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ABSTRACT

Context. Archives of long photometric surveys, such as the Kepler database, are a great basis for studying flares. However, identifying
the flares is a complex task; it is easily done in the case of single-target observations by visual inspection, but is nearly impossible
for several year-long time series for several thousand targets. Although automated methods for this task exist, several problems are
difficult (or impossible) to overcome with traditional fitting and analysis approaches.
Aims. We introduce a code for identifying and analyzing flares based on machine-learning methods, which are intrinsically adept at
handling such data sets.
Methods. We used the RANSAC (RANdom SAmple Consensus) algorithm to model light curves, as it yields robust fits even in case
of several outliers, such as flares. The light curves were divided into search windows, approximately on the order of the stellar rotation
period. This search window was shifted over the data set, and a voting system was used to keep false positives to a minimum: only
those flare candidate points were kept that were identified as a flare in several windows.
Results. The code was tested on short-cadence K2 observations of TRAPPIST-1 and on long-cadence Kepler data of KIC 1722506.
The detected flare events and flare energies are consistent with earlier results from manual inspections.
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1. Introduction

Flares are energetic eruptions that occur as a result of magnetic
field line reconnection. These events can be found in almost
all types of main-sequence stars, including hot and cool stars
(Švanda & Karlický 2016; Shibayama et al. 2013); but flares
are most numerous in low-mass, late-type M dwarfs (Walkow-
icz et al. 2011; Vida et al. 2016).

These energetic events have received increased interest since
the advent of exoplanet research, as flares can have strong, dele-
terious effects on orbiting planets (Khodachenko et al. 2007;
Yelle et al. 2008). Flares can also continuously transform exo-
planetary atmospheres, which is disadvantageous for hosting life
(see Vida et al. 2017; Roettenbacher & Kane 2017 and references
therein).

Currently used definitions of the habitable zone are based
only on the stellar irradiation and the distance of the planet from
the host star. As flares can have strong effects on planetary en-
vironments, these definitions will likely need to be revised for
a more accurate definition of habitability in order to include the
effects of stellar activity. To do this, and to better understand stel-
lar magnetism itself, it is essential to characterize flares: events
need to be properly identified, and their strength and frequency
need to be determined.

The data from the Kepler satellite proved to be a great re-
source for stellar activity research because they provide an al-
most continuous data set of unprecedented precision over four
years from about 160 000 targets, which include thousands of ac-
tive stars (e.g., Basri et al. 2010). Studies have been performed
to understand stellar activity of individual stars (e.g., Roetten-
bacher et al. 2013) and of classes of stars (e.g., McQuillan et al.
2014; Davenport 2016).

Significant strides were made to detect the flares that are con-
tained in the Kepler archive by Davenport (2016), who identified
events in the light curves by detecting the shape of a flare. How-
ever, this method can misidentify other astrophysical phenom-
ena as flares (e.g., KIC 1572802, an RR Lyrae star). Of course,
there is no single perfect way to accurately detect and classify
all flares: the diversity of observations (e.g., short- and long-
cadence Kepler data or ground-based observations) and of the
events themselves (the flare length and complexity due to multi-
ple nearly simultaneous flaring events can result in several light-
curve shapes) make the automated search for these eruptions a
difficult task. A manual identification of flares is also impossible
in practice for a large number of observations, as in the Kepler
archive.

In this paper, we present an algorithm that is based on
machine-learning, with which we identify flares in light curves1,
and we present our application to the flaring, planet-hosting
star TRAPPIST-1, a popular target for habitability studies, land
KIC 1722506, a rotationally variable star (e.g., Debosscher et al.
2011).

2. Flare-finding algorithm

2.1. Determining the stellar rotation period

The first step of our FLAre deTection With Ransac Method
(FLATW’RM) algorithm is to determine the rotation period of
the light curve, which FLATW’RM accomplishes by taking the
photometric modulation of spotted active stars into account. The

1 The code is available at https://github.com/vidakris/
flatwrm/
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starspots, which are dark regions of suppressed convection of
cool, active stars, rotate across the stellar surface in and out of
view of the observer, causing periodic modulations to the light
curve. Starspots are often longer-lived than sunspots, allowing
for detection during multiple rotations. This provides a reliable
approximation for the stellar rotation period.

Light-curve sections of approximately the length of the stel-
lar rotation period (typically, on the order of days) are expected
to be easily described by a relatively low-degree polynomial (as
opposed to sections covering several rotations), and their lengths
are longer than the timescale of a flare event (typically, on the
order of hours). The light-curve sections are specifically defined
such that a flare could be easily spotted in a data set by eye. The
period search in FLATW’RM is made using LombScargleFast,
the Lomb–Scargle periodogram implementation in gatspy2. For
further analysis, these light-curve windows (with a length of
1.5 × P by default, where P is the period found with the Lomb–
Scargle method, which is generally assumed to be the rota-
tion period) are used. Each light-curve window must also be
standardized: it is a common requirement for many machine-
learning estimators that individual features should look more or
less like normally distributed data (Gaussian with zero mean and
unit variance, see, e.g., Pedregosa et al. 2011; Müller & Guido
2017). For our purposes, it is enough to transform only the time
axis by removing its mean and scaling the light curve by its stan-
dard deviation, since the scaling of the brightness variation is
just a multiplicative factor in the coefficients of the polynomial
used to fit the light-curve window.

2.2. Determining the order of the polynomial fit

In machine-learning, one major problem is determining the com-
plexity of the model used to fit the data in order to avoid under-
or overfitting (Müller & Guido 2017). In the case of underfitting,
the model does not describe the data well, while in the case of
overfitting, a too-complex model is used that tries to fit too many
data points individually. While it might fit a training data set
well, this will describe test data and future measurements poorly.
This problem is generally solved by a cross-validation method.
An example of a basic approach is k-fold cross-validation, where
the training data are split into k smaller sets (so-called folds), and
the model is trained on k−1 folds of the data. The remaining part
of the data is used for validating the model. The sets are usually
created by selecting random samples of the initial data set, but
this is not very useful with time series. In these cases, sets of con-
secutive data points are therefore used (Pedregosa et al. 2011).
Lengthy data sets, such as Kepler light curves, make it imprac-
tical to use all the available data for cross-validation, or to find
the optimal polynomial order for each segment. Therefore, we
selected a sample (five, by default) of light-curve windows from
the observations, and performed a grid search of fit parameters
on them to select the best model to describe the given data based
on the median absolute error regression loss. In most cases, a
polynomial up to ≈10th degree is sufficient to fit rotational mod-
ulation of the data in the window.

2.3. Outlier detection and selection of flare candidates

To model light curves, we used the RANdom SAmple Consensus
(RANSAC) algorithm, as it is designed to give a robust fit to data
with several outliers (Bolles & Fischler 1981). RANSAC is an
iterative method that assumes that the data consist of inlier and

2 http://www.astroml.org/gatspy/
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Fig. 1. Demonstration of the algorithm on a light-curve section of KIC
1722506. The top plot shows the original light-curve section. The sec-
ond plot shows the outlier points found by RANSAC, marked with red
dots. The third plot shows the 5σ detection level from the fit (continu-
ous line) and the flare candidate points. In the bottom plot, the final flare
candidates are shown, which have more than a given number (three, in
this case) of consecutive data points. These points will get a vote for
this light-curve section, indicating that the feature likely is a flare.

outlier points (generally noise, but also flare events, in this case).
The algorithm works as follows: first, a sample random subset
is generated from the input data set, which is fit by the model.
Then, the algorithm checks which elements of the original data
set fit this model based on the residuals. The points that fit the
model are considered inliers for the given iteration. These steps
are iterated either a maximum number of given times or until
one of the stop criteria is met (this can be a given number of
inlier points or a stop score by a given metrics). The final model
is based on all inlier samples (also called a consensus set) of
the previously determined best model. An example of the outlier
selection by the algorithm is shown in the second plot of Fig. 1.

We found that while RANSAC gives a good fit even for a
light-curve section with several flare events, the marked outliers
are not reliable enough for searching for flare candidates alone
(see Fig. 1): it sometimes also marks the beginning of the light-
curve windows. Thus we only used the RANSAC estimate of the
inlier points for statistics and calculated the standard deviation of
the light curve (with the rotational modulation and most of the
flare points removed). We considered those points as first-order
flare candidates that were above a given detection level (above
3σ by default). To achieve more robust results, we shifted the
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Fig. 2. Demonstration of the voting algorithm on a light-curve section
of KIC 1722506. The top plot shows the original light curve (in blue,
near a normalized flux of 1), and each light-curve segment in individual
windows tested by FLATW’RM (each a different color), and the flare
candidates are marked for the given run with circles. In the bottom plot,
the candidates with one (light gray), two (medium gray), and at least
three (black) votes are plotted. In this setup, the flares plotted in black
are kept as final flare candidates.

search window through the light curve, by default in steps of
one-fourth of the light-curve window (see Fig. 2, e.g.). In this
way, every light-curve point was analyzed multiple times (with
the exception of those that are at the beginning or at the end
of the data set or large observational gaps), and if a light-curve
point is considered as an outlier, that is, a flare point candidate,
it received a “vote”. A light-curve section was considered a flare
when it received enough votes (≥ 3, by default) in overlapping
search windows and had at least a given number (2, by default)
of consecutive points. We note that this last step was performed
only after evaluating each light-curve segment. These criteria are
basically the same as those defined by Equations 3 a–d of Chang
et al. (2015) and are consistent with adaptations made by Dav-
enport (2016). When running FLATW’RM from command line,
the user can change the number of flare points needed for a flare,
the detection level of the flares, and the full with at half max-
imum (FWHM) that is used for the analytic fit of the events.
Optionally, the rotation period can be given as an input to run
the code faster, or to fix it to a chosen value if the rotational
modulation is too weak, and the polynomial degree can also be
fixed. The number of votes needed for a flare candidate to be
kept, the window size (compared to the rotation period), and the
step length with which the search window is shifted cannot be
changed from command line, but can be easily modified if the
flare-finding function is imported to another code.

2.4. Summary of the selection process

For clarity, we explicitly state the procedure that FLATW’RM
steps through in locating the flares in the light curve.

– A period search is first performed on the input light curve.
– The input light curve is divided into windows of 1.5 × P that

can be effectively fit with polynomials.
– Each light-curve window is modeled by the RANSAC algo-

rithm to find the best-fitting polynomial.

– The data points are designated as inliers or outliers.
– The light-curve model is subtracted from the light-curve win-

dow.
– The standard deviation of the light curve is determined based

only on the inlier data points.
– The data points that are above the given detection limit re-

ceive a vote as a flare candidate for the given window.
– After each window is analyzed, only those flare candidate

data points are kept that have a given number of votes.
– Events that have at least a given number of selected candidate

points are marked as flare events.

2.5. Fitting an analytic model

As output we considered two options: (1) the beginning and end-
ing times of the flare and the maximum time and light-curve am-
plitude for each event, or (2) an analytic model can be fit to the
data. In the latter case, the observed light curve is modeled again
with the RANSAC algorithm (this time centered on the event)
to remove the effect of rotational modulation, leaving only the
light-curve changes caused by flares. This data set is then fit by
the classical single-peak flare model defined by Davenport et al.
(2014). The parameters for this function are the time of the flare
peak, the FWHM (i.e., the timescale of the flare), and the am-
plitude of the flare. As an initial guess, we took the middle flare
data point as the peak time, the amplitude of the selected light-
curve data point, and one hour as the timescale of the flare, which
fit most of the events (but this can be changed by the user). In
the case of weak eruptions near stronger events, however, the fit
might be distorted, and the fit could converge to the event with
higher amplitude, effectively ignoring the weaker event. In the
case of lower sampling, the fits could yield very high peaks (as
a consequence of exponential decay) if only the declining phase
is measured. To estimate flare energies, the integrated intensity
(also known as equivalent duration) was also calculated for each
event.

3. Caveats

While this method is an improvement over previous automated
flare-detection efforts, we acknowledge that there are still a num-
ber of difficulties. Here, we list the significant caveats for using
FLATW’RM.

– In the application of the code on a large number of differ-
ent light curves (e.g., mixing short- and long-cadence Kepler
data) without adjusting the searching parameters.

– Long and complex flare events (e.g., those observed by
Kóspál et al. 2018, where eruptions were likely caused both
by accretion and magnetic field reconnection) can cause
failed outlier detection if there are not enough inlier points
in the search window.

– Analytic fits to the events can yield unexpected results, es-
pecially in the case of long-cadence Kepler data, where only
the exponential decay of the flare is observed (cf. Fig. 4). We
emphasize that the analytic fits always need to be checked
or the output from just the light curve should be used and
analytic fitting be ignored in dubious cases.

– A weak rotation signal may not be properly identified with
FLATW’RM’s Lomb–Scargle period search and could a
yield problematic light-curve search window length. Addi-
tionally, FLATW’RM could fail to find a rotation period. In
these cases, the rotation period (or a reasonable size for the
light-curve window) should be given as an input to the code.
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Fig. 3. Top: Selected flare candidates in the TRAPPIST-1 short-cadence K2 data. The upper panel shows the total light curve, the middle plot is
zoomed-in to show smaller events. Bottom: Similar analysis, but for long-cadence Kepler data of KIC 1722506.

4. Testing the FLATW’RM code

As a demonstration of the FLATW’RM code, we analyzed two
data sets from the Kepler telescope: a short-cadence K2 obser-
vation of TRAPPIST-1, and a long-cadence light curve of KIC
1722506 (the data were obtained in the 420–900 nm wavelength
range with the maximum spectral response at 575 nm). In the
case of TRAPPIST-1, we set the minimum number of data points
needed for a flare (N3 in Chang et al. 2015) to 5, and the detec-

tion limit to 5σ. In the case of KIC 1722506 we used N3=3
with a detection limit of 3σ. The detected flare events are shown
in Figure 3. Two samples from the recovered flares that demon-
strate the analytic model fit by FLATW’RM are plotted in Figure
4.

With these parameters, FLATW’RM found 35 and 126
events in the case of TRAPPIST-1 and KIC 1722506, respec-
tively. As a comparison, in the case of TRAPPIST-1, visual in-
spection by Vida et al. (2017) revealed 42 events.
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Fig. 4. Two samples from the recovered flares, from the short-cadence TRAPPIST-1 and the long-cadence KIC 1722506 data. Red points show
the points selected for flares, the green line indicates the fitted analytical model from Davenport et al. (2014).

To estimate the flare energies, we followed the method of
Kővári et al. (2007), which is based on integrating the flare in-
tensity during the event:

ε f =

t2∫
t1

(
I0+ f (t)

I0
− 1

)
dt,

where t1 and t2 are the beginning and end times of an event,
and I0+ f and I0 are the intensities with and without a flare (i.e.,
their fraction is the normalized intensity). The integral above
will yield the relative flare energy (or equivalent duration). Dur-
ing the analysis, FLATW’RM fits each flare event as described
above and produces a spotless light curve that contains only the
eruption itself, which has to be integrated over the duration of
the event in order to obtain the relative flare energy. From this,
the flare energy in the observed bandpass (E f ) can be calculated
by multiplying by the quiescent flux (F?):

E f = ε f F?.

We estimated the quiescent flux by assuming blackbody radia-
tion with an effective temperature of Teff = 2550K and stellar
radius of R = 0.117R� for TRAPPIST-1 (Gillon et al. 2016), and
Teff = 4270K and R = 0.845R� for KIC 1722506 (taken from
the Kepler Input Catalogue3; Brown et al. 2011). The black-
body power function F (λ) was convolved with the Kepler re-
sponse function S Kp, and integrated over wavelength to obtain
the quiescent flux F? in the Kepler passband:

F? =

λ2∫
λ1

4πR2F (λ)S Kp(λ)dλ.

Following the analysis of Vida et al. (2017), we fit the cumu-
lative flare frequency distribution (plotted in Fig. 5) with a linear
fit that can be expressed as

log ν = a + β log E,

where ν is the cumulative number of flares with energy higher
than E. The slope of a linear fit yields β = 1−α, where α is often
3 http://archive.stsci.edu/kepler/, see also Kepler Mission
Team 2009

used to determine if flare energy dissipates by thermal, nonther-
mal, or magnetic processes (see Aschwanden et al. 2016). Al-
ternatively, α can be determined using the maximum likelihood
estimator (see Gizis et al. 2017):

(α − 1) = n

 n∑
i=1

ln
Ei

Emin

−1

.

Here, n is the number of detected events, while Ei and Emin are
the individual and the lowest flare energies, respectively. Ac-
cording to Gizis et al. (2017), this result should be multiplied by
n−2

n for small samples to correct for the bias. The linear fit to the
cumulative distribution yielded α = 1.53 for TRAPPIST-1, while
the maximum likelihood estimator gives α = 1.47 (corrected for
sample size), close to α = 1.59, the value found by Vida et al.
(2017). For KIC 1722506, the linear fit yielded α = 1.38 for
energies log E < 34.5 (E given in ergs), where the distribution
is close to linear, while the maximum likelihood estimator gave
α = 1.50.

5. Summary

We presented the FLATW’RM code, which uses machine-
learning methods to identify flare events in light curves and
calculates their relative energies. Characterizing these energetic
events is crucial, since they can shape circumstellar environ-
ments, especially in the realm of planetary habitability. In the
case of many targets and large data sets, as with the Kepler
database, manual inspection is impossible, but machine-learning
tools can help astronomers to effectively analyze such data. In
the future, we plan to apply this method to a large set of Ke-
pler stars in order to obtain a new view that is independent of
currently available works.
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