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CHAPTER 5

TOPOLOGY OPTIMIZATION OF TUBULAR STRUCTURES

K. Jarmai
University of Miskolc, Miskolc, Hungary

ABSTRACT

Topology optimization is a great part of structural optimization. Structures should be safe and
economic. In most cases these two conflicting aspects can be systematically synthesised by
optimum design. Economy is achieved by minimizing the cost function and safety is guaranteed by
considering the design constraints.

There are many optimization techniques. The hillclimb and backtrack mathematical programming
methods are described giving a detailed flow chart. If a continuous mathematical method is used
and discrete series of values are given for variables, the discrete optima can be determined by a
complementary discretization, which is also explained. The multiobjective optimization techniques,
where more objective functions are given have been shown.

The cost optimization is important in structural design. The welding times of various welding
technologies are different. Using the COSTCOMP program we can calculate the welding times.
Adding other times, like flattening plates, surface preparation, cutting, electrode changing,
deslagging, painting, etc. we can form a complete cost function. Times are usually general, but
costs are different in various countries. Introducing the fabrication and material specific cost ratio
Ik between 0 and 2 kg/min, it is possible to build the cost function using times and to work out
optimization in different economic conditions. Examples are shown for applications of design of
welded box beams and stiffened plates. The fabrication cost percents for welded box beam and
stiffencd plate are 29 - 35 and 46 - 71% of the total costs, respectively, thus they can bave a
significant effect on optimum dimensions. The discrete optima depend on the manufacturers, on the
kyk,, ratio and the welding technologies.

Optimum design problems of tubular trusses are treated. In these applications the discrete variables
appear in various forms. In the cost function the material and fabrication (welding) costs are
formulated. In the optimization of trusses it is verified that the optimum geometry depends on the
profile shape of compression members.

Expert system shells, the Personal Consultant Easy (EASY) and the LEVEL 5 OBJECT (L50) are
used. The connection between the optimization techniques and the expert shells makes it possible
to find the best solution among several alternatives. The Rosenbrock Hillclimb procedure is used in
L50 and five single-objective and seven multiobjective optimization techniques are used in EASY.
The benefits of these systems in the optimum design of belt-conveyor bridges are shown. In an
example the main truss girder of a belt conveyor bridge is designed with different heights and
different numbers of columns to find the optimal topology. The Eurocode 3 standard is used for the
structural analysis.
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5.1 INTRODUCTION

People in their everyday life always make optimization on a conscious or a subconscious
way ,to reach the best, which is possible with the resources available”. The consciousness
makes the act more efficient. They have always targets to reach and constraints to contro]
them. The birth of optimization methods as mathematical techniques can be dated back to
the days of Newton, Lagrange and Cauchy. The further development in optimization wasg
possible by the developments of differential calculus by Newton, Leibnitz, the variational
calculus by Bernoulli, Euler, Lagrange and Weierstrass, the introduction of unknown
multipliers by Lagrange. The concept of multiobjective optimization was formulated one
hundred years ago by Pareto in 1896.

The first written analytical work published on structural optimization was made by
Maxwell in 1890, followed by the well known work of Michell in 1904. These works
provided theoretical weight minima of trusses, using highly idealised models, but the
analytical way of solution of the structural optimization problem is still usable.

During the Second World War and in the late 1940's and the early 1950's the development

of optimization concerned to the minimum weight design of aircraft structural components;

columns, stiffened panels, subject to compressive loads and to buckling. Digital computers
appear in the early 1950's and gave a strong impulse to the application of linear
programming techniques. The applications were focused primarily on steel frame
structures.

In the late 1950's and 1960's the applications of structural optimization on lightweight
structures concentrated to the aircraft and space industries. This time some new
optimization techniques have been developed by works of Rosenbrock, Box, Powell. The

great development of this period is that the finite element method, which is a powerful tool

for analysis of complex structures, has been invented by Zienkiewich and applied by many
others for structural analysis.

Modern structural optimization can be dated from the paper of Schmit in 1960, who drew
up the role of structural optimization, the hierarchy of analysis and synthesis, the use of
mathematical programming techniques to solve the nonlinear inequality constrained
problems. The importance of this work is that it proposed a new philosophy of engineering
design, the structural synthesis, which clarifies the methodology of optimization.

The optimum design procedure has three main phases as follows:

(1) preparation: selection of materials, profiles, type of structure, joints, fabrication
technology, erection method, definition of loads, design constraints and objective
function(s), definition of the candidate structural versions;

(2) mathematical phase: constrained function minimisation by computerised mathematical
programming methods;

(3) evaluation: selection of the most suitable structural versions adding some heuristical
aspects (aesthetics, transportation etc.), investigation of the most significant parameters,
sensitivity, working out design rules and incorporation into expert system(s).




o
(8
~

Topology Optimization of Tubular Structures

Optimum design is important tool for engineers, since it enables them to a.chi(.zve
significant weight and cost savings by using mathematical methods and by systematisation
of the design process selecting all the important aspects.
In order to make a survey of the most important design problems for welded metal
structures we start from the fact that the best way to decrease the weight of a platgd
structure is the decrease of plate thicknesses. In design of thin-walled structures a lot of
problems arise as follows: .

(1) fabrication difficulties caused by residual welding stresses and distortions; .

(2) stability problems: overall and local buckling phenomena and their interaction;

(3) high additional stresses due to warping torsion: it is necessary to apply the strength

" theory of thin-walled structures;

(4) high stress concentrations in joints: danger of fatigue fracture in the case of variable
loads;

(5) vibrations due to low eigenfrequencies of a thin-walled structure: it is necessary to
study the vibration damping methods;,

(6) to avoid buckling and vibration, stiffeners should be used and stiffened plates and shells

should be designed; . _
(7) determination of the sufficient measure of the decrease of thicknesses by optimum

design.

The above mentioned aspects emphasise the need to study the optimum design which is the

main theme of this course.

The variables in the optimum design of welded metal structures are as follows:

_ in rod structures dimensions of profiles (widths and thicknesses of plate elements of
welded I- and box-beams),

- in frusses: co-ordinates of nodes, cross-se
members;

- in stiffened plates and shells: dimensions of plate or shell elements, number of
stiffeners. These variables can be treated as continuous or discrete ones. The
dimensions of plate elements or standard profiles can be given by a series of discrete
values. In this case we can treat them as discrete variables or as continuous ones and, at
the end of optimization we can discretize them by an additional procedure.

Thus, methods of discrete or continuous optimization can be used. The advantage of a

method depends on the optimization problem as it will be shown by applications.

ctional areas of members, number of

ocal buckling constraints have been
between parallel chords) is sought
constraints should be defined
f initial imperfections of rods,

In the optimization of a tubular truss the overall and |
important and the optimum structural height (distance
which minimises the whole weight. The overall buckling
according to the Eurocode 3 which considers the effect o
since the calculation with the Euler formula gives errors in the unsafe side.

In the optimization of a roof fruss it was shown that, due to the differences between the
radii of gyration of various profiles used in compression members, the optimum roof slope
angle depends on the type of profile. The optima have been found by calculating the
weights corresponding to the series of discrete slope angles.
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5.2 SINGLEOBJECTIVE OPTIMIZATION TECHNIQUES

5.2.1 Design variables, objective functions, constraints and preassigned parameters

Objective function (more functions at multiobjective optimization), design variables,
preassigned parameters and constraints describe an optimization problem.

Design variables and preassigned parameters

The quantities, which describe a structural system can be divided into two groups:
preassigned parameters and design variables. The difference between them is that the
members of the first group are fixed during the design, the second group is the design
variables, which are varied by the optimization algorithm. These parameters can control
the geometry of the structures. It is the designer choice, which quantities will be fixed or
varied. They can be cross-sectional areas, member sizes, thicknesses, length of structural
elements, mechanical or physical properties of the material, number of elements in a
structure (topology), shape of the structure, etc.

For example, in the case of a simple tubular beam the quantities are as follows: 1. span’
length of the beam, 2. sizes and area of the cross section, 3. characteristics of applied
materials, 4. loadings, bending moments, 5. shape of the beam, 6. type of supports, end
conditions, 7. number of supperts etc. Some of them can be design variable, all the others
should be preassigned quantities.

Cross-sectional design variables

Size, or dimension variables are the simplest and the most natural design ones. The cross-

section area of tension and compression members, the moment of inertia of bent members,

or the plate thicknesses can be design variables of this kind. In simple cases a single design

variable (i.e. area) is sufficient to describe the cross section, but for a more detailed design
several variables may be necessary. For example, if we consider the overall buckling of
members, the moment of inertia or the radius of gyration would be also important as design

variable. It should emphasise that less variables for the same problem mean considerable

advantage in the solution from the optimization point of view. From the analytical point of
view, the result can be opposite.

Material design variables

The Young modulus, yield stress, material density, thermal conductivity, specific heat
coefTicient etc. can be material design variables. These properties has a discrete character,
i.e. a choice is to be made only from a discrete set of variables. In most cases the
optimization procedure is nondiscrete, so these discrete variables complicate the
optimization problem. In this case it is advisable to use discrete optimization techniques
like backtrack. For a few number of available materials non-discrete technique would
probably be more efficient to perform the optimization separately for each material.

Geometrical variables
Geometrical variables are the span length of a beam, the coordinates of joints in a truss oOf
in a frame. Although many practical structures have geometry, which is selected before
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optimization, geometrical variables can be treated by most optimization methods. In
general, the geometry of the structure is represented by continuous variables.

Topological variables

Topology means the structural layout, number of supports, number of elements etc. These
can be of discrete or continuous type. In truss systems the topology can be optimized
automatically if we allow members to reach zero cross section size. The uneconomical
members can be eliminated during the optimization process. Integer topological variables
can be the number of spans of a bridge, the number of columns supporting a roof system or
the number of elements in a grillage system.

Constraints

Behaviour means those quantities that are the results of an analysis, such as forces,
stresses, displacements, eigenfrequencies, loss factors etc. These behaviour quantities form
usually the constraints. A set of values for the design variables represents a design of the
structure. If a design meets all the requirements, it will be called feasible design. The
restrictions that must be satisfied in order to produce a feasible design are called
constraints. There are two kinds of constraints, explicit and implicit ones.

Explicit constraints

Explicit constraints, which restrict the range of design variables, may be called size
constraints or technological constraints. These constraints may be derived from various
considerations such as functionality, fabrication, or aesthetics. Thus, a size constraint is a
specified limitation, upper or lower bounds on a design variable. Examples of such
constraints include minimum slope of a portal frame structure, minimum thickness of a
plate, minimum or maximum ratio of a box section height and width, etc.

Implicit constraints

Constraints derived from behaviour requirements are called behavioural constraints.
Limitations on the maximum stresses, displacements, or local and overall buckling
strength, eigenfrequency, damping are typical examples of behavioural constraints. The
behaviour constraints can be regarded as implicit variables. The behavioural constraints are
often given by formulae presented in design codes or specifications. Other parts of the
behavioural constraints are computed by numerical technique such as FEM. In any case the
constraints can be evaluated by analytical technique. From a mathematical point of view,
all behavioural constraints may usually be expressed as a set of inequalities.

The constraints may be linear or nonlinear functions of the design variables. These
functions may be explicit or implicit in the feasible region X and may be evaluated by
analytical or numerical techniques. However, except for special classes of optimization
problems, it is important that these functions should be continuous and have continuous
first derivatives in X.

Design space, feasible region
We may regard each design variable as one dimension in a design space and any particular
set of variables as a point in this space. In cases with two variables the design space
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reduces to a plane problem. In the general case of N variables, we have an N-dimensiong]
hyperspace.

local optima

T global optimum

X
optima for one variable

Fig. 5.1 Optima for one variable

region

X

TN p”

Fig. 5.2 Optima for two variables
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Considering only the inequality constraints the set of values of the design variables that
satisfy the equation gx) = 0 forms a surface in the design space. These are boundary
points. This surface cuts the space into two regions: one where gj(x) < 0 (these are interior
points) and the other where gjx) > 0 (these are the exterior points). The set of all feasible
designs forms the feasible region. The solution of the constrained optimization problem in
most cases lies on the surface. The solution can be local or global optimum (see Fig. 5.1,
5.2).

Any vector x that satisfies both the equality and inequality constraints is called a feasible
point or vector. The set of all points which satisfy the constraints constitutes the feasible
domain of f{x) and will be represented by .X; any point not in X is termed nonfeasible.

Convexity, concavity

It is very important to determine under what condition a local optimum is also a global
one. It depends on the form of the feasible region, determined by the constraints. For a
convex region the local optimum is a global one, otherwise there are several local optima
(Fig.5.3a,b). Convex is a region, if between any two interior points all points are also
interior, otherwise the region is non-convex.

X, X,

Fig. 5.3a. Convex sets b.) Non-convex sets

The set I (the feasible region) is convex, if for any points x;, x; in the set the line segment
joining these points is also in the set. Mathematically the @ function is convex, if
D (Ox;+(1+O)x3) < O Dfx))+(1-O) Dfxz) over the feasible domain. @ is a scalar with
the range 0 < @ < 1. The sets shown in Fig. 5.4a are convex, those in Fig. 5.4b are not.

They called non-convex, or concave. No analytical method is to classify a problem as
being convex or non-convex.

Objective function .
In most practical cases an infinite number of feasible designs exists. In order to find the
best one, it is necessary to form a function of the variables to use it for comparison of
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design alternatives. The objective function (also termed the cost, or merit function) is the
function whose least, or greatest value is sought in an optimization procedure. It ig usually
a nonlinear function of the variables x, and it may represent the mass, the cost of the
structure, or any other function, which extremum can give a possible and useful solutioy of
the problem. The minimization of J{x) is equivalent with the maximization of -1x).

o(x)

¢(X|)\§§ - e(b(xl) + (1 - e)q)(xz)

\\\:;j?::/:\}/(/ )
o0 é(x,) .
\j\ /T( ~~~~~~
100+ (1-0)x) |
| 1 -
X|

|
[}

X . X
N, X'/ X,

X

H(x)

N

e¢(xz) + (1 -
/

o(6x, + (1 - 6)

|
!
|
P

x

(@) (b)

Fig. 5.4 Convex and non-convex function in one variable

The selection of an objective function can be one of the most important decisions in the
whole optimum design process. If we choose several objectives to be minimized, we reach
the area of multiobjective optimization and the greatest decision is to find in this case the
relative importance of the different objective functions. Mass is the most commonly used
objective function due to the fact that it is readily quantified, although most optimization
methods are not limited to mass minimization. The minimum mass is usually not the
cheapest. Cost is of wider practical importance than mass, but it is often difficult to obtain
sufficient data for the construction of a real cost function. A general cost function may
include the cost of materials, fabrication, welding, painting, maintenance, etc.

expert systems

multiobjective optimization

singleobjective optimization

analysis

Fig. 5.5 Hierarchy of different design stages
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Divisions in optimization techniques )
The different single-objective optimization techniques make the designer able to determine
the optimum sizes of structures, to get the best solution among several alternatives. The
efficiency of these mathematical programming techniques is different. A large number of
algorithms have been proposed for the nonlinear programming solution Himmelblau [5.1],
Vanderplaats [5.2], Schittkowski et al [5.3]. Each technique has its own advantages and
disadvantages, no one algorithm is suitable for all purposes. The choice of a particular
algorithm for any situation depends on the problem formulation and the user.

Q defining the problem ]—*

l’ defining the aim

?

[ finding 2 model

analysis

optimization

( ™
evaluation

generalization

comparison

Fig. 5.6 Logical structure of optimum design

The logical structure of the optimum design can be seen in Fig. 5.6. It follows the logical
thinking of a human. There are close connections between the different levels. If there are
problems finding the optimum, we should go back to the analysis stage. If there are
problems in the analysis stage it can be necessary to go back to the modelling stage. A
good solution in the optimization is achieved by several loops in the scheme.

The general formulation of a single-criterion nonlinear programming problem is the
following:

minimize S(x)  x=0,,x;,...,xy } (6.1
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subject to g;(x)<0, j=12,.,P (5.2)
h(x)=0 i=P+1..,P+M (5.3)
f{x) is a multivariable nonlinear function, gj(x) and hj(x) are nonlinear inequality and

equality constraints respectively.
The optimization models can be very different from each other. Fig. 5.7 shows the main
alternatives.

use derivatives

without derivatives

single level

’
ee

optimization

constrained
- unconstrained

model

multiobjective .
single objective

inequality
constraints
equality constraints

é | E

Fig. 5.7 Different optimization models

5.2.2 Methods without derivatives

Optimization techniques, which require the evaluation of function values only during the
search, called methods without derivatives (zeroth-order methods). These methods are
usually reliable and easy to program. Often can deal effectively with non-convex functions.
The price to pay for this generality is that these methods often require thousands of
function evaluations to achieve the optimum. Thus these methods can be considered as
most useful for problems, in which the function evaluation is not computationally
expensive and we can rerun the programs from different points to avoid local optima.

The hillclimb method

This method is a direct search one without derivatives. Rosenbrock’s [5.4] method is an
iterative procedure that bears some correspondence to the exploratory search of Hooke and
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Jeeves [5.5] in that small steps are taken during the search in orthogonal coordinates.
However, instead of continually searching the co-ordinates corresponding to the directions
of the independent variables, an improvement can be made after one cycle of co-ordinate
search by lining the search directions up into an orthogonal system, with the overall step on
the previous stage as the first building block for the new search coordinates. Rosenbrock’s
method locates x(**V by successive unidimensional searches from an initial point x(*)
along a set of orthonormal directions.
The method is executed as follows:

Minimize the objective function f(x;)— min.

Design constraints are:

explicit xf <x, <x; (i=12,.,N),
implicit g,(x; )20 G=12,.M). (5.4)
6 Before starting the minimization process, define a set of 'initial' step lengths Sj, to

be taken along the search directions Mj, i= 1,2,..,N. The starting point must satisfy the

constraints and should not lie in the boundary zones.

(i)  After each function evaluation, the following steps are carried out: Define by f° the
current best objective function value for a point where the constraints are satisfied, and f{x)
where in addition to this the boundary zones are not violated. f° and f{x) are initially set
equal to the objective function value at the starting point.

(iii)  The first variable x; is stepped a distance S; parallel to the axis and the function
evaluated. If the current point objective function value, f, is worse (greater or less) than f°
or if the constraints are violated, the trial point is a failure and S; decreased by a factor
B, 0<B<1, and the direction of movement reversed. If the move is termed a success, S;
increased by a factor @, a>1. The new point is retained, and a success is recorded. The
values of « and f are usually taken as 3,0 and 0,5 respectively.

(iv)  Continue the search sequentially stepping the variables, x;, a distance §; parallel to
the axis. The same acceleration or deceleration and reversal procedure is followed for all
variables, until at least one step has been successful and one step has failed in each of the N
directions. Perturbations are continued sequentially in the search directions until a success
is followed by a failure in every direction, at which time the kth stage is terminated. Since
an equal value of a function counts as a success, a success is eventually reached in each
direction as the multipliers of reduce the magnitude of the step length. The final point

obtained becomes the initial point for the succeeding stage x(k*V = x(¥) The normalized
direction S**V is chosen parallel to x§*"" —x{*/, and the remaining directions are chosen
orthonormal to each other and to S’.(k“) :

(v)  Compute the new set of directions M,(j‘) rotating the axes by the following

equations. In general, the orthogonal search directions can be expressed as combinations of
all the co-ordinates of the independent variables as follows :
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(k)
Y — (5.5)

[i‘m{f)f]

ij

Dfy = Afy (5.6)
=i g
DY = AP —z{(zM:f;*”A,czuMsfﬂ J=23 N 67
=1 n=i
N
AR = d My i=12,..,N, j=12,..,N (538)
I=j
d; -sum of distances moved in the 7 direction since last rotation of axes.

(vi)  Search is made in each of the x directions using the new co-ordinate axes. In each x
direction the variables are stepped a distance S; parallel to the axis and the function is
evaluated.

new x;(8) = oldx;(®) + Sk * M; (F) (5.9)
(vii) If the current point lies within a boundar& zone, the objective function is modified
as follows;

f(new)= f(old)—(f(old)— f")(3A—-42" +22°) (5.10)
where the boundary zones are defined as follows:

_ distance into boundary zone

width of boundary zone

Fap(x? —xf)*10™ —x,

lower zone: A= (x;} x,L) S % (5.11)
(x; —x;)*10"

x, = (x = (x! —x})*10*)

(x; —x)*107

(5.12)

upper zone: A=

At the inner edge of the zone, 1 = 0, i.e., the function is unaltered (f{new) = fold)). At the
constraints, A=1, and thus f (new) = f*.

For a function, which improves as the constraint is approached, the modified function has
an optimum in the boundary zone.

(viii) f* is set equal to £ if an improvement in the objective function has been obtained
without violating the boundary zones or constraints.

(ix)  The search procedure to find the continuous values of the variables is terminated
when the convergence criterion is satisfied.

(x)  The procedure was modified by a secondary search to find the discrete values of the
variables. A flow chart illustrating the above procedure is given in Fig. 5.8.

The procedure stops if the convergence criterion or the iteration limit is reached. The
procedure is very quick, but it gives usually local optima, so it is advisable to use more
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select feasible starting point x, and initial
stepsizes S,,i=1,2, .. N

evaluate

objective function

®5—¢. i=1

increment x, from best point a distance S,
parallel to axis and evaluate objective
function

point
feasible
?

Yy _» fui%ﬁ N
?

’ S, (new)=a S, (old) a>1 S, (new) =-BS, (old) OLP<1]
-

modify
function

Convergence
obtained
?

one sucess and one
failure in each direction ?

| rotate axes

set step sizes

5.8 Flow chart of the hillclimb method
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starting points. The Turbo/Borland C version of hillclimb technique can be found in Farkas
& Jarmai [5.6].

The backtrack method

Backtrack method is a combinatorial programming technique, solves nonlinear constrained
function minimisation problems by a systematic search procedure. The advantage of the
technique, that it uses only discrete variables, so the solution is usable. The general
description of backtrack can be found in the works of Walker [5.7] and Golomb &
Baumert [5.8]. This method was applied to welded girder design by Lewis [5.9],
Annamalai [5.10] and Farkas & Jarmai [5.6].

The general formulation of a single-criterion nonlinear programming problem is the
following;

minimise f(x) x,%,..,Xy _ (5.13)
subject to gi(x)<0, j=12,.,P (5.14)
h(x)=0 i=P+1.. P+M (5.15)

f(x) is a multivariable nonlinear function, gj(x) and A;(x) are nonlinear inequality and

equality constraints. The equality constraints should transfer to inequality ones to handle
them by the program:

h(x)—e<0 i=P+L..,P+M

h{x)—¢20
¢ is a given small number.
The algorithm is suitable to find optimum of those problems, which are characterized by
monotonically increasing or decreasing objective functions. Thus, the optimum solution
can be found by increasing or decreasing the variables. Originally the procedure can find
the minimum of the problem. If we are looking for maximum, we should introduce - f{x).
The time of search is long, because the procedure makes a detailed search.
To find the optimum for a single variable many single variable search techniques are
available. An efficient and suitable search method is the interval halving procedure. We
assume that the objective function is monotonously decreasing, if the variables are
decreasing. At the line search, when only one variable is changing, the aim is to find the
minimum feasible value of the variable, starting from the maximum value.
The starting point, i.e. the maximum value, should satisfy the constraints. When the
investigation shows, that the minimum value satisfies the constraints, then the solution is
found. If not, the region is divided into two subregions with the middle value. If the
constraints are satisfied with the middle value, then the upper region is feasible, all points
there satisfy the constraints. In this case we should investigate the lower region, to find the
border between the feasible and unfeasible regions.

(5.16)

Sign [ means feasibility, sign { unfeasibility. The halving procedure works as follows:
Assume, that the variable is a thickness given by the following series of discrete values:
6 8 10 12 15 18 20 25 30 mm
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Furthermore assume that the maximum value is feasible, the minimum is unfeasible. If the
middle value is feasible, the region to be investigated is as follows:
6 8 10 12 15

At the upper part of the region one cannot find any solution, so it is possible only at the
lower part. We can leave the upper region without any further calculations. Continuing
with the middle point of the lower region, if it is unfeasible, then the remaining region is
only one quarter of the original one, after two checks.

10 12 15
...................... ]
If the middle point is feasible, then it gives the solution.
12
]

The ratio of the number of total discrete points and checked discrete values is 9 /4. If we
have 1025 discrete values, then this ratio is much better, at the first halving step we can
leave 512 discrete numbers without further investigations. The halving procedure stops, if
the step length is less, that the distance between two discrete points. The step length should
not be uniform between every discrete values, but for practical reasons we usually use a
uniform value. The number of discrete values should be 2%+1, where k is an integer
number.
In the case of a completely general series the latter can be completed with the maximum
values as follows:
Basic: 1 2 3 4 5 6 7 8 9
Completed: 4 6 8 10 12 14 16 16 16
At the backtrack method the variables are in a vector form x = {xi}T (i = 1,...,n) for which
the objective function f{x) will be a minimum and which will also satisfy the design
constraints g(x) > 0 (j = 1,...,P). For the variables, series of discrete values are given in an
increasing order. In special cases the series may be determined by Xy, X and by the
constant steps Ax, between them. The flow chart for backtrack method is given in Fig. 5.9.
First a partial search is carried out for each variable and if all variations have been
investigated, a backtrack is made and a new partial search is performed on the previous
variable. If this variable is the first one: no variations have to be investigated (a number of
backtracks have been made), then the process stops. The main phases of the calculation are
as follows.
1. With a set of constant values of x,, (i = 2,..,n) the minimum x,,, value satisfying the
design constraints is searched for. The interval halving method can be employed. This
method can be employed if the constraints and the objective function are monotonous from
the sense of variables.
2. As in the case of the first phase, the halving process is now used with constant values,
and the minimum X, , value, satisfying the design constraints is then determined.

3. The least value X,,, is calculated from the equation relating to the objective function

J&)
f(x],m =""’xn,m) = .fa
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where f is the value of the cost function calculated by inserting the maximum x-values.

Regarding the X value, three cases may occur as follows.
nam >

(32) If we decrease X, ; step-by step till it satisfies the constraints or till X,,,,;,, the
minimal values are reached. If all variations of the x, value have been investigated, then

the program jumps to the X,_; and decreases it step-by step till x satisfies the constraints
ortill X, ., are reached.

3b)Ifx,, < x,, ,webacktrackto x,, .

(3¢) If x,,,, does not satisfy the constraints, we backtrack toX,_;,,. If the constraints are
satisfied, we continue the calculation according to 3a.

n
The number of all possible variations is [ [ #, where # is the number of discrete sizes for
i=1
one variable. However, the method investigates only a relatively small number of these.
Since the efficiency of the method depends on many factors (number of unknowns, series
of discrete values, position of the optimum values in the series, complexity of the cost
function and/or that of the design constraints), it is difficult to predict the run time. The
main disadvantage of the method is, that the runtime increases exponentially, if we
increase the number of unknowns.
We've made the program in C language modifying the procedure in the sense, that
originally the program depended on the number of variables. All variables were computed
by the halving procedure except the last one, which was computed from the objective
function. The modified version is independent from the number of variables. The
Turbo/Borland C version of backtrack method can be found in Farkas & Jarmai [5.6].
Advantage of the methods, that it gives discrete values, usually finds global minimum. The
disadvantage of the method that it is useful only for few variables because of the long
computation time.

5.3 DISCRETIZATION AFTER CONTINUQUS OPTIMIZATION

The number of nondiscrete optimization techniques is more that of discrete one. To make
the search more practicable it is advisable to use discrete member sizes. The original
program can be extended with a secondary search to find discrete optimum sizes in such a
way, that not only the explicit and implicit constraints satisfied are but the merit function
takes its minimum as well. It is assumed that the optimum discrete sizes are near to the
optimal continuous ones [5.11].

Starting from the optimum continuous values, the secondary search chooses the nearest
discrete sizes for each continuous size from the series of discrete values. The number of
chosen discrete sizes for one continuous size can be two, three or more. The possible
variations can be obtained using binary, ternary or larger systems. In our numerical
example we use the binary system, two discrete sizes, upper and lower, belonging to one
continuous value. In a binary system number the figure zero means the upper discrete size,
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o . . . unroun
numbers in binery L input series of discrete o a “muged
system from & to 2" values, X, S,,, vglues

check different
variation of discrete
values

output final values of discrete
variables final function value

Fig. 5.10 Flow chart of the secondary discretization

the figure one means the lower one. The first 2n number in binary system gives the. all
possible variations. Each variation is tested, whether the explicit and implicit constraints
are satisfied, and the optimal values minimising the merit function are determined. (Fig.
5.10). ’
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The unrounded optimum values of fourth variable are as follows:

1 Lower 1 Unrounded 1 Upper
2Lower 2Unrmmdcd 2Uppcr
3 Lower 3 Unrounded 3 Upper
4L0\ver 4Unroundcd 4Upper

The number 0000 means the lower discrete values of all variables, the number 1111 means
the upper discrete values of all variables. The other numbers in the binary system are the
variants of the possible discrete solution. One of the tested variants is the solution, giving
the minimum objective function value.

5.4 MULTIOBJECTIVE OPTIMIZATION

The first work on multiobjective (multicriterion, vector) optimization was presented by
Pareto in 1896 [5.12]. After at least fifty years, problems of multiobjective optimization
were again considered by von Neumann and Morgenstern [5.13]. A relatively modern
formulation of the multiobjective optimization problem was presented by Zadeh [5.14].
However, wider interest in optimization theory, operations research, and control theory
was not taken until the late 1960s, and since then numerous papers have been published on
the subject. Most are concerned with the theory and applications of multiobjective decision
making from a general viewpoint, and few applications to engineering design can be
found. Comprehensive bibliographies on multicriterion decision-making and related areas
have been written by Stadler [5.15, 5.16], Cohon [5.17] present the foundations of modern
multiobjective optimization.

Almost all decisions are multiobjective. In complex engineering design problems there
often exist several non-commensurable objectives which must be considered. Such a
situation is formulated as a multiobjective optimization problem in which the designer’s
goal is to minimise and/or maximise several objective functions simultaneously to get
compromise between them.

For decades engineers have employed a single measure, like costs, weights, or benefits, to
determine an optimum.

For example design a simple beam with two supports at the end, the cost of the beam can
be an objective, to be minimised, but also the rigidity should be maximal, or with another
measure the deflection should be minimum. These two objectives: cost and deflection are
in conflict. A singleobjective solution cannot be a reasonable one. A compromise is
necessary to reduce these two conflicting values as much, as possible. Multiobjective
programming techniques the tools doing this. Multiobjective analysis and optimization
represent a general philosophy of design. It puts the designer a more useful position of
providing decision makers a set of good alternative solutions rather than a single optimal
solution.

The most popular criteria used in structural optimization are: minimum mass or cost,
maximum stiffness, minimum displacement at specific structural points, maximum
frequency of free vibration and so on. These criteria are very often in conflict Osyczka
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[5.18, 5.19]. In such cases, it is necessary to formulate a multicriteria optimization problem
and look for the set of compromise solutions in the objective space. Next, the so-called
preferred solution should be chosen taking into account an additional criterion or using a
so-called global criterion like the utility function, distance function or hierarchical method
(see Eschenauer et al. [5.20]; Jendo [5.21]; Koski [5.22].

A multicriteria optimization problem can be formulated as follows :

Find x such that

f16") = opt (), (5.17)
such that
gjx) 2 0 j=1..P (5.18)

hi(x) =0 i=P,..,P+Q
where x is the vector of decision variables defined in n-dimensional Euclidean space and
Jr(x) is a vector function defined in 7-dimensional Euclidean space. gj(x) and Aj(x) are

inequality and equality constraints.

The solutions of this problem are the Pareto optima. The definition of this optimum is
based upon the intuitive conviction that the point x" is chosen as the optimal, if no
objective can be improved without worsening at least one other objective.

5.4.1 Method of objective weighting

Weighting objectives method

The pure weighting method means to add all the objective functions together using
different weighting coefficients for each. It means, that we transform our multicriteria
optimization problem to a scalar one by creating one function of the form:

r

J9) =2 wifi(x)

i=1

where w; 2 0 and f}: wi=1 (5.19)

. i=1
If we change the weigliting coefficients result of solving this model can vary significantly,
and depends greatly from the nominal value of the different objective functions.

Normalized objectives method

The normalized objectives method solves the problem of the pure weighting method e.g. at
the pure weighting method, the weighting coefficients do not reflect proportionally the
relative importance of the objective, because of the great difference on the nominal value
of the objective functions. At the normalized weighting method w; reflect closely the

importance of objectives.

r

)= wifits) 17

i=1
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where w; 20 and D w;=1 (5.20)

i=1

The condition % # 0 is assumed.

5.4.2 Method of distance functions

Let ° be the ideal solution that simultaneously yields minimum values for all criteria. Such
a solution does not exist but is introduced in compromise programming as a target or a goal
to approach, although impossible to reach (perfection is impossible).

In compromise programming, the "best" or satisfying solution is defined as one that
minimises the distance from the set of nondominated solutions to the ideal solution (*).
The criterion used in compromise programming is the minimization of the normalized
deviation from the ideal solution 7’ measured by the family of L, metrics defined in several
different forms.

This family of L, metrics indicates how close the satisfying solution is to the ideal solution,
and represents the feasible set. In this paper, the satisfying solutions are determined for two
particular values of p, namely, p =2 and p = co (which correspond to the minimization of
the Euclidean and maximum distances, respectively), and are given below. For the case p =
oo , the largest deviation is the criterion of comparison and is referred to as min-max
criterion.

Global criterion method type I
Global criterion method means that a function which describes a global criterion is a

. . 0 .
measure of closeness the solution to the ideal vector of f . The common form of this
function is;

69 = % ((10-£i) [OF Pe123,. (521)

It is suggested to use P=2, but other values of P such as 1,3,4, etc. can be used. Naturally
the solution obtained will differ greatly according to the value of P chosen, P=1 means a
linear correlation, P=2 a quadratic one, etc.

Global criterion method type II
The deviations in the absolute sense are as follows:

Lp(f){Z\f”f-ﬁ(X)lp} 1<P<w (5.22)
it Pl Lo )=2\f %1, (523)

i P=2 L,,(f)z{i'f”,» f,,(x)]z} Euclidean metric  (5.24)
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if P=w0 L.(f)= max’f”,- -f,.(x)l Chebysev metric =1,k (5.25)

Global criterion method type IIT
Instead deviations in the absolute sense it is recommended to use relative deviations such

as

pVP
r

Lp(f)= Z

i=]

f 1

In this case the P has a larger set.

1<P <o (5.26)

Lo - fi%)

5.4.3 Min-max method

At the min-max method the maximum loss of the collective objective will be minimised.
The min-max optimum compares relative deviations from the separately reached minima.
The relative deviation can be calculated from

o S e

If we know the extremes of the objective functions, which can be obtained by solving the
optimization problems for each criterion separately, the desirable solution is the one which

gives the smallest values of the increments of all the objective functions. The point x* may
be called the best compromise solution considering all the objective functions
simultaneously and on equal terms of importance.
zj(x) = max { zj'(x),zi"(x) } iel (5.28)
u(x*) =minmax {zj(x) }  xeX iel (5.29)
where X is the feasible region.

5.4.4 Constrained method

The basis of these methods is the transformation of the vector optimization problem into'a
sequence of single objective optimization problems by retaining one selected objective as
the primary criterion to be optimized and treating the remaining criteria as some
predetermined constraints. These constants are then altered within their defined ranges, and
the subset of Pareto optima is systematically generated. This approach has gained wide
acceptance because it is more practical and rational than the weighting objectives method,
if there is a dominant objective exists.
Minimise Jr () (5.30) .
subject to the constraints gj(x) 2 0 j=1L..M 5.3
fix) =k i=2..,0

and side bounds on the design variables as
xt <x;<xf i=1,..N (5.32)
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where A; are the parametrically varied target levels of O objective functions. Each vector,
or constraint set, H of the various A;, will produce one Pareto solution. As in the weighting
method, many different combinations of values for each A;,, must be examined in turn to
generate the entire Pareto set. The constraint method provides direct control of the
generation of members of the Pareto set and generally provides an efficient method for
defining the shape of the Pareto set. It should be noted that the constraint method does not
recognize weak Pareto optima.

After transformation of the vector optimization problem into a scalar optimization
problem, the latter may be solved using some appropriate mathematical programming
techniques.

5.4.5 Hybrid methods

Weighting global criterion method

The weighting global criterion method is made, by introducing weighting parameters, one
could get a great number of Pareto optima with (5.16) (Jarmai [5.23]. If we choose P=2,
which means the Euclidean distance between Pareto optimum and ideal solution Jarmai
[5.24]. The coordinates of this distance are weighted by the parameters as follows:

s |

2

(5.33)

S

where P is the dimension of the function space, x indicates the design variables and X the
constraint set, 7 is the number of objective functions, f % s the optimum of the ith objective
function, and w; are the weighting factors.

The solution obtained by minimizing Eq. (5.33) differs greatly depending on the value of P
chosen.

L= 3w

Weighting min-max method

The weighting min-max method one gets combining the min-max approach with the

weighting method, a desired representation of Pareto optimal solutions can be obtained
zj(x) = max { wj z;'(x), w;z;"(x) } iel (5.34)

Weighting coefficients w; reflect exactly the priority of the criteria, the relative importance

of it. We can get a distributed subset of Pareto optimal solutions.

Selection of the ,, best" solution

Once a subset of Pareto optima has been generated, the designer has to make an important
decision concerning the selection of the best solution from this subset. The selection is not
obvious when several conflicting criteria are considered but may be made subjectively by
giving preference to one criterion over the others.
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5.5. COST CALCULATION OF WELDED STEEL STRUCTURES

In the early stage of optimization the mass of the structures has been minimized.
Nowadays there are also some optimization techniques, which can not handle complicated
cost functions. To get an economic structure in the period of increasing fabrication costs;
one should take into account as many elements of costs as possible. The cost of a structure
is. the sum of the material, fabrication, transportation, erection and maintenance costs.
Fabrication cost elements are the welding-, cutting-, preparation-, assembly-, tacking-,
painting costs etc. It is very difficult to obtain such cost factors, which are valid all over the
world, because there are great differences among the cost factors in the highly developed
and at the developing countries, there are also great differences in the same country among
factories, which are highly automated or not. If we choose times, as the basic data of
fabrication phases, we can handle this problem. The fabrication time depends on the
-technological level of the country and the manufacturer, but it is much closer to the real
process to calculate with. After computing the necessary time for each fabrication phase
one can multiply it by a specific cost factor, which can represent the development level
differences.

Although the whole production cost depends on many parameters and it is very difficult to
express their effect mathematically, a simplified cost function can serve as a suitable tool
for comparisons useful for designers and manufacturers. The artificial intelligence is also
applied for cost estimation. In this paper we would like to emphasise the role of fabrication
costs, especially the role of welding costs using different welding technologies. We don
not consider neither the amortisation, transportation, erection, maintenance costs, nor the
variation of exchange rates, etc.

5.5.1 Fabrication costs
The cost function can be expressed as

K= Km + Kf= kaOV‘I' klezz (5‘35)

where K, and Kare the material and fabrication costs, respectively, k,, and k,are the
corresponding cost factors, p is the material density, V' is the volume of the structure, 7; are
the production times.

Fabrication times for welding
Eq.(5.35) can be written in the following form

K ](/‘
—=pV ([ + L+ G+ T+ Ts+ 15 +17) (5.36)
k"l km
where
T, =C0, JxpV (5.37)

is the time for preparation, assembly and tacking, © 4is a difficulty factor, x is the number
of structural elements to be assembled.
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Formula (3) can be derived as follows (Lihtarnikov [5.25]). F(.n‘ a platgd structure
consisting of x elements the time of this part of the fabrication 1s proportpnal to the
perimeter, for the ith element it is 77=c;P;. The mass of an element 15 proportional to the

square of the perimeter G= ¢,P? | thus P, =¢,4/G, and T, =¢,4G;. For the total
structure, in average, itis G =«G, and T, =7, = c;kVG /i = cgNGK.
Some proposed values for the difficulty factor are summarized in Table 5.1.

Table 5.1 Proposed values for the difficulty factor © . For skewed angle joints add 1-2
points

Structures Welds V-weld 60° Fillet weld 90°
Planar long welds, flat position 1.0 2.0
Spatial short welds, plate, flat steel 1.5 2.5
Spatial U-,L-profiles, tubes 2.0 3.0
Spatial I-, T-profiles 2.5 4.0

TZ = z C2ia114.3Lwi (5'3 8)
H

is the time of welding, a,,, is the weld size, L,,; is the weld length, Cy; are 3c<‘.mS‘EantS given
for different welding technologies. For manual-arc welding Cy = 0.8%10™ and for CO,-
welding C; = 0.5%10™ min/mm*>.

Ty =04 2. Cyiani Ly (5:39)

is the time of additional fabrication actions such as changing the electrode, deslagging and
chipping. C; = 1.2%¥10 min/mm®’. Formulae (5.37, 5.38, 5.39) have been proposed by
Pahl and Beelich [5.26].

Ott & Hubka [5.27] have proposed that _
C3 = (0.2-0.4)C,  in average C3 = 0.3Cy, Thus, the modified formula for 75+73 ,

neglecting /@, , is

d»

3;'?Lwi
The software COSTCOMP [5.28] was developed by the Netherlands Institutg of Welding.
It gives welding times and costs for different welding technologies [5.29]. Using Eq. (5.36)
for 77, the other times are calculated with a generalized formula

T,+T,=13) CualL, (5.41)
The different welding technologies are as shown in Table 5.2. The weld types are given in
Table 5.3. .
Using COSTCOMP we have calculated the welding times 75 (min) in function of weld size
a,, (mm) for longitudinal fillet welds (Table A1), for 1/2 V and V butt welds (Table A2),
for K and X butt welds (Table A3), for T butt welds (Table A4), for U and double U butt
welds (Table A5), in downhand position.
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The welding times 7, (min/mm) in function of weld size a,, (mm) for longitudinal fillet
welds (Table A6) for longitudinal V butt welds (Table A7) in positional welding, which
means not downhand, but vertical or overhead positions.

Table 5.2 Applied welding technologies

SMAW Shielded Metal Arc Welding
SMAW HR Shielded Metal Arc Welding High Recovery
GMAW-C Gas Metal Arc Welding with CO,
GMAW-M Gas Metal Arc Welding with Mixed Gas

FCAW Flux Cored Arc Welding
FCAW-MC Metal Cored Arc Welding

SSFCAW (ISW) Self Shielded Flux Cored Arc Welding
SAW Submerged Arc Welding
GTAW Gas Tungsten Arc Welding

Table 5.3 Different weld types

1. Fillet weld

t=0-15 mm
aw—<0- 7 tmin

2. V butt-weld
{=4-15 mm
a=40-90°
i=1-2 mm
j=0-2 mm

3. X butt-weld
t=10-40 mm
a=40-60°
i=2-3 mm
Jj=2-3 mm
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Cost savings can be achieved using a cheaper welding technology, like SAW instead of
SMAW or GMAW, if it is possible. Table 6 shows the cost savings for the two different
structures and for the five different groups of welding. For welded box beam the cost
savings can be 13 %, for stiffened plates the cost savings can be 32 % of the total cost. All
compared results are optimized.

5.6.3 Conclusions

a) Cost functions are formulated by means of the COSTCOMP software for longitudinal
fillet welds carried out with manual SMAW, semi-automatic GMAW-C and automatic
SAW method in downhand position.

b) Using these cost functions the optimal dimensions of a stiffened plate are computed
which minimise the total cost and fulfil the design constraints on overall and local
buckling.

¢) The comparison of optimal solutions shows that significant cost savings may be
achieved by using SAW instead of SMAW or GMAW-C.

d) Numerical computations show that the optimal dimensions of a stiffened plate depend
on the applied welding method and illustrate the necessity of cooperation between
designers and fabricators.

e) Comparison of optimal solutions for minimum weight (kg = 0) and minimum cost

shows that the fabrication cost affects significantly the optimal dimensions, therefore the
consideration of the total cost function results in more economic structural versions.

5.7 OPTIMUM DESIGN OF TUBULAR TRUSSES

5.7.1 Introduction

Authors dealing with the optimum design of metal structures make in some cases
simplifications to solve the problems easier. E.g. in the optimization of trusses they neglect
the overall buckling of compressed members or use too simple stability constraints such as
the Euler buckling curve. .

It is well known that the Euler buckling curve neglects the very important effect of initial
crookedness and residual stresses caused by fabrication processes (welding, cold-forming).
These effects can be described only by a more complicated mathematical form. It will be
shown that the use of the Euler buckling curve causes unsafe design, which is not
permissible.

Furthermore, the suitable optimum design procedure will be described using all stability
constraints necessary for safe design. The case of welded thin-walled tubular trusses is
selected for this purpose, in which not only the constraints on overall buckling, but also the




o
W
o

K. Jarmaj

5.5.2 Time for flattening plates

In the catalogue of different companies one can find the times for flattening plates (7
[min]) in the function of a plate thickness ( # [mm] ) and the area of the plate (4, [mm?]).
The time function can be written in the form:

1
4)/11, (5.42)

a,t

T, = ®de(ae +b,1% +

where ;~9.2%10™ [min/mmz], b= 4.15%107 [minlmm5], ®,, is the difficulty parameter
(® 4= 1,2 or 3). The difficulty parameter depends on the form of plate.

120

100 /f
80 /

Welding time / L
[min]

p
60 5
40 > /? :///%///: ;‘a

fale

\
I

Size of V-butt welds [mm]

Fig. 5.11 Welding times 75 (min) in function of weld size a,, (mm) for longitudinal V butt
welds downhand position

5.5.3 Surface preparation time

The surface preparation means the surface cleaning, painting costs, ground coat, top coat,
sand-spraying, etc.

The surface cleaning time can be defined in the function of the surface area (4; [mm’]) as
follows:
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T, =0,a, A, (5.43)

ds“*sp

where ay, = 3*10° [min/mm?], @ 4 is a difficulty parameter.

5.5.4 Painting time

The painting means making the ground and the top coat. The painting time can be given in
the function of the surface area (4, [mm®]) as follows:

Té = ®(1p (agc + atc)As (544)
where az, = 3% 10° [minjmmz] , Qe = 4. 15%10° [min/mmz], @ 4 is a difficulty factor,
0 4=1,2 or 3 for horizontal, vertical or overhead painting.

5.5.5 Cutting and edge grinding times

The cutting and edge grinding can be made by different technologies, like Acetylene,
Stabilized gasmix and Propane with normal and high speed, see Tables A8 and A9.

The cutting time can be calculated also by COSTCOMP. The n.ormt.ﬂ speeFi acetylene has
the highest time and the high speed propane has the smallest cutting time (Fig. 5.12).

25
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Fig. 5.12 Cutting time of plates in the function of thickness for fillet, T-, V-, 1/2 V buit
welds
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The cutting cost function can be formulated using Tables A8 and A9 in the function of the
thickness (# [mm]) and cutting length (L, [mm]):

T, = ZC7iti”Li ‘ (5.45)

Ci

where f; the thickness in [mm], L is the cutting length in [mm].

5.5,6 Total cost function

The total cost function can be formulated by adding the previous cost functions together.

K k

k—:pV+—f(71'+z;+1;+n+2;+7;+;r7) (5.46)
Taking k= 0.5-1 $/kg, k=0 -1 $/min. The kgl ratio varies between O - 2 kg/min. If krk,,
= 0, then we get the mass minimum. If k/k, = 2.0 it means a very high labour cost (Japan,
USA), &k, = 1.5 and 1.0 means a West European labour cost, &7k, = 0.5 means the labour

cost of developing countries.
5.6 NUMERICAL EXAMPLES FOR THE CALCULATION OF COST EFFECTS

We show the cost calculations for two different structures as follows: welded box beams,
where the welding cost is smaller and stiffened plates, where the welding cost is larger.

5.6.1 Welded box beam

The beam is simply supported, with uniformly distributed force. Box beam can be a model
of welded RHS or CHS tubes. We neglect the effect of transverse diaphragms. The loading
of the beam varies in time, the maximum bending moment varies between 0 and Myax and
the number of cycles is N=2* 10°.

There can be two different weld shapes, such as fillet welds or 1/2 V butt welds.

From the eight different welding technologies we form five groups as follows:

e SMAW,
o SMAW HR,
e FCAW-MC.

[

GMAW-C, GMAW-M,

e SAW, SSFCAW (ISW), FCAW,
The welding times in one group are very close to each other.
The cost function to be minimized is, according to Eq. (5.36)

K k
= pld+ }EL(®" WpLA +13C,alL, + T, + T, + T, +1,)  (5.47)

where A=ht,+2bt; ©,=2, k=4, L,~4L, p=7.85%10"° kg/mm’,
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Constraints according to EUROCODLE 3 [5.31]

a) Fatigue consiraint

Ao =M Ad, (5.48)

we vy
where AM=M s, AM=15%10° Nmm and y=1.25 the fatigue safety factor.
For the cycles N=2*10° we should choose the stress range Ao, according to the fatigue
categories. For longitudinal welds, with start and stop positions (SMAW, GMAW, FCAW)
Ace=100 MPa, while for automated butt welds made from one side with back plates
without start and stop positions (SAW) Ace=112 MPa. The moment of inertia and the
section moduli can be calculated as follows

3 h+t )
I“,:hl;‘"+2bxf( 2f], (5.49)
Wt (5.50)
(h+tf)/2

b) Local buckling constraints
For web plates:

i 2 IBH’h (5.51)
2
1
= 5.52
Y124 (5.52)
For compressed flanges:
t,26,b (5.53)
1
= 5.54
T 42¢ .59

In order to avoid too thin flanges we should introduce the following constraint instead of
(5.53):

1, 21260 . . (5.55)
In the buckling constraint we should apply the maximal normal stress (Ac’)
235
= 5.56
Aoly, ( )

The unknowns in the optimization are A, £,/2, b and #.
The size limits for the unknowns are as follows:
e /=500-1500 mm,
tw/2=5-15mm,
b =300 - 1500 mm,
e f=5-25mm.

L]

L]

The elements of cost function for the welded box beam are as follows
Size of welded joint a, = t,/4 for fillet welds, a,, = £,/2 for 1/2 V butt welds,
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Cross section area A=2ht/2+2b1

Material cost part pV=pLA

Fabrication costs part kfw .1,
T, = C,0 4JxpV , where p=7.85%10°,C;=1,xk=4,0,=2
Ty + Ty =135 Cpai Loy where Cy = 0.7889 for SMAW, Ly, =4 L

1
Iy = @de(ae + bt +;;(JAP where a;=9.2*10" | b=4.15%107 , 1=1,/2, or iy, 4,
o

=2hL or2bL

Table 5.4 Optimum rounded sizes of welded box beams in mm with fillet welds and
different welding technologies ‘

Welding kil h 12 b tr oV (kg) Kk, (kg)
technology

0.0 1420 7 820 12 6211 6211
0.5 1350 7 825 13 6335 7494
SMAW 1.0 1350 7 825 13 6335 8653
1.5 1295 7 915 13 6581 10076
2.0 1370 7 810 13 6318 10956
0.0 1420 7 820 12 6211 6211
0.5 1350 7 825 13 6335 7335
SMAW HR 1.0 1350 7 825 13 6335 8335
1.5 1350 7 825 13 6335 9335
2.0 1370 7 810 13 6318 10320
0.0 1420 7 820 12 6211 6211
0.5 1350 7 825 13 6335 7179
FCAW-MC 1.0 1350 7 825 13 6335 8246
1.5 1350 7 825 13 6335 9168
2.0 1350 7 825 13 6335 10113
0.0 1420 7 820 12 6211 6211
GMAW-C 0.5 1355 7 820 13 6326 7198
GMAW-M 1.0 1355 7 820 13 6326 8071
1.5 1355 7 820 13 6326 8944
2.0 1355 7 820 13 6326 9816
0.0 1420 7 820 12 6211 6211
SAW 0.5 1355 7 820 13 6326 7132
ISW 1.0 1355 7 820 13 6326 7938
FCAW 1.5 1355 7 820 13 6326 8744
2.0 1355 7 820 13 6326 9550
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T5=040a,4, = 5%107 where ag, = 310 A,=2hL+2 bL
T = Oy, (ag, +ai )4, where age=3*10°, ap=4.15%10° , 4,=hL+bL
Ty =2, Cyti' Ly where C;=1.1388,t=1,/2 or tr, n=0.25,
i
Lei=2(h+L)or 2(b +L) (5.57)

The optimization is performed by the Rosenbrock’s Hillclimb procedure. The computer
code run on PC and can calculate both the continuous and discrete values. The discrete
optimum sizes of the welded box beams with fillet welds can be found for different
welding technologies in Table 5.4.

5.6.2 Welded stiffened plate

The stiffened plates can be a model of stiffened tubes with large diameters, or arches.
Since the welding cost is a great part of the total cost, it is economic to optimize these
structural components for minimum cost.
The cost function is calculated according to Eq 5.36, where

A=bot-phi, 6=3, r=p+], L,=2Lp and ¢ is the number of stiffeners.
The stiffeners are welded to the plate by double fillet welds. The welding costs can be
calculated for different welding technologies according to Tables Al - AS.
The main data for the optimization are as follows:
Young modulus of the steel is £ = 2.1*10° MPa, material density is p = 7.85%10° kg/mm3,
Poisson parameter is v = 0.3, yield stress is f, = 235 MPa, width of the plate is 5=4200
mm and the plate length is L=4000 mm.
The compression force is

N = [,bol f =235%4200*20=1974%10" (N) (5.58)
The independent design variables are as follows: thickness of the plate (# ), height and
thickness of the stiffeners (4, ;) and the number of stiffeners (p=b0/a).

Design constraints

a) Overall buckling design rules, according to API [5.30] for the compressed plate with
uniform distance stiffeners.

N < xf, A (5.59)
where, 5 is the buckling constraints, in the function of the reduced slenderness factor A
y=1 when 1<05,
r=15-1 when 05<A<l,
0.5 -
=7 when  A2>1, (5.60)

and
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b, [12(1-v*)f,
{ Ex’k

ko = min(kp, ky), (5.62)
k=49, (5.63)
1+ a2>z + @y L
k,:(—-~ when g =—<4,/1+¢ 5.64
T (1+¢5,) b, i (.64

and
A1+ /14y
ke :~(—) when a >4.,/1+ @y (5.65)
1+ oy

5, =Lt (5.66)

y === (5.67)

(5.68)

D=—r— _. 5.69
12(1-v?) .69)
Eq (32) can be rewritten as
3 3
Y (B LAARE PR (5.70)
byt, byt;

where I, is the moment of inertia of one stiffener about an axis parallel to the plate surface
at the base of the stiffener, D is the torsional stiffness of the main plate.
b) Buckling constraint of the stiffener is:

PSR EEE) (5.71)
ts ﬁx fy

The size constraints for the variables are as follows:
& t=06-20mm,
F =84 - 280 mm,
B (,=6-25mm,
& @p=4-15mm.

The elements of cost function for the welded stiffened plate are as follows
Size of welded joint a, =1

Cross sectionarea A =boty+ @ hsls

Material cost pV=pLA




|
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Fabrication costs kikew > T

1, = C\® 4 JxpV where p=7.85%10° C;=1, x=ptl, 0a=2

Ty + T3 =13). Cyian;Ly where Cs = 0.7889 for SMAW, L, =2L ¢

T4 =0g [ae + bgl‘3 + %} A, where a,=9.2%¥10™ | b= 4. 15%107 Li=1,orl,

a,t
Ap=g@h or boL
TS = ®dsaspAs = 5*10-7 where Usp = 3*10-6 ) A_y = (D}ZSL + boL
Ts = Og,(ag, +a, )4, where age =3*10C, @, =4.15%10°, A= @ hsL + bol

Table 5.5 Optimum rounded sizes of welded stiffened plates in mm with fillet welds using
different welding technologies for ky%,=2.0

Welding ke b I 0 1 oV (kg) Kk (kg)
technology
0.0 210 17 13 11 2737 2737
0.5 230 17 6 19 3242 6313
SMAW 1.0 235 17 6 19 3258 9409
1.5 235 17 6 19 3258 12484
2.0 235 17 6 19 3258 15559
0.0 210 17 13 11 2737 2737
0.5 230 17 6 19 3242 5749
SMAWHR 1.0 230 17 6 19 3242 8257
1.5 230 17 6 19 3242 10764
2.0 235 17 6 19 3258 13306 |
0.0 210 17 13 11 2737 2737
0.5 230 17 6 19 3242 5553
FCAW-MC 1.0 230 17 6 19 3242 7864
1.5 230 17 6 19 3242 10175
2.0 235 17 6 19 3258 12521
0.0 210 17 13 11 2737 2737
GMAW-C 0.5 230 17 6 19 3242 5299
GMAW-M 1.0 230 17 6 19 3242 7357
1.5 235 17 6 19 3258 9444
2.0 230 17 6 19 3242 11471
0.0 210 17 13 11 2737 2737
SAW 0.5 230 17 6 19 3242 5064
ISW 1.0 230 17 6 19 3242 6886
FCAW 1.5 230 17 6 19 3242 8707
2.0 235 17 6 19 3258 10564
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Ty =% CputlL, where C7=1.1388,¢1=1,0rtr, n =025,
i

L= (hs+L) or (bp+ L) (5.72)
Table 5.5 shows the optimum discrete sizes of the stiffened plate with different welding
technologies.

Fig. 5.15 and 5.16 show the distribution of the total cost. The diagrams illustrate that this
distribution depends on the welding technologies, the type of welding, the ratio of material
and fabrication specific costs and the structure type too.

SMAW SMAW-HR
T4 15 T6

T2+T3 1% T2+T3
18% ’ 13%

T

FCAW-MC

T2+T3
11%
T

Mass
66%

Fig. 5.13 The total cost distribution of the welded box beam with fillet welds using
different welding technologies for &/k,=2.0

The welding technologies in Figures 5.15 and 5.16 are given in decreasing order relating to
the welding time and cost. The differences are great among them. The welding time and
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cost is the greatest for SMAW, the quickest and cheapest are the SAW, FCAW and ISW.
For stiffened plates using SMAW 46% of the total cost is the welding cost, using SAW,
this is only 20%.

Comparing the two structures the fabrication costs of stiffened plates are larger, than thgse
of welded box beams. The reason is that stiffened plates contain more elements, which
need more welding.

In the case of welded box beam (Table 5.4), using k/k,=2.0 ratio, for SMAW the mais of
the structure is pLA = 6318 kg. The fabrication cost is 100 (10956-6318)/ 1095§ = .43 % of
the total cost. The mass of stiffened plate is pL.A = 3258 kg (Table 4), the fabrication cost
is 100 (15559-3258) / 15559 = 79 % of the total cost.

SMAW-HR 14

T5 16 14% 7
5% 12% 7 14%

SMAW

T2+73 0%
38%
GMAW-C 76
FCAW-MC 16 s 17% T7

5 14% T7

18%

31%

Fig. 5.14 The total cost distribution of the welded stiffened plate with fillet welds using
different welding technologies for k/k,=2.0
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4. K butt-weld

‘Xa 1=10-40 mm
a=40-60°

i=0-3 mm

| J=2-3 mm

5. T butt-weld
] {=2-8 mm
i=1/2

6. 1/2 V butt-weld
1=4-15 mm
a=40-60°

t i i=0-2 mm

J=0-2 mm

a 7. U butt-weld
1=20-40 mm
a=10-20°

i i=2-3 mm
t Jj=2-3 mm

8. Double U butt-

a=10-20°
i=2-3 mm
Jj=2-3 mm

il

‘7(1 weld

J 1=20-40 mm
\

i

In Fig. 5.11 and Tables in Appendix data are given for eight welding techniques and for
different weld types.

Fig. 5.11 shows, that the welding times for longitudinal V butt welds in decreasing order is
the highest for SMAW, SMAW-HR, GMAW-C, GMAW-M, FCAW, FCAW-MC, ISW
and the lowest for SAW. The order is the same for different weld types (Tables Al - A7).
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constraints on local buckling of plate elements should be considered. The copsideration of
all important constraints will be illustrated by a numerical example of a simple tubular
truss welded from CHS rods.

Table 5.6 Cost savings using different welding technologies

Welding Welded box beam Stiffened plate

technology

kg, =2.0 Total cost  Cost savings in % | Total cost _ Cost savings in %
SMAW 10956 0 15559 0
SMAW-HR 10320 6 13305 14
FCAW-MC 10113 8 12521 20
GMAW-C 9816 10 11471 27

SAW 9550 13 10560 32

|
|
|

5.7.2 Numerical example of a tubular truss

In order to illustrate the role of stability constraints we select a simple planar, statica!ly
determinate, K-type truss with parallel chords and gap joints, welded from CHS rod.s (flg.
5.17). In the optimum design the optimal distance of chords % is sought which minlmlses
the total volume of the structure and the dimensions of rods fulfil the design constraints.
The structural members are divided to 4 groups of equal cross-section as follows: 1 - lower
chord, 2 - upper chord, 3 - compression braces, 4 - tension braces.

According to DIN 2448 [5.32] and DIN 2458 [5.33] the available CHS have the following
dimensions (discrete values):

d=133,139.7, 152.4, 159, 168.3, 177.8, 193.7, 219.1, 244.5, 273, 298.5, 323.9
1=2.9,32,3.6,4 455 56,63,7.1,8,8.8, 10.

All members are made from steel Fe 510 with ultimate strength £, = 510 MPa and yield
stress f, = 355 MPa.

The load is shown in Fig. 5.17, the factored value of the static forces is /' = 200 kN.
Calculate the required cross-sections for various values of @ = h/a, to select the @opt which
minimises the total volume V. The numbering relates to groups of members of equal Cross-
section. The variables are as follows: d; and 4 (i=1,2,3,4). The objective function 1is
expressed as

r_ S(d, = 1,)t, +4(d, — 1)t +3@® +1(d, ~1,)t, + 240 +1{d, = 1,)ta (5.73)

27a,

The constraints are as follows.

Local buckling constraints for all sections according to Wardenier et al. [5.34] are
di/t; <50 (5.74)
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Stress constraint for tension members are

0.
Slmax < fy ; Slnmx = .S_F’ Y o = 1.1 (575)
”(511 “tl)tl Y Mo w
Sdmm‘ < ‘fy ; Szlmax — L?.E.‘fa)z +1 (576)
w{dy = 1)l ¥V s w

Overall buckling constraints for compression members according to EC 3. are as follows

Upper chord: S < 227, 5 S = §£; Y =11 (5.77)
”(dz _tz)[z Y mn @ o
7, = -;_7? #, = o.5[1+ 034(7, - 02) +Z§] (5.78)
¢2 + V¢§ — A2

A, _K,L, _09%2a,48
Ap Ak AE(dZ "tz).
With £=2.1-10° MPa and fy =355MPa  Ap=m |E/f, =764091 .

K, =09 is the end restraint factor according to Rondal et al. [5.35], , = (d,- 1)/ 8 s
the radius of gyration.

A= (5.79)

Fig. 5.17 Planar truss with parallel chords

Compression braces:

Swe Xty g 258 [T (5.80)
”(d3 - ta)ta Y an 2
1 — —2
T M o.s[1+o.34(13 - o.2)+/13] (5.81)
4/)3 + V¢§ — A3

A KL, 075a,Jo’ +148

da=
’ ﬂ‘E /,{’Erii ;LE(d3_t3)

(5.82)
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In order to ease the fabrication the diameter of braces should be smaller, than those of
chords:
dy=092d,; d, <092d,; d, <092d,; d, <092d, (5.83)

Prescription for the joint eccentricify to avoid too large additional bending moment in the
vicinity of nodes is as follows (Fig. 5.18):

e<025d,; e<025d, (5.84)
The eccentricity can be expressed by d), angle @ and gap parts g5 and g, as follows:
. +d, /2
tan @ = _eﬂ_ or tanf= —e*'—— (5.85)
g +d;/(2sin 9) g, +d, /(2sin 0)

Assuming that
£;,=8,=005d, or 0.05d, (5.86)

: , . d, 5
the geometry constraints can be given by: —;-\)a)‘ +1+d,(0.050 — 0.75)<0 (5.87)

and

—‘éi ®* +1+d,(0050 - 075) <0 (5-88)

9 9

Fig. 5.18 K-type gap joint with eccentricity e

Constraint on static strength of welded joints between chords and braces according to EC 3
is
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Ui + 3(Ti + T?]) <fu i(ﬂwyMW) (5.89)
[, =510MPa, f,=09, y,, =125
From the force S in a brace the following stress components arise in welds:
Ssin 2 ) Scos@
T = o Tt T
mla, 2 mda,,
where a,, is the fillet weld dimension. Substituting Eq. (5.90) into Eq. (5.89) we get

2
520 453 Mpa (5.91)
mda, ¥ @ +1

For the maximal value of a, the corresponding brace thickness can be taken. This
constraint should be fulfilled for S3 and S.
For the node strength the following constraints should be fulfilled (Wardenier et al. [5.34]).

o, = (5.90)

Constraints on chord plastification.
In the joint of rods 1 and 3:

* fytlz d, '
S3ma\' < S31 = Siﬂ@ 18+102_d_—1_ .f](yl,gl) (592)
0.024y7 d
, Ny — 02 1+ 1 ’ :_1. 593
Arg) =7, { ep(05gi—133)+1[ ' 24 (-93)
gl =g/t weassumethat g =g,+g,=01d, (5.94)

Constraints on chord plastification for joints of rods 1 - 4, 2 - 3 and 2 - 4 can be formulated
similarly to Eq. (5.92-5.94), therefore these constraints are not detailed here.

Constraints on punching shear.
In the joint of rods 2 and 3:

/, 1+siné
Sy S =ty il ——— 5.95
3max \/’5 2 3 2Sin29 ( )

Note that the constraint on punching shear was in our calculations always passive, so it is
not necessary to investigate it for other joints.

For the computations the Rosenbrock's hillclimb mathematical programming method has
been used treating the unknowns as continuous variables. After the determination of the
optimal dimensions the discrete optima have been found by using an additional search. The
results are summarized in Table 5.7.

The optimal value is @ = 1.1, the difference between the best and worst solution in the
range of @=0.8 - 1.4 is 100/(28704 - 21063)/21063 = 36%. The checks of constraints are
summarized in Table 5.8,
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Table 5.7 Optimal discrete dimensions {[mm] and V/(2myp) - values [mm?] for various @ =
h/ag - values.

w = hlay 0.8 0.9 1.0 1.1 1.2 1.3 1.4 |
daty 244.5/8 244.5/8  244.5/8 219.1/8 273/8 273/8 298.5/8.8 ,
do/ts 273/8 244.5/8  244.5/8 | 219.1/8.8 273/8 27318 298.5/8.8 ‘,

dsy/ts 219.1/45 219.1/45 219.1/4.5| 193.7/4.5 | 219.1/4.5 219.1/45 293.7/4.5
dy/ty 159/3.6  152.4/3.6 152.4/3.2| 152.4/32 | 139.7/32  139.7/32 139.7/2.9
V/(2ma) 23083 22367 22475 21063 24970 25264 28704

It can be seen that the overall buckling constraint is always active, the local buckling
constraint is passive only for chord 2, since for thickness 7, the chord plastlﬁcatlon is
governing. Thus, it can be stated that the effect of stability constraints in the optimum
design of tubular trusses is significant.

5.7.3 Conclusions
It is shown that the use of the Euler buckling curve instead of the EC 3 overall buckling
formula causes 19 - 35% error in the unsafe side in the most important slenderness range of

38 - 89, so it should not be used in the optimization of tubular trusses. The appllcatlon of
limiting tube local slenderness /¢ = 10 instead of 50 leads to uneconomic solutions.

Table 5.8 Check of the constraints for the optimal solution @=1.1

Constraint Dimen  Eq. Rod Remarks
-sion (4.7) 1 2 3 4
Local™ active for rods 3,
| buckling -  (13) 27<50  25<50  43<50  48<50 4
v Tensile (14) near active for
| stress  MPa  (15) 223<323 - - 270<323 rod 4
f Overall (16) active for rods 2,
; buckling  MPa (17) - 188<204  240<261 - 3
“ Fabrication mm (18) - - 194<202 152<202 active forrod 3
| Eccen- (22) near active for
: tricity mm  (23) - - -8.32 - rods 1,23
Weld near active for
strength MPa  (26) - - 368<453 414<453 rod 4
, Chord , active for rods
, plasti- kKN (27) - - 642<713 405<586 3-1
fication '
E Punching : '
*[ ' shear KN (28) : ; 642<1744 - passive
|
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The significant role of the stability constraints in the optimum design of tubular trusses is
illustrated by a numerical example. In this optimum design procedure the dimensions of
CHS truss members and the optimal distance of chords are determined which give the
minimum volume (weight) of the structure and fulfil the design constraints. The constraints
relate to the overall buckling of compression members, to the joint eccentricity and static
strength of joints. For the final optimal version realistic available discrete tube dimensions
are determined.

5.7.4 Design of a roof truss

The design method described in Chapter 6 is applied for compression members of a
statically determinate roof truss with non-parallel chords to illustrate the savings in weight
in the case of trusses by using CHS or SHS instead of double-angle sections.

Consider the truss shown in Fig. 5.19. Four different cross-sections (1-4) are designed for
each case. To find the optimal truss height (%) or the optimal slope angle of the upper
chord, the truss is designed for heights #=2.5, 3.5, 4.5, 6.0 and 7.5 m (corresponding slope

angles are (4.76°,9.46°,14.04°,20.56° and 26.56" ).
In the design of CHS and SHS struts, section properties of the ISO/DIS 4019.2 as well as
the tables given by Dutta and Wiirker [5.36] (DIN 2448, DIN 2458, DIN 59411) have been

used. The results of the calculations are summarized in Table 5.19 and Fig.5.9.

Table 5.9 Total volumes of trusses of various heights

Slope Upper Lower Outside  Braces Total
Height angle Section chord chord columns volume
h(m)  po 1 2 3 4 077 (mm®)

CHS = 152.4/29 133/3.2  108/23  108/2.3 10.72
2.5 4.76 SHS 115/3.2 110/3 70/3.2 70/3.2 11.04
angles 2x80x8 2x50x7  2x50x6  2x70x6 18.14

CHS 152.4/23 139.7/2.3 101.6/2  101.6/2 9.24
3.5 9.46 SHS 115/2.6 80/3.2 70/2.6 70/2.6 9.71
angles 2x70%7 2x50%x5 2x50x6 2x55%6 15.36
CHS 139.7/2 12772 101.6/2  101.6/2 8.95
45 1404  SHS 90/3 80/2.6 70/2.6 70/2.6 9.80
angles 2x65x7 2x45x5  2x50x6  2x60x6 17.18
CHS 12772 101.6/2  101.6/2 88.9/2 8.79
6.0  20.56 SHS 90/2.6 90/2 70/2.6 70/2.6 10.45

angles 2x70x6 2x40x4  2x50x6  2x60x6 18.87
7.5 2656  CHS 1143/2  88.9/23 101.6/2 83.9/1.8 8.84
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It can be seen that the optimal truss height (slope angle) giving th'e minimal tot_al volume of
the structure depends on the cross-sectional shape. In the investigated numerical example
the optimal slope angles are as follows:

| 12x2=24m J

Fig. 5.9 Numerical example of a roof truss. 1 - section for upper chord, 2 - section ff)r
lower chord, 3 - section for outside columns, 4 - section for braces. The height / varies
with the slope angle /3 of the upper chord.

For double-angle sections
B=10°, for SHS =12° and for CHS =20° .

The savings in weight by using CHS or SHS instead of double-angle sections are 41-53 %
or 39-45 %, respectively e.g. 100 (18.14 - 10.72/18.14) = 41 % etc.

These differences are larger than the difference between the material costs of CHS, SHS
and rolled angles, thus material cost savings can also be achieved.

Note that the sensitivity of the volume functions for CHS and SHS is relatively smali, but
the difference between the volumes for the heights # = 2.5 and the optimal hopt =6 m (for
CHS) is 100 (10.72 - 8.79 / 10.72) = 18 %, so, for cconomic design, it is important to
choose the optimal truss slope.

5.7.5 Conclusions

The overall buckling strength of concentrically compressed CHS and SHS struts is much
larger than that of double-angle section struts, therefore significant savings in wexght an_d
material cost can be achieved by using CHS and SHS instead of double-angle sections 1n
compressed struts and trusses. .

By using the limiting local slendernesses and the relationships between the' radius of
gyration and cross-sectional area, design diagrams are given for the calculation of the
required cross-sectional area in function of the compressive force and strut length.

The illustrative numerical example of a roof truss, constructed from CHS, SHS or dogble~
angle sections shows that the optimal geometry of the truss depends on the cross-sectional
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shape of compression members. This conclusion is important, since this aspect has not
been pointed out till now in the optimum design of trusses.

5.8 EXPERT SYSTEMS

5.8.1 Introduction

Computer programs using Al techniques to assist people in solving difficult problems
involving knowledge, heuristics and decision-making are called expert systems. Artificial
Intelligence techniques are the best utilized in identifying and evaluating design
alternatives and their relevant constraints while leaving the important design decisions to
the human designer. The emerging fields of Al and knowledge engineering offer means to
carry out qualitative reasoning on computers. There were some attempts to connect the
expert systems and structural optimization [5.37]. One of them is an expert system for
finding the optimum geometry of steel bridges [5.38].

The connection between single- and multiobjective optimization made it possible in the
structural optimization to form a decision support system. In the multiobjective
optimization several so called weighting coefficients serve for the designer to give relative
importance of the objective functions 5.1 1,5.12]. The decision support systems (DSS) and
the expert systems (ES) are close together, but it is necessary to build an inference engine.
The key concept in our approach is to give the user control of important design decisions.
Therefore, our approach in applying Al to engineering design is to use Al techniques for
keeping track of all design alternatives and constraints, for evaluating the performance of
the proposed design by means of a numerical model, and for helping to formulate the
optimization problem.

The human designer evaluates the information and advices given by the computer, assesses
whether significant constraints or alternatives have been overlooked, decides on
alternatives, and makes relevant design decisions.

Depending on the application, an expert system can perform ten type of projects as
follows: interpretation, prediction, diagnosis, design, planning, monitoring, debugging,
repair, instruction, control. We have used the expert systems for design of structures.

5.8.2 Components of an expert system

The three basic components of an expert system are
- the knowledge base,
- the inference engine,
- the user interface.
There are three main streams in expert systems
- rule-based expert systems can be backward or forward chaining,
- object-oriented systems,
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- hybrid systems, which combine object-oriented techniques with rule-based ones
(Harmon 1990), (Dym 1991), (Garrett 1990).

- EDA/SQL interface to relational and non-relational databases,

- Rdb/SQL interface to VAX RDB/VMS databases, and

- own worksheet handling system (similar to LOTUS 123).

5.8.3 Overview of Personal Consultant Easy [5.39]

EASY is an EMYCIN-like program developed by Texas Instruments to run on PC-s. Facts
are represented as object-attribute-value triplets with accompanying confidence factors.
Production rules represent heuristic knowledge. EASY can build systems of up to about
400 rules. A rule tests the value of an O-A-V fact and concludes about other facts. The
inference engine is a simple back-chainer. o o
Control is governed primarily by the order of clauses in the rules. Uncertain information is
marked by confidence factors ranging from 0 to 100. EASY accepts unknow.n as an answer
to its questions and continues to reason with available information. Explana.tlon facilities in
the program as well as trace functions are used for knowledge base debugging. EASY uses
questions to prompt the designer to enter the initial information into a knowledge base. The
tool provides several programming aids for debugging.

EASY is implemented in IQLISP. Sources of data can be other langua%e programs or
procedures such as FORTRAN, C, C++, data bases such as dBase, LOTUS. The program
has some graphics functions as well (DR HALO). The tool uses an Abbreviated Rule
Language (ARL) to write the rules.

5.8.4 Overview of Level 5 Object

LEVEL 5 OBJECT (LOS5) [5.40] is an object-oriented expert system develop'ment and
delivery environment. It provides an interactive, windows-based user interface integrated
with Production Rule Language (PRL), the development language used to create‘LSO
knowledge bases. The PRL Syntax Section provides syntax diagrams to follow logically
when writing a knowledge base. System classes are automatically built by L50 when a
new knowledge base is created, thereby providing built-in logic and object ‘tools. The
developer can use system classes in their default states or customize them..In this way, the
developer can control devices, files, database interactions and the inferencing and
windowing environments.
The most remarkable tools of LOS5 are:

- object oriented programming (OOP),

- relational database handling (RDB),

- computer aided software engineering (CASE) and

- graphical development system.
The most remarkable tools of LO5 for IBM compatible PCs are:

- Microsoft Windows,

- programming with an object-oriented language (Borland C++),
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- direct connection with dBase,

- direct connection with the fourth generation FOCUS data handling system, offers

means to carry out qualitative reasoning on computers. Advanced programs that can solve
a variety of new problems based on stored knowledge without being reprogrammed, are
called knowledge-based systems. If their level of competence approaches that of human
experts, they become expert systems, which is the popular name for all knowledge
systems, even if they do not deserve the name.
Al techniques provide powerful symbolic computation and reasoning facilities that
accommodate intuitive knowledge used by experienced designer. Al techniques,
knowledge engineering in particular, can be used in conjunction with numerical programs
to serve as an interface between the alternatives and constraints and the designer. Al
should be used in the following context [5.41].

- to track the available design alternatives and relevant constraints and to infer candidate
modifications in order to improve the design,

- to observe the relationship - intuitive or numerical - between specifications and decision
variables, and to give advice on how to formulate the problem for optimization, in
particular, to identify the limiting constraints and specifications.

Using LO5 there are two ways of developing programmes: they can be generated either by
word processors or in the developing environment. Taking these capabilities into account,
1,50 was found suitable for development of expert systems for structural engineering.
There are a great number of expert shells available such as ART (Automated Reasoning
Tool, Inference Corporation), KEE (Intellicorp), Intelligence Compiler (Intelligence Ware
Inc.), Symbologic Adept (Symbologic Corporation), GURU (Micro Data Base Systems),
etc. They are available on APOLLO or SUN workstations or on PC-s [5.42].

We have developed the optimization package on PC and we have found the previously
described two softwares to be efficient expert shells, so we have made our development
using these tools.

The aim was to develop an expert system, which is able to find the optimum version of
belt-conveyor bridges due to different geometry, loading, steel grades and design codes.
The different variants can be seen in Fig. 5.20. The truss structures can be constructed with
four or three chords. The belt-conveyor can be placed on or in the bridge. Instead of a truss
structure a tube or a stiffened shell can be used as the main girder.

The total number of variants is about 14000 and it can be increased if we take into account
other aspects and constraints in a modular way.

The decision support system, which was connected to the expert one, contains five various
single-objective and seven various multiobjective optimization techniques. These
techniques are able to solve nonlinear optimization problems with practical nonlinear
inequality constraints.

The DSS could contain finite element procedures to compute the mechanical behaviour of
the structures. The DSS is described in [5.23].

We have investigated only some variations and our aim is to build the program according
to Fig. 5.20 in all details.
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Fig. 5.20 Logical construction of the expert system in LOS5 for belt-conveyor bridges
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| To illustrate numerically the effect of some structural parameters on the minimum weight
i design of tubular trusses for belt-conveyor bridges, the optimum topology is sought for a
simply supported N-type truss (Fig. 5.21). The belt-conveyor is placed inside the bridge.
The total volumes of the planar main truss girder are calculated for three values of node
distance 'a'.

The span length is kept constant L, = 30 m. For each 'a' the ratio @ = h/a is varied and the
optimal @ giving the minimum volume is determined.

The loads are as follows:

Uniformly distributed vertical loads for a main truss girder:

1 1 1 1

4 4 4 4
3 3 3 3 h

2 2 2 2

,=8x325=30m

T

L,=10x3.0m

T
1

, = 12x2.5m |
, 1

Fig. 5.21 Various topologies of the main tubular truss girder.

self-weight Pe=3.7kN/m,
imposed load Po; = 0.5 kN/m,
;: snow Po:= 1.0*s/2 =12 kN/m,

where s is the width of the bridge.
Load on foot path for maintenance is Po3 = 0.5 kN/m.

Factored vertical load with safety factors according to the Eurocode 3 is




(3]
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P
L
b

Py =76P6" 0.9 7o (Por + pos + Pps ) = 1.35%3.7 + 0.9¥1.5 (0.5 + 1.2 +0.5) = 7.965
kN/m (5.96)

Horizontal wind load for one horizontal wind girder is
Puo = 0.8 h/2 (5.97)

the safety factor is y,, = 1.5, the factor for simultaneous effects is 0.9, then the factored
horizontal load is

Py, = 0.9%1.5%0.8 72 (5.98)
Four different square hollow sections are considered: for upper chord(®) | lower chord®@)
inside columns®) and diagonal braces (), The outside columns are not treated, since they
should be constructed as transverse frames and designed also for bending moments caused
by the horizontal wind load.

The maximal forces in truss members are as follows:

Upper chord: N = N, +N, (compression)

. pL; 9

Force from vertical load N, = —2‘3/—0 (5.99)

1
. p.L 00

and from horizontal load N, = —é—” (5.100)
s

Lower chord: N = N, + N, (tension)

and from the horizontal load N, = p—éL—" (5.101)

s

The forces from the vertical load are given in Table 5.10.

Table 5.10 N, forces from the vertical load Dy

a lower chord inside columns diagonals
L,/8 7.5 p,al @ 2.5pa 4 pal+0* | @
L,/10 12 palw 35p.a 5 p,as N+a?/w
LJ/12 17.5 palew 4.5pa 6 pyaVl+w’ [

The compressed members are designed for overall buckling according to Eurocode 3
[5.31] using the buckling curve & for SHS struts and the limiting local slellderllegs
according to CIDECT [5.43] Sy = (b/1)y, = 35 for steel of yield stress f;, = 235 MPa. It is

shown in our another paper [5.44] that the relationship between the radius of gyration ()
and the cross-sectional area (4) can be expressed as

r=agJA = ‘/%\/:4—:1.207&/2 (5.102)

The design formula for overall buckling is
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J N 1 7 =
} ;ﬁk’f;, ,  —=0+JO' -7 (5.103)
I ®=0.5[1+a(A-0.2)+ 2] (5.104)
L - A _KL .
RN SR . £ (5.105)
Ay TA t,
Using the symbols
100K 10'N 10° 4
¢ = , X = , V= 5.106
"=, AL (5.106)
the design formula can be written as
_f£ <y (5.107)
SOt D
asy
c c
@ =0.5[1+ a(—2=—0.2) +—*] (5.108)
s \/; dsy
where L is the strut length, @ = 0.34 for buckling curve b, X is the end restraint factor for

chord members K = 0.9, for inside columns K = 0.75. For /=235 MPa itis A; =93.91. For
a given compressive force N and strut length L (or x) the required cross-sectional area (or

y) can be calculated by using a computer program.
The results of calculations are summarized in Table 5.11 and in Fig. 5.22. It can be seen
that the optimal @ = Ah/a ratios are different for various a-values. The absolute optimum is

w =1 for a= L,/8.

155
10 V (mm’)

151 \\
147 Ve

N
a=L,/8 |a= L0/10\/
/

a=L /M2

143 I .

139 \ ‘
\MM
135
0.8 1.0 1.2 1.4 1.6
hla
Fig. 5.22 Total volumes of a main girder of belt-conveyor bridge constructed from SHS

members.

| Sar— o
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Table 5.11 Total volumes of a main girder of belt-conveyor bridge constructed from SHS
members
10-6 7/ (mm?3).

w=ha 0.8 1.0 1.2 1.4 1.6
a=L,/8 144.1 137.7 138.6

a=L,/10 143.8 140.2 141.7

a=L,/12 153.9 146.1 144.1 148.0

Although the sensitivity of the volume function is small, the difference between the V-
values for @ =1 is 100%(153.9 - 137.7)/153.9 = 10 %, thus, 10% savings in weight can
be achieved by using the optimal @ = L,/ 8 version instead of a = L, / 12 version. This
optimal version is also advantageous regarding the fabrication costs, since it is constructed
with less number of nodes.

5.8.6 Conclusions

The main differences using the EASY and the L50 expert shells were, that in EASY all
values for the computation should be given in advance, so the program goes on a given
way bordering by the rules, but LOS5 asks for the unknowns during the computation, it
knows what to ask for, easier to jump from one level to another on the rules' tree and the
optimization part is built into the expert shell. It means that the second expert system is
much close to the original aim of artificial intelligence.

The numerical example shows that it is important to include the optimum design in an
expert system to make it possible to select the most suitable structural versions.
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Appendix for Chapter 5

Table A1 Welding times 75 (min/mm) in function of weld size a,, (mm) for longitudinal
fillet welds downhand position

Welding technology ~ ay [mm] 10’7, =10°C,a’,

SMAW 0-15 0.7889a’
SMAW HR 0-15 0.5390a
GMAW-C 0-15 033944’
GMAW-M 0-15 032584
FCAW 0-15 0.2302a’
FCAW-MC 0-15 0.4520a’
SSFCAW (ISW) 0-15 0.2090a’
SAW 0-15 0.2349a’

Table A2 Welding times 75 (min/mm) in function of weld size a,, (mm) for longitudinal
1/2 V and V butt welds downhand position

Welding technology a, [mm] 10°T, =10°C,a’, 10°7, =10°C,a’’
SMAW 4-6 6-15 313a, 0.5214a? 2.7a, 0.45a?
SMAW HR 4-6 6-15 214a, 03567a%  18462a,  03077a’

GMAW-C 4-15 0.2245a’ 01939a’
GMAW-M 4-15 02157a’ 01861a?
FCAW 4-15 0.1520a? 0131la?
FCAW-MC 4-15 029934’ 025824’
SSFCAW (ISW) 4-15 013844’ 011944’

SAW 4-15 0.1559a’ 0.1346a’
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Table A3 Welding times 7, (min/mm) in function of weld size a,, (mm) for longitudinal K

and X butt welds downhand position

K butt welds X butt welds

Welding technology @, [mm] 10°7, =10°C,a’" 10°T, = 10°C,a”,
SMAW 10-40 0.353961:‘;9349 0345 1a1;9o41
SMAW HR 10-40 0.24190':,9345 023 63a:v'9037
GMAW-C 10-40 01520a%% 014964
GMAW-M 10-40 01462a,”* 01433a,”*
FCAW 10-40 0.10320,:;9351 0‘1013(1‘1‘;9028
FCAW-MC 10-40 02030457 01987417
SSFCAW (ISW) 10-40 0_0937(,:;935? 0.0924 a:f‘m
SAW 10-40 01053a,”™* 0103347

Table A4 Welding times T, (min/mm) in function of weld size ay, (mm) for longinldinal T
butt welds downhand position

Welding technology a,, [mm] 10°T, =10°C,a,
SMAW 2-8 (01211- 000473a13)”

SMAW HR 2-8 02155a2 + 21485

GMAW-C 2-8 0218945

GMAW-M 2-8 02221a*""
FCAW 2-8 010064’ + 0.4247
FCAW-MC 2-8 0.2065a> + 04405
SSFCAW (ISW) 2-8 0.0918a2 + 03791
SAW 2-8 0.01066a, +1.698
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Table A5 Welding times 7’ (min/mm) in function of weld size a,, (mm) for longitudinal U
and double U butt welds downhand position

U butt welds double U butt welds

Welding technology a, [mm] 10°T, =10°C,a” 10°T, =10°C,a”
SMAW 20-40 2232645 181954122
SMAW HR 20-40 1.5280a45% 1246142
GMAW-C 20-40 0.9642a4 0.78654"%
GMAW-M 20-40 1648944 0.75260"2%
FCAW 20-40 0.6514a% 0533443
FCAW-MC 20-40 128334146 104624
SSFCAW (ISW) 20-40 0596245 0.48244"3™
SAW 20-40 0.6702a4%2 05461475

Table A6 Welding times 7, (min/mm) in function of weld size a, (mm) for longitudinal
fillet welds in positional welding

Welding technology a, [mm] 10°7, =10°C,a’”
SMAW 0-15 1667047
GMAW-C 0-15 0.4930a?

Table A7 Welding times 7, (min/mm) in function of weld size a,, (mm) for longitudinal V
butt welds in positional welding

Welding technology a, [mm] 10°7, =10°C,a”
SMAW 4-15 0.9518a2
GMAW-C 4-15 0.2814a?

It should be noted that in values for SAW a multiplying factor of 1.7 is considered
since in COSTCOMP different cost factors are given for various welding methods.
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Table A8 Cutting time of plates, T (min/mm) in function of weld size a,, (mm) for fillet
for longitudinal fillet welds and T-, V-, 1/2 V butt welds

Cutting technology Thickness  10°7; =10°C,¢”
| ¢ [mm]
1 Acetylene ( normal speed ) 2-15 1.1388¢°%
Acetylene (‘high speed ) 2-15 0.9561:%%
Stabilized gasmix ( normal speed ) 2-15 1.1906¢%%
Stabilized gasmix ( high speed ) 2-15 1.08587%2%!
Propane ( normal speed ) 2-15 1.2941£%%%!
Propane ( high speed ) 2-15 11051%%

Table A9 Cutting time of plates, 75 (min/mm) in function of weld size a,, (mm) for fillet
for longitudinal X- and K butt welds

Cutting technology Thickness  10°7, = 10°C,¢"
¢ [mm]
}; Acetylene ( normal speed ) 10-40 0.8529¢%3%4
? Acetylene ( high speed ) 10-40 0.69117%"

Stabilized gasmix ( normal speed ) 10-40 0.89917°3%7
Stabilized gasmix ( high speed ) 10-40 0.64157%4%7
Propane ( normal speed ) 10-40 0.95657°35%

s Propane ( high speed ) 10-40 0787073825




