and
1ality constraints.

CONTROL PROGRAM i
[

MULTICRITERIA OBJECTIVE SINGLE CRITERION
OPTIMIZATION FUNCTIONS OPTIMIZATION
METHODS : METHODS

INEQUALITY
MIN-MAX METHOD. CONSTRAINTS FLEXIBLE
TOLERANCE [FT]
GLOBAL CRITERION EQUALITY
TYPE I. CONSTRAINTS DIRECT~RANDOM
SEARCH [DRS])
GLOBAL CRITERION INPUT
TYPE II. DATA HILLCLIMB
METHOD [HI]
WEIGHTING GLOBAL DISCRETE
CRITERION VALUES COMPLEX
METHOD [BO3]
PURE WEIGHTING FINITE ’
METHOD ELEMENTS DAVIDON-FLETCHER
. POWELL [DFP]
NORMALIZED PRINTING
WEIGHTING METHOD
WEIGHTING
MIN-MAX METHOD
Table 1.
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The solutions of this problem are the Pareto optima. The definition
of this optimum is based upon the intuitive conviction that the point.
xX¥ is chosen as the optimal, if no criterion can be improved without
worsening at least one other criterion.

3.1 THE MIN-MAX METHOD

The min-max approach to a linear model was proposed by Jutler [7].
The min—max optimum compares relative deviations from the separately
attainable minima. The relative deviation can be calculated from

2a 00 = [(Fe00)=12®)| 7 422 and  z.' 00 = [ (feooztem ] 2 [0

Knowing the extremes of the objective functions which can be
obtained by solving the optimization problems for each criterion
separately, the desirable solution is the one which gives the smallest
values of the increments of all the objective functions. The point x*

may be called the best compromise solution considering all the
criteria simultaneously and on equal terms of importance.
zs{x) = max { zs+ ' (x),z5" "(x) } i€l (1)
T(xX) = min max { z:«(x) 2} x € X, i€ (11)

where X is the feasible region.
3.2 THE WEIGHTING MIN-MAX METHOD

Using the min-max approach together with the weighting method, a
desired representation of Pareto optimal solutions can be obtained [9]

N ze(x) = max { we Zg/ (X)), We 24" " (x) 2 i€l (12)

The weighting coefficients w. reflect exactly the priority of the
criteria. We can get a distributed subset of Pareto optimal solutions.

3.3 GL.OBAL CRITERION METHOD

“how
The most common form

A function which describes a global criterion is a measure of
close the solution from the ideal vector of f@®.
of this function is (type 1) :

fix) = T ( ( f42 = f2(x) ) /7 .2 )" (13)

Salukvadze [B8] has suggested P=2, but other values of P ‘can be used.

Naturally the solution obtained will differ greatly according to the

value of P chosen. '
It is recommended to use relative deviations (type 1I) :

Lo(f) = [; | fa= - f;(x)lp} ase 1 <P Lo (14)

3.4 WEIGHTING GLOBAL CRITERION METHOD

Using weighting parameters we could get a great number of Pareto
optima with (13). If we choose P=2, which means the Euclidean distance
between Pareto optimum and ideal solution [1]. The coordinates of this
distance are weighted by the parameters as follows:

Lo(f) = [g | we fse2 - f;(x)l”] 1o 1 <P <o (15)
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3.5 PURE WEIGHTING METHOD

The basis of this method consists in adding all the objective

- functions together using different weighting coefficients for each. It

means, that we transform our multicriteria optimization problem to a
scalar one by creating one function of the form:

fix) = %

Ay

wy fe(x) where wy 2 @ and % wye = 1 (16)

The result of solving this
weighting coefficients change,
objective functions.

model can vary significantly as the
and the nominal value of the different

3.7 NORMALIZED WEIGHTING METHOD

the weighting coefficients do not

importance of the objective. At
reflect closely the importance of
all functions aré expressed in units.

fa(x) /7 12

In the pure weighting method,
reflect proportionally the relative
the normalized weighting method w,
objectives,

f(x) = Z

v

Wy (17)

The condition f,® = @ is assumed.

4. APPLICATIONS
4.1 OPTIMUM DESIGN OF PLANE FRAMES USING FEM

Objective functions:
~- mass of the frame,
- cost of the frame containing material, welded
preparation costs, )
- mass/floor space ratio to be minimized.

and surface

Unknowns: height of webs at columns and rafters at pin, apex and eaves
points, thickness of webs at columns and rafters, width and thickness
of flanges both at columns and rafters. The 10th variable is the span
length of the single bay frame.

Petm

Puw L=x(10)

Fig. 1. The sinqle bay welded plane frame structure
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Constraints: static stress constraints at different stress-maximum
points at columns and rafters, local web and flange buckling, lateral
buckling for the compressed flange, elastic lateral buckling at the
eaves points both in columns and rafters. Vertical and horizontal
displacement of the frame, size constraints. :

The frame can be a gantry one, with a crane runway on it. In this
case the Hillclimb method was the most efficient, it could find more-
quickly the optima, using .FEM subprograms for stress and displacement
calculations at different; topology. It is possible to use higher
strength steel. ’ :

4.2 OPTIMUM DESIGN OF A MAIN GIRDER OF AN OVERHEAD TRAVELL ING
CRANES

Objective functions:
- mass of the main girder,
— welded cost,

- surface preparation costs,
— total cost to be minimized.

o S-S
=

l\
IL

l b . I te B
Fig. 2. Cross section of the welded main girder of overhead
travelling crane
Unknowns: height and thicknesses of webs, h, tui, tu=, width b, and

thickness of flanges te.

Constraints: stresses, web bucklings, flange bucklings due to main

loating, stresses, web bucklings, flange buckling due to total
loading, fatigue constraints on weldments, deflection of the girder,
size constraints. There is a possibility of using higher strength

steels ([(13].

The Complex method could find quickly the global optima.qf the
multiobjective optimization problem in this case.

4.3 OPTIMUM DESIGN OF MACHINE-TOOLS SPINDLE-BEARING SYSTEMS

Objective functions:
- mass of the spindle to be minimized,
- rigidity of the spindle—bearing system to be maximized,
- eigenfrequency of the system to be maximized.
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Unknowns: length between the bearings, diameter of the spindle at
bearing.

Constraints: radial displacement, radial rigidity, eigenfrequency,
size constraints. N
Da
‘ Da
’ B i i —‘-C\L
Fr B //
= - "
= B

Fia. 3. The spindle-bearing system

The Flexible Tolerance method was very efficient in finding the
optimum using the finite strip method, but it needed more computation
time [14]. The values of the three objectives at single—objective
optimization and using the min-max multiobjective method, where the
relative importances are the same, can be seen on Fig. 4.

Optimization for the
J
E 1st obj. ! 2nd obj. a 3rd obj. D min—-max

ow.ﬁm;hbuvawel
20t

L1

40 1

st 3rd 1st 3rd 1ist 3rd 1st 3rd
2nd 2nd 2nd 2nd obj.

Fig. 4. Solution of the single— and multiobjective optimization
4.4 OPTIMUM DESIGN OF STIFFENED PLATES

Objective functions:
— mass of the plate,
- cost of the plate including material and welding costs,
- deflection of the cellular plate to be minimized.
height of

Unknowns: thicknesses of cover plates and stiffeners,

stiffeners, number of stiffeners.

constraints at cover
deflection constraints,

plates, shear
local buckling

Constraints: normal stress
constraints at stiffeners,
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constraints, size constraints. There is a possibility of uéing higher;
strength steels. ) ® ' :

Fig. 5. The stiffened, weldeﬁ‘plate'strdcturg

The Direct-Random Search technique was very useful in this. case. [t
usually gives global optimum for the structure. : ’
'

The program system was made in MS FORTRAN 5.8 on PC/AT/386
compatible computer. If we write the programs for example in C
language, at that case the Complex method was quicker than the
Hillclimb, but in FORTRAN the Hillclimb method was the quickest one,
but usually gave local optimum. We have made some of the optimization
programs in Quick Basic and the developing time was much smaller, but
the runtime was longer. All the single-objective methods can. find .a
feasible starting point, and give an optimum with unbounded and with
discrete values. There is a range of discrete values is._.given for
every variables. ' ) o
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MERNOKI ALKALMAZASOK - IMS FODEMTSL A KAZETTAATRAKOIG
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SUMMARY:

i

In practical point of view sometimes |mpossvble to use the standard FEM programs
in the analysis of the technical problems. The special behaviour of the structures, the :
compiex geometry, the interconnected soil and stucture or the special character of the
loads require individual solutions. This paper presents some examples which were solved
by the authors in the years past such as: analysis of the load-bearing capacity of the IMS
floors in consequence of the cable-corrosion, displacement analysis of a sluice-gate and
the ring-shaped foundation of a cooling tower, dynamic analysis of a fuel handling hoist
etc.

OSSZEFOGLALAS: o S

A standard véges elem programok alkalmazasa a-miiszaki feladatok egy részének
megoldéséara néha nem lehetséges. A szerkezet specidlis jellege;, geometriai elrendezése,
esetleg a talaj és szerkezet kapcsolata, vagy a terhek sajatosségai egyedi megoldasokat
igényelnek. Az el6adés erre mutat be néhény példét, amelyet a szerz8k az elmdit években
oldottak meg, Ugymint IMS fédémek kabel-korrozié miatti teherbirdscsdkkenésének
vizsgélata, hajézsilip és hdtStorony alapgylrd elmozdulds vizsgélata, kazettaatrakd'
dinamikai vizsgélata stb. ' ik

1.IMS fodémek kéabel korrozié miatti teherbiréscsékkenésének vizsgélata

Az IMS szerkezet el6regyértott vasbeton elemekbél Ssszeszerelt utéfeszitett vaz.
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