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Summary

Several authors have used rough approximations for stability constraints of
compressed members in trusses to simplify the optimum design procedure. It is
shown that the use of the Euler buckling curve instead of the Eurocode 3 column
buckling formula causes 19-35% error in the unsafe side, so it is not suitable for
optimum design. Moreover the limiting local slenderness of thin-walled circular
hollow sections (CHS) should be taken according to Eurocode 3 (d/ tlim =70*235/f,
(fy is the yield stress in MPa) instead of 10 also used by several authors, since this
low value leads to uneconomic design. The importance of stability constraints is
illustrated by a numerical example of a K-type truss with parallel chords and gap
joints welded from CHS struts.

1. Introduction

Modern structures should be safe and economic. The safety is achieved by using
stability constraints which describe the behaviour of structures realistically. The
economy can be realized by using optimum design to minimize the cost or weight of
the structure.

Authors dealing with the optimum design of metal structures make in some cases
simplifications to solve the problems easier. E.g. in the optimization of trusses they
neglect the overall buckling of compressed members or use too simple stability
constraints such as the Euler buckling curve.

It is well known that the Euler buckling curve neglects the very important effect of
initial crookedness and residual stresses caused by fabrication processes (welding,
cold-forming). These effects can be described only by a more complicated
mathematical form. It will be shown in the present paper that the use of the Euler
buckling curve causes unsafe design which is not permissible.
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Furthermore, the suitable optimum design procedure will be described using all
stability constraints necessary for safe design. The case of welded thin-walled
tubular trusses is selected for this purpose, in which not only the constraints on
overall buckling, but also the constraints on local buckling of plate elements should
be considered. The consideration of all important constraints will be illustrated by a
numerical example of a simple tubular truss welded from CHS rods.

2. Unsafe design using the Euler buckling curve :

Authors dealing with the optimum design of tubular trusses have neglected the
overall buckling of compression members prescribing constant permissible stresses
for tension and compression rods (e.g. Khot and Berke 1984), or the overall buckling
is considered by the Euler buckling formula (e.g. Vanderplaats and Moses 1972,
Saka 1980, Amir and Hasegawa 1994)

o,=mElX; A=KLIr, r:,/lx/A (1)

where E is the elastic modulus, 1 is the slenderness, K is the end restraint factor
(for pinned ends K = 1), I, is the moment of inertia, A is the cross-sectional area, r
is the radius of gyration.

For CHS, using the notation §=D/t=(d-1)/t, where D is the mean diameter
and d is the outside diameter, t is the thickness, the following formulae are valid

D  aD* aD? D o
| = =l A=——r=—==aJA a= |— 2
=78 85 S J8 /A \ 87 ?
kA
Thus, GE:W (3)

It can be seen that the local slenderness & plays an important role in the buckling
strength, therefore the selection of the limiting value ¢, influences the optimum
design significantly. The first author has verified (Farkas 1992) that the local
buckling constraint is active in the optimum design of a concentrically compressed
CHS strut. E.g. Vanderplaats and Moses (1972) have selected for steel tubes the
value of &, = 10, and this value has been used also by Saka (1980) and Amir and
Hasegawa (1994) (note that in Amir and Hasegawa (1994) in Eq.(3) the erroneous
value of 3 is printed instead of 8). Since in the Eurocode 3 (1992) &, = 70*235/f, is
given for Class 2 sections to be used in tubular trusses, i.e. 70 for a steel of yield
stress f, = 235 MPa and 50 for f, = 355 MPa, the value of 10 is incorrect and leads to
uneconomic solutions. _

In the contrary, the use of the Euler formula leads to unsafe solutions, since it
does not take into account the initial crookedness and residual stresses. In (Saka
1990) the AISC buckling curve has been used. Farkas and Jarmai (1994) have
applied the Eurocode 3 buckling formulae and have shown that the optimal slope
angle of a roof truss depends on the cross-section type of compression members
and the use of CHS is much more economic than that of double angle profile.

In the following we compare the cross-sectional areas of a CHS compressed
strut calculated from the Euler curve and from the Eurocode 3 buckling formula. In

the calculations the values of f, =356 MPa, a. = J50/(87) =1.4105 and K=1
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(3)
are used. Using Eq. ( ) the slenderness can be expressed by A as follows.
21 ot 1 5027
224 a0t a2 10t ar?
The overall buckling constraint, using the Euler formula, is

(4)

N . 1 -
*A—S,‘(fy ; 2’::‘5 for 121 (5)
y=1 for A<l 7
where A=Al Ap=nfEIf =764091 (6)
0* 2 . /12
From LTN—L%— < _i_f’; = /s o (7)
1004/ A
1 2 0 4
using Eq. (4) one obtains 10°4 = 1 2027 10N = 0.049247 10 ZN (8)

I 764091 ¥ 355 I’
valid for A= 4,. For 1 < A, taking y=1in Eq.(5) we get

4 4
0 0
1 r)A J1ofw ©)

> 1%,
According to the Eurocode 3 the overall buckling constraint is

N 1, I [ 7
s— r}’m:l-l;;:¢+ ¢ = A

A Y an
¢ = 0.5[1 +034(2-02)+ Zz] -" ‘ (10)

Introducing the symbols ¢, = 100K/ , x = 10°NA? and y = 10*A/% where L
[mm] is the strut length, A [mm? is the required cross-sectional area, N is the
factored compressive force in [N], Eq. (10) can be written as

YanX y
f ¢
N

a’y

2 -
$=05 1+o34[ —o~j+ C | =108 (11)
a\ly a'y T afy

Table 1. Required 10*A/%values for some 10°N/L%values in the case of a
compressed CHS strut, f, =355 MPa, K=1

N
10°N1 Lz[mmz] 10 100 305.7 1000 10000
Euler 0.1557 0.4925 0.8610 2.8169 28.17
4
107 A l
,)/ Eurocode 0.1766 0.6273 1.3174 3.4975 30.60
L_ ~
difference % 12 21 - 35 19 8
A Eurocode 168 89 66 38 13
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A computer method is used to calculate y for a given x. Results are summarized
in Table 1. It can be seen that the results obtained by the Euler formula are unsafe
by 19-35% in the range of 2 = 38 - 89, so the Euler formula gives incorrect
solutions.

3. Numerical example of a tubular truss

In order lo illustrate the role of stability constraints we select a simple planar,
statically determinate, K-type truss with parallel chords and gap joints, welded from
CHS rods (Fig.1). In the optimum design the optimal distance of chords h is sought
which minimizes the total volume of the structure and the dimensions of rods fulfil
the design constraints. The structural members are divided to 4 groups of equal
cross-section as follows: 1 - lower chord, 2 - upper chord, 3 - compression braces, 4
- tension braces.

Fl 2 Fl 2 Fl 2 Fl Fl

—
tl di
Fig. 1. Planar truss with parallel chords.
The numbering relates to groups of
members of equal cross-section
-

Fig. 2. K-type gap joint with eccentricity e
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According to DIN 2448 and DIN 2458 (Dutta and Wiirker 1988) the available
CHS have the following dimensions (discrete values):

d =133, 139.7, 1562.4, 159, 168.3, 177.8, 193.7, 219.1, 244.5, 273, 298.5, 323.9
=29, 32 36,4,45,5,56,6.3,7.1, 8, 8.8, 10.

All members are made from steel Fe 510 wnh u!tlmate strength f, =510 MPa and
yield stress f, = 355 MPa.

The load is shown in Fig.1, the factored value of the static forces is F = 200 kN.
Calculate the required cross-sections for various values of w = h/a, to select the wepy
which minimizes the total volume V. The variables are as follows: d; and ¢; (i=1,2,3,4).
The objective function is expressed as

’):m = 5(ch = 1), +4(dy = )+ 3V + 1(dy ~ 1)+ 2V 0+ 1(d, 1)1, (12)

The constraints are as follows.

Local buckling constraints for all sections according to Wardenier et al. (1991)
are

dyti < 50 (13)
Stress constraint for tension members are

S max ‘/' ' 651’?

= < g ' ‘Slmu = ) }/)\Io = Il (14)
ﬂ((l, ~Il)l, Y o w
S . N ’

4 max < f) , ‘S'A!mu - —————l 51 m (1 5)

(‘1 )[4 Y ro @

Overall buckling constraints for compression members accordmg to Eurocode 3.
are as follows

f '.
Upper chord: S < 22y v Sy = Ef_; Y =11 (16)

”(dz B tz)tz Y mi w

1 . — —2

Xy = e}, = 0.5[1+0.34(/12 -02) -;-;{2}

by +\ 2~ Az

1 A Kl _09 *2a,4/8

) =

“‘_2“ - -
A Agh As(dz*iz)
With £=2.1105MPa and f,=355MPa A, = z,[E/ f, = 764091

K2 =0.9 is the end restraint factor according to Rondal et al. (1992), r, = =(d,-t)/ NG

is the radius of gyration.
Compression braces:

‘SJmax < X3‘/:" : Sjmn = —2-—& \/(02 +1 (1 7)
YT(dJ ‘“13)/3 Yan @
. LIS ~05{14 034(7, 02)@2]
2 = =1 $5 =051+ 034{4, -02)+ 15
by
= A, Kl, 07530’ +1J8

Az =

23 =
Ay A, Ae(d; -t,)




11/192

(6)
In order to ease the fabrication the diameter of braces should be smaller than
those of chords: ‘
d, =092d,, d,<092d,, d, <092d,; d, <092d, (18)
Prescription for the joint eccentricity to avoid too large additional bending
moment in the vicinity of nodes is as follows (Fig. 2.):
e <0.25d,, e <0254, (19)

The eccentricity can be expressed by d, angle ¢ and gap parts gs; and g4 as
follows: '

e+d,/2 e+d, /2

tgo = or tgd= - 20
J g, +d, /(2sin0) g g, +d,/(2sin0) (20)
Assuming that ' :
9,=9,=005d, or 0.05d, (21)
the geometry constraints can be given by:
dy ©? +1+d,(0.050 - 075) < 0 (22)
2 )
and
% @* +1+d,(0050-075) <0 (23)

Constraint on static strength of welded joints between chords and braces
according to Eurocode 3 is

Jo? +3(e2 4 72) < 6,1 (Buraw) (24)
f, =510 MPa, p,=09, y,, =125
From the force S in a brace the following stress components arise in welds:
_ Ssing J2 _ Scos
LT da, 2 T Tada,
where a,, is the fillet weld dimension. Substituting Eq. (25) into Eq. (24) we get

S 2 (02 +3

711/(1"7 w™ +1

For the maximal value of a,, the corresponding brace thickness can be taken.
This constraint should be fulfilled for S; and S..

For the node strength the following constraints should be fulfilled (Wardenier et
al. 1991). :

Constraints on chord plastification.

In the joint of rods 1 and 3:

o, =T

(29)

<453MPa (26)

y L ‘f)'llz (13 | t
] A fir.g) : (27)

s u,

0.024y 12 d
f1(}’1.91')=7?'2[1+ Z1 )+1} yi= o3

exp(0.5g; 133 T

gi=g,/t, weassumethat g,=g,+g,=01d,
Constraints on chord plastification for joints of rods 1 -4, 2 - 3 and 2 - 4 can be
formulated similarly to Eq. (27), therefore these constraints are not detailed here.
Constraints on punching shear.
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(7)
In the joint of rods 2 and 3:
I4sin 0
. 2s5in20
Note that the constraint on punching shear was in our calculations always
passive, so it is not necessary to investigate it for other joints.

. Jy
S3max < ﬁfz ml3 (28)

For the computations the Rosenbrock's hillclimb mathematical programming
method has been used treating the unknowns as continuous variables. After the
determination of the optimal dimensions the discrete optima have been found by
using an additional search. The results are summarized in Table 2.

Table 2. Optimal discrete dimensions [mm] and VA2mao) - values [mm?] for various
= h/a, - values.

w = hag 0.8 0.9 1.0 1.1 1.2 1.3 1.4
dit; | 244.5/8 244.5/8 244.5/8 219.1/8 273/8 273/8 208.5/8.8
dyt; 27318 244.5/8 244.5/8 219.1/8.8 27318 273/8 298.5/8.8

dyty | 219.1/4.5  219.1/4.5 219.1/4.5 193.7/4.5 219.1/4.5 219.1/4.5 293.7/4.5
d/ty 159/3.6 1562.4/3.6  152.4/3.2 152.4/3.2 139.7/3.2  139.7/3.2 139.7/2.9

V/A27a) 23083 22387 22475 21063 24970 25264 28704

The optimal value is o = 1.1, the difference between the best and worst solution
in the range of © =0.8 - 1.4 is 100/(28704 - 21063)/21063 = 36%. The checks of -
constraints are summarized in Table 3. '-

Table 3. Check of the constraints for the optimal solution o = 1.1 ,

Constraint | Dimen- Eq. Rod Remarks
sion 1 2 3 4
Local active for rods 3,
buckling - (13) 27<50 25<50 43<50 48<50 4
Tensile (14) near active for
stress MPa (15)  223<323 - - 270<323 rod 4
Overall (16) active for rods 2,
buckling MPa (17) - 188<204  240<261 - 3
Fabrication | mm (18) - - 194<202 152<202 | active forrod 3
Eccen- (22) : near active for
tricity mm (23) - - -8.32 - rods 1,2,3
Weld ' near aclive for
strength MPa (26) - - 368<453 414<453 rod 4
Chord aclive for rods 3-
plasti- kN @n - - 642<713 405<586 1
fiication
Punching |
shear kN (28) - - 642<1744 - passive

It can be seen that the overall buckling constraint is always active, the local
buckling constraint is passive only for chord 2, since for thickness ¢, the chord
plastification is governing. Thus, it can be stated that the effect of stability
constraints in the optimum design of tubular trusses s significant.
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4. Conclusions

It is shown that the use of the Euler buckling curve instead of the Eurocode 3
overall buckling formula causes 19 - 35% error in the unsafe side in the most
important slenderness range of 38 - 89, so it should not be used in the optimization
of tubular trusses. The application of limiting tube local slenderness df = 10
instead of 50 leads to uneconomic solutions.

The significant role of the stability constraints in the optimum design of tubular
trusses is illustrated by a numerical example. In this optimum design procedure the
dimensions of CHS truss members and the optimal distance of chords are
determined which give the minimum volume (weight) of the structure and fulfil the
design constraints. The constraints relate to the overall buckling of compression
members, to the joint eccentricity and static strength of joints. For the final optimal
version realistic available discrete tube dimensions are determined.
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